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Abstract: Significant progress has been made in the field of micro/nano-retinal implant technologies.
However, the high pixel range, power leakage, reliability, and lifespan of retinal implants are still
questionable. Active implantable devices are safe, cost-effective, and reliable. Although a device
that can meet basic safety requirements set by the Food and Drug Administration and the European
Union is reliable for long-term use and provides control on current and voltage parameters, it will
be expensive and cannot be commercially successful. This study proposes an economical, fully
controllable, and configurable wireless communication system based on field-programmable gated
arrays (FPGAs) that were designed with the ability to cope with the issues that arise in retinal
implantation. This system incorporates hexagonal biphasic stimulation pulses generated by a digital
controller that can be fully controlled using an external transmitter. The integration of two separate
domain analog systems and a digital controller based on FPGAs is proposed in this study. The system
was also implemented on a microchip and verified using in vitro results.

Keywords: field-programmable gated arrays; digital controller; wireless telemetry system; hexagonal
stimulation

1. Introduction

Vision plays an important role in the transfer of external information from the sur-
roundings to the brain, constituting almost 90% of all external information. Photoreceptors
in the retinal layer of the eye are responsible for converting photons into neural signals that
are transmitted to the brain for the generation of vision. Age macular degeneration (AMD)
and retinitis pigmentosa (RP) are diseases that cause photoreceptor dysfunction and lead
to loss of vision, night blindness, and eventually blindness.

Functional electric stimulation (FES) has been widely used in various studies to restore
human vision and has gained a reputation for restoring vision loss caused by RP and
AMD. The focus of FES is to deliver an electric charge to depolarize the neural membrane.
A critical aspect of FES while generating an action potential at the neural membrane is
controlling the electric charge, which includes specific parameters, such as the current value
and shape of the current pulses.

Advancements in retinal prosthesis have resulted in various techniques based on
the anatomical position of the implanted electrode array inside the retina, which can be
classified as epi-retinal [1–3], sub-retinal [4–7], and suprachoroidal [6,8] devices. Subretinal
implants can provide high pixel densities of up to 1600 pixels [9]. Several shapes of
stimulation pulses [6,10–14] have been proposed to increase the stimulation efficiency,
reduce energy requirement, and prevent current leakage [14–17].

The rectangular biphasic pulse [10–14] has evolved to be a solution to the most critical
parameters, that is, stimulation efficiency and prevention of amplitude mismatch to avoid
current leakage. In addition, each visually impaired patient has a different threshold for
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activating retinal neurons; therefore, it is critical to control the size, shape, and amplitude
of current pulses using an embedded digital controller or stimulus generator. Cross-talk is
generated between the electrodes in the stimulator by an electric field generated during
stimulation. Retinal tissues are damaged due to this cross-talk, and unwanted neighboring
electrodes could be stimulated [18,19].

The control of the currents in retinal tissues has remained a challenge [20,21]. Many
systems use a single reference electrode, which creates a long distance between the active
and reference electrodes. This distance elicits other electrodes in the vicinity, that can excite
unwanted tissues. This excitation causes a current loss, and therefore, systems can cause
damage inside the eye.

Many approaches have been proposed to address this issue, each with its own set of
drawbacks. In various approaches, analog current control methods have been used, which
ultimately lead to current leakage and power dissipation and do not provide complete
control over current, resulting in tissue damage. On the contrary, the methods used to elicit
electrodes cause cross-talk among electrodes, which was proven through simulation results
using COMSOL in this study.

To overcome these drawbacks, our system proposes hexagonal stimulation [11] to counter
the loss of current [11] and reduce cross-talk between the electrodes. A 64-pixel electrode
array was stimulated in this approach using the hexagonal stimulation of the electrodes.

The aim of this study is to effectively introduce a digital controller that controls
every operation of hexagonal stimulations. It is responsible for the generation of specific
data packets [3] based on the light along with a 2 MHz clock that is generated within
the transmitter. These data and the clock are responsible for the complete control of the
biphasic pulses on the receiver side that elicit the electrodes within the stimulator with
relief for current control and current leakage prevention.

Our wireless [22–24] subretinal system comprises three parts as follows:

1. Design of an external power and data transmitter that supplies power to the implanted
retinal system and light-dependent data for controlling the stimulation pulses;

2. The implanted power and data receiver recovers data and power from the external
transmitter, generates stimulation pulses of various shapes based on light-dependent
data, and delivers it to the stimulator;

3. An electrode stimulator activates neurons of the retina.

A block diagram of the system is shown in Figure 1.

Sensors 2022, 22, x FOR PEER REVIEW 2 of 13 
 

 

current leakage. In addition, each visually impaired patient has a different threshold for 

activating retinal neurons; therefore, it is critical to control the size, shape, and amplitude 

of current pulses using an embedded digital controller or stimulus generator. Cross-talk 

is generated between the electrodes in the stimulator by an electric field generated during 

stimulation. Retinal tissues are damaged due to this cross-talk, and unwanted neighbor-

ing electrodes could be stimulated [18,19]. 

The control of the currents in retinal tissues has remained a challenge [20,21]. Many 

systems use a single reference electrode, which creates a long distance between the active 

and reference electrodes. This distance elicits other electrodes in the vicinity, that can ex-

cite unwanted tissues. This excitation causes a current loss, and therefore, systems can 

cause damage inside the eye. 

Many approaches have been proposed to address this issue, each with its own set of 

drawbacks. In various approaches, analog current control methods have been used, which 

ultimately lead to current leakage and power dissipation and do not provide complete 

control over current, resulting in tissue damage. On the contrary, the methods used to 

elicit electrodes cause cross-talk among electrodes, which was proven through simulation 

results using COMSOL in this study. 

To overcome these drawbacks, our system proposes hexagonal stimulation [11] to 

counter the loss of current [11] and reduce cross-talk between the electrodes. A 64-pixel 

electrode array was stimulated in this approach using the hexagonal stimulation of the 

electrodes. 

The aim of this study is to effectively introduce a digital controller that controls every 

operation of hexagonal stimulations. It is responsible for the generation of specific data 

packets [3] based on the light along with a 2 MHz clock that is generated within the trans-

mitter. These data and the clock are responsible for the complete control of the biphasic 

pulses on the receiver side that elicit the electrodes within the stimulator with relief for 

current control and current leakage prevention. 

Our wireless [22–24] subretinal system comprises three parts as follows: 

1. Design of an external power and data transmitter that supplies power to the im-

planted retinal system and light-dependent data for controlling the stimulation 

pulses; 

2. The implanted power and data receiver recovers data and power from the external 

transmitter, generates stimulation pulses of various shapes based on light-dependent 

data, and delivers it to the stimulator; 

3. An electrode stimulator activates neurons of the retina. 

A block diagram of the system is shown in Figure 1. 

 

Figure 1. Block diagram of the system. XC7A35T version FPGA is used to generate data and clock 

signals on the transmitter side and is transferred through an inductive link. The receiver comprises 

data and power recovery systems, a global digital controller, and a pixel simulator. 

2. Materials and Methods 

Figure 1. Block diagram of the system. XC7A35T version FPGA is used to generate data and clock
signals on the transmitter side and is transferred through an inductive link. The receiver comprises
data and power recovery systems, a global digital controller, and a pixel simulator.

2. Materials and Methods

There has long been a need for retinal systems that cover all the fundamental aspects
of vision enhancement while considering electrical and biological factors. The aim of this
system is to bring it closer to real-world applications. This designed architecture comprised
four main parts: a transmitter that generated clock and data outputs dependent on external
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light using a field-programmable gated array (FPGA) BASYS 3. The generated data were
based on a specific protocol and were transmitted in the form of data packets, which
ensured the correct encoding of data on the receiver side. A wireless data telemetry system
was designed that transmitted a 2 MHz clock signal, 32-bit data packets at a frequency
of 10 kHz, and sufficient power, which was later recovered on the receiver side. This
prevented the receiver from relying on batteries or internal power; instead, it worked by
using the power received through the transmitter. A global digital controller that received
clock and data signals was responsible for generating specific pulse patterns to generate
the biphasic pulse and was driven by external power received through wireless power
transfer. A stimulator pixel comprised a photosensor, a current amplifier, and a pulse
shaper that generated biphasic pulses in response to specific pulse patterns generated
within the digital controller.

2.1. Hexagonal Stimulation

Controlling current loss is one of the major factors affecting eye tissue damage. This
system consists of a hexagonal stimulator, which is entirely controlled by an on-chip
digital controller, as explained in the following section. Figure 2 shows the structure of
the hexagonal stimulator. A total of 64 electrode pixels were divided into 4 channel sets,
each comprising 16 pixels. In this system, 4 phases excited 64 pixels, whereas 16 pixels
were excited in 1 phase. When a single channel set was turned on for its respective time,
16 pixels were excited, and the remaining electrode pixels acted as a reference (ground).
Therefore, this technique of eliciting electrode pixels reduces the artifacts caused by current
leakage or cross-talk.
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Figure 2. Pattern of electrode stimulation. Each phase shows a specific interval of stimulations of a
single channel set, while hexagonal pattern of stimulation is shown in a small box.

Hexagonal stimulation was performed using biphasic pulses, which tend to be more
beneficial than other pulse shapes. A global digital controller was used to generate bipha-
sic pulses.

2.2. Global Digital Controller

A global digital controller, which is part of a complete system, comprises two main
systems: transmitter and receiver. The individual system architecture of the transmitter
and receiver, which acts as a global digital controller, is described in what follows.
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2.2.1. Transmitter

This system uses near-field communication for the transmission of data and clock
outputs through a wireless data telemetry system; therefore, a single data transfer protocol
was used for all the devices. These data were received and processed on the receiver side
to generate various pulse patterns, which are explained in detail in this section.

An important consideration when designing a transmitter is that data should be
light-dependent, and every transmitted data packet should represent a specific intensity
of light. For the current system, a prototype FPGA (BASYS 3) was used to generate data.
Subsequently, the proposed system depends on various intensities of light. The data were
transmitted in the binary form 0 s and 1 s. A clock was generated on the transmitter FPGA
at a rate of 100 MHz. The clock could be divided based on the requirements of the global
digital controller on the stimulator side. The various speeds of the clock made the system
more reliable because the total stimulation period could be varied on the transmitter side.
A single clock with a frequency of 2 MHz was used for the current system. Figure 3 shows
the proposed complete transmitter system.
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Figure 3. Detailed architecture of transmitter for wireless data telemetry system.

The transmitter generated an internal clock at a speed of 100 MHz. Clock dividers
were used to attain the desired frequency of 2 MHz from the 100 MHz built-in clock of the
FPGA. This 2 MHz clock was output from the transmitter to the receiver through a wireless
transmitter system for the generation of pulse profiles and synchronization processes.

Seven-bit external data were input to the transmitter FPGA. The data were input
in the form of 0 s and 1 s, which gave a total of 128 combinations. Each combination
was responsible for the shape and amplitude of the biphasic pulse. The input data were
combined with the start bit, 24-bit header, and stop bit. The start bit indicated the start of
the new data packet. Each data pattern had a specific header that provided the address of
the data and verifies the data packet. The stop bit acted as parity and indicated the end of
the data packet. The 32-bit parallel data were input into a multiplexer that converted it into
serial data. A five-bit counter acted as a selection line for the multiplexer and each bit of
the data packet was transferred to each pattern of the selection line.

2.2.2. Data Packet Structure

Data on the transmitter side were generated based on the light transmitted through
the FGPA. For data transmission, a specific data packet was generated, which included a
start bit indicating the start of a new packet, followed by a specific, fixed 23-bit address of
the data. This indicated the type of data transmitted and verified the correct data packet.
Once the header was verified, seven-bit variable data were processed, and the stop bit,
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which also acted as parity, indicated the end of the data packet. Figure 4 shows the data
packet structure.
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Figure 4. The packet format protocol used in this system for wireless data transmission.

The data packet comprised 32 bits. In addition, 25 bits were used for the transmission
and verification of data packets by following a simple verification protocol. Seven-bit
binary data were generated based on the light intensity, with an initial value starting from
decimal value “0” and maximum value extending to maximum decimal value “127”. Each
data value changed the shape and amplitude of the pulse patterns as the light intensity
changed. In addition, it also provided manual control for the subject based on the intensity
of light in case the subject wanted a specific change in the amplitude or shape of pulses
that would elicit electrodes inside the human eye. The data packet structure is shown in
Figure 4.

2.2.3. Wireless Data and Power Telemetry

Wireless communication uses near-field communication. Wireless telemetry systems
use an inductive coil, which is a popular method for transferring wireless data and power.
In the current system, the external device comprised a class-E power amplifier, amplitude-
shift-keying (ASK) modulator circuit, and current sense circuit for back-telemetry data
recovery. The implanted device had a rectifier, regulator, overvoltage protection circuit,
demodulator, and reverse telemetry controller. The class-E amplifier was driven by a
2 MHz carrier signal, and data were modulated on the carrier signal, which was then
transmitted through an inductive link. The received signal in the implanted device was
rectified and fed into the regulator to generate dual-polarity supply voltages. The global
digital controller started operating when clock and data signals were received from the
demodulator. The status of the implanted stimulators was observed from the external
side by generating back-telemetry data. Load-shift keying (LSK) through an inductive link
technique was used for back-telemetry, which was fully controlled by a reverse telemetry
controller. The overvoltage protection circuit in the implanted device was activated when
the rectified signal exceeded the allowable voltage limit. This circuit shifted the reactance
of the implanted coil and capacitor away from its resonance; as a result, the received signal
was attenuated at a safe voltage level.

2.2.4. Digital Controller

The data and clock outputs were received by the global digital controller after they
were processed through a wireless data telemetry system and recovered using a demodu-
lator. The operation of the wireless data telemetry system was explained in the previous
section. The global digital controller used the data and clock signals received from the
transmitter to generate specific pulse patterns responsible for the generation of a bipha-
sic pulse. Three testing platforms for the global digital controller were used for testing
the complete wireless telemetry system. ModelSim (Mentor Graphics, Wilsonville, OR,
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USA) was used to perform the simulations. The results were verified using hypothetical
simulations. Hardware was initially implemented on the FPGAs to verify the results.
The FPGAs were used to transmit and receive data, and the results were posted on an
oscilloscope. A microchip designed for both a 64-pixel stimulator and its global digital
controller was fabricated.

Data from the transmitter were transferred into a wireless telemetry system that
proceeded into the receiver FPGA. The receiver received data at a speed of 10 kbps, while
the clock signal was received at a speed of 2 MHz. For the synchronization of data, the
received clock output was internally divided into a clock of 10 kHz. The receiver generated
various pulse profiles. Figure 5 shows the timing diagram of the pulse profiles.
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The proposed digital block comprised four main blocks, which operated as follows:

• Generating current pulses in the pulse generator, including CHRG, CHRGG, CATH,
ANO, and BALN;

• Timing of the CHRG and CHRGG pulses in the pulse-width controller block. CHRG
and CRHGG were reset to the photodiode sensor. The amplitude of the light-dependent
biphasic pulse was varied by controlling their width to digital pulses, which ranged
between 1 to 10 ms;

• Controlling the timing and inter-pulse delay of CATH and ANO in the pulse sequence
block. CATH and ANO generated cathodic and anodic currents of the biphasic pulse.
In addition, different shapes of biphasic pulses, as shown in the results, could also be
generated by varying the CATH and ANO pulses;

• The residual current was neutralized by turning on or off the BALN pulse;
• The stimulator array had four sets of channels, each of which comprised 16 pixels, as

previously explained. Each channel set for stimulation was specified in the channel
control block and merged with the width and delay control pulses in the channel-pulse
merge block.

2.2.5. Receiver Structure

Various blocks of the pulse profile generator are shown in Figure 6, which illustrate
the operational process of the receiver, as described below.
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Pulse Generator

This is a counter that takes the clock signal and resets it as inputs to generate a timing-
controlled, two-bit output. Initially, the counter changed its state after the maximum time of
a single-phase change, that is, 1 ms. A maximum interphase delay of 10 µs was used during
the entire process. The output generated from the counter was wired into 3 × 8 decoders,
which provided control logic for the number of pulses generated as cathodic-first pulses.

Channel Controller

This block provides sequential control logic for the stimulation of each channel set.
A sequential channel controller received the input waveform from a two-bit clock counter
and determined the specific channel set for each pulse. Four sets of channels were stimu-
lated. Each set comprised 16 pixels.

Serial-to-Parallel Converter

This block received serial data from a wireless telemetry system. This block was
designed in such a manner that it checks for the start of the data packet, followed by the
header for verification of the data packet, and designates the address to each data packet;
upon verification of a true data packet, it transfers seven-bit parallel data pulse-width
controller, which varies the width of current pulses based on the value of data.

Pulse-Width Controller

The amplitude of the biphasic pulse can be clamped to a certain voltage level by
controlling the stimulation timing of the CHRG. Sixteen CHRG pulses varied with a time
difference of 62.5 µs, minimum width of 62.5 µs, and maximum default width of 1 ms,
while widths of CATH and ANO varied from a minimum of 500 µs to a maximum of 1 ms,
and the interval between both pulses varied from a minimum of 0 µs to a maximum of
1 ms, based on the increased or decreased value of seven-bit input obtained from data
telemetry. The pulses varied depending on the seven-bit input pulse control received from
the serial-to-parallel converter. A 16-bit clock divider was used to parse the pulse width,
which shifted to its original time of 1 ms when reset to its initial value.

Merge Block

This block provided a pathway for each stimulus timing pulse for each designated
channel set, based on the input signals received from the pulse width and channel con-
trollers. The channel- and width-controlled pulses were the outputs of the analog circuit.
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3. Results
3.1. Integrated Circuit (IC) Design

Design Vision e-2013 was used to synthesize the Verilog code and design layout after
verifying the synthesized code. To manufacture an integrated circuit chip, a 0.35 µm SK
Hynix CMOS standard process was used. A digital controller would be implanted inside
the eye, which was fabricated on the same chip as a pixel stimulator, reducing the size
and external connections. Figure 7 shows a photograph captured during the testing of the
complete system. Figure 8 shows the layout generated and the fabricated chip.
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(b) microscopic view of 64-pixel fabricated microchip (with an active area of 4.3 × 3.2 mm2).

3.2. COMSOL Simulations

This study aims to investigate the design of a stimulation pattern that prevents the
loss of residual charge and minimizes cross-talk among the electrodes. Platinum electrodes
were used as stimulators. Table 1 lists the basic parameters adopted for the electrode
design. Standard parameters [25] for platinum electrode simulation were used based on its
material properties.

Figure 9 shows COMSOL simulation results. As shown in Figure 9a, 16 pixels were
activated. Graphical description depicts that simulation of electrodes has a minimal effect
on neighboring electrodes. COMSOL simulations prove the efficiency of our system in
terms of cross-talk. Figure 9b shows the effect of stimulation of a single electrode when
two channel sets were activated sequentially.
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Table 1. Table lists basic parameters used for electrodes COMSOL simulations.

S.No Property Name Value Unit

1 Electrical conductivity Sigma 8.9 × 106 (S/m) S/m
2 Coefficient of thermal expansion alpha 8.80 × 10−6 (1/K) 1/K
3 Heat capacity at constant pressure Cp 133 (J/(kg·K)) J/(kg·K)
4 Density rho 21,450 (kg/m3) kg/m3

5 Thermal conductivity k 71.6 (W/(m·K)) m·K
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Figure 9. Simulation results calculated: (a) results calculated using COMSOL when a complete channel set
was activated; (b) results calculated using COMSOL when two channels were activated simultaneously.

Compared with rectangular or conventional stimulation protocols, hexagonal stimula-
tions prove to be an effective and efficient protocol, along with complete control of current
by controlling pulse widths and shapes from the transmitter side.

3.3. ModelSim Simulations

ModelSim v10.3e was used as the simulation tool for digital control. Figure 10 shows
the simulation results of the digital controller on ModelSim for the two sets of channels.
CHRG and CHRGG were simultaneously generated for 10 ms in this simulation. CATH
and ANO, each for 1 ms, were consecutively generated to generate a cathodic-first pulse.
A BALN pulse with a CHRG was produced.
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3.4. Hardware FPGA and Microchip Implementation

Xilinx Vivado e-2018 was used to program an FPGA (Artix-7 BASYS 3). FPGA gen-
erated serial data and clock signals on the transmitter side, and these data and clock
signals were used to generate pulse profiles on the receiver side. The results of hardware
implementation are shown in Figure 11.
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Transmitted and received data through a wireless telemetry system are displayed,
along with ASK demodulated data, in Figure 11a. The data on both the transmitter and
receiver sides were completely synchronized. Figure 11b shows the timing diagram of
the current pulses using the FPGA. The width of the pulses can vary depending on the
light source.

1. “D0” donates CHRG pulse;
2. “D1” donates CHRGG pulse;
3. “D2” donates CATH pulse;
4. “D3” donates ANO pulse;
5. “D4” donates BALN pulse.

Figure 11c shows biphasic pulses generated for two different channels sequentially on
a digital controller designed and fabricated on 0.35 µm microchip technology with respect
to the data.

4. Discussion

This study proposed the utilization of rectangular biphasic pulses using a fully control-
lable digital controller through a wireless transmission system for hexagonal stimulation.
Previously designed architectures have used various stimulation protocols to simulate
electrodes. However, they lacked efficiency in terms of current mismatch, power loss, and
cross-talk effects, all of which play important roles in tissue damage and could ultimately
lead to the failure of complete and expensive systems. Complex designs make these systems
expensive and not commercially viable.

Implementation of rectangular biphasic pulses with light-dependent control over cur-
rent helped our system counter the issues of current mismatch and power loss. Hexagonal
stimulation using rectangular biphasic pulses with complete control over the amplitude
and shape of rectangular biphasic pulses significantly leads to the reduction in cross-talk
between the electrodes. This prevents unwanted stimulation of neighboring electrodes
and would ultimately prove to be a solution for tissue damage during stimulation. Our
system was verified through simulation and in vitro results using an FPGA and microchip
for hardware verification. COMSOL simulations clearly depict the reduction in cross-talk
among electrodes when hexagonal simulations were implemented. In addition, the digi-
tal controller provided complete control over the amplitude of the biphasic pulses using
external data received wirelessly from the transmitter. The systems were designed for
64 pixels.

In the future, we plan to develop a more advanced and efficient system using advanced
transmission protocols and a more enhanced digital controller. Upgrades would lead this
system to be more precise, the vision would be improved by increasing the number of
pixels, and risks related to tissue damage would be minimized to a large extent. We plan to
design a system with 256 pixels and up to 2000 pixels.
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