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The replisome is the multiprotein molecular machinery that replicates DNA. The replisome components
work in precise coordination to unwind the double helix of the DNA and replicate the two strands simul-
taneously. The study of DNA replication using in vitro single-molecule approaches provides a novel quan-
titative understanding of the dynamics and mechanical principles that govern the operation of the
replisome and its components. ‘Classical’ ensemble-averaging methods cannot obtain this information.
Here we describe the main findings obtained with in vitro single-molecule methods on the performance
of individual replisome components and reconstituted prokaryotic and eukaryotic replisomes. The
emerging picture from these studies is that of stochastic, versatile and highly dynamic replisome machin-
ery in which transient protein-protein and protein-DNA associations are responsible for robust DNA
replication.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

DNA replication is a fundamental process of life that has been a
central focus of molecular biology. Only 5 years after the descrip-
tion of the double helical structure of the DNA in 1953 [1], the lab-
oratory of Arthur Kornberg identified the first enzyme capable of
synthesizing DNA, to which they referred as DNA polymerase
(DNApol) [2,3]. More than 60 years later, we are still gathering evi-
dence to fully understand the robustness and beautiful sophistica-
tion of DNA replication and its regulation. The fundamental
principles of DNA replication are surprisingly similar from simple
viral systems up to the more complex organisms. The elegant
experiment of Meselson and Stahl, a few years after the discovery
of DNA structure, demonstrated that DNA is replicated in a semi-
conservative fashion in which the two original DNA strands sepa-
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rate and each one serves as a template for a new DNA strand [4],
Fig. 1. The antiparallel nature of DNA strands and the 50-30 polarity
of DNApol force one of the strands to be synthesized continuously
(leading strand) while the other (lagging strand) is synthesized dis-
continuously in shorter segments (Okazaki fragments), which are
later joined together [5]. Despite these differences, the synthesis
of the two strands is coupled, and is carried out by the same repli-
cation apparatus, called the replisome. The replisome is consti-
tuted by a sophisticated molecular machinery in which DNApols
work in coordination with a plethora of other molecular motors
(proteins that couple chemical energy to a mechanical task) and
specialized proteins to unravel, synthesize, edit and move in one
direction along mega-base-pair long genomes (Fig. 1). For example,
the replisome of the bacterium Escherichia coli (E.coli, Fig. 1) is
formed by at least 14 different protein subunits that synthetize
DNA at rate up to 1,000 nucleotides per second with an accuracy
of 1 wrong nucleotide incorporated every ~ 107 nucleotide poly-
merized [6]. A copyist with comparable skills would copy Don
Quixote’s novel (~1,500 pages) in approximately 30 min without
making a single typo. Over the last 60 years, biochemical, struc-
tural and genetic studies have been pivotal for identifying the com-
ponents of the replication machineries in different organisms, and
defining their functions and structures [5,7,8]. What is still missing
is a detailed quantitative understanding of the dynamics and
mechanical principles that underlie the operation of these molecu-
lar motors and their interactions with their partners at the
replisome.

In the last two decades, the advent of in vitro single-molecule
detection and manipulation methods has finally allowed research-
ers to begin to fill this gap (for review see [9–17]). These biophys-
ical methods share the ability to follow the real-time trajectories of
individual molecules with nanometer (<10 nm) and millisecond
spatial–temporal resolutions [18–26]. In this way, rare or transient
events of a reaction usually averaged out by ensemble techniques,
such as pauses, backtrackings, and rate fluctuations become appar-
ent, providing a dynamic picture of the reaction. Besides, in vitro
Fig. 1. Schematic representations of replisomes of increasing complexity. For all figures a
yellow and lagging strand (bottom) black. A) The bacteriophage T7 replisome is forme
helicase-primase (gp4) and SSBs (gp2.5). The helicase (gp4) translocates in 50–30 direc
synthesis of the lagging strand. Two or more DNApols (gp5) interact with the C-termina
with external DNApols at forks. The SSB gp2.5 covers exposed ssDNA regions and interact
(E.coli) replisome is composed of at least 14 different protein subunits. The DnaB helicas
and interacts transiently with one or more DnaG primases for RNA priming (brown). Th
subassemblies: (i) the aeh core polymerase complex that copy DNA, (ii) the b2 sliding cla
loads b2 onto primer–template junctions and coordinates replication of the two strands. U
coordinated synthesis of the two strands could be the outcome of the stochastic behav
helicase and DNApol activities. C) Up to 34 protein subunits built up the eukaryot
heterohexameric CMG helicase that translocates on the leading strand in 30–50 direction, i
d, and Pol a-primase. Pol d and Pol a are recycled to support the synthesis of multiple O
clamp (PCNA) to Pol d, and iv) the RPA trimeric SSB protein. Numerous other proteins i
involved in checkpoint regulation or nucleosome handling, since in eukaryotes DNA is c
colour in this figure legend, the reader is referred to the web version of this article.)
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single-molecule manipulation methods can be used to exert cali-
brated forces (0.1–100 piconewtons) on single biological mole-
cules, and measure the forces that result from their operation.
Direct access to these mechanical forces provides a unique oppor-
tunity to quantify the coupling of mechanical (motion) and chem-
ical reactions that govern the operation of molecular motors [20].
Briefly, two main groups of techniques are being currently used
to study DNA replication in singulo: fluorescence spectroscopy
and force spectroscopy. Fluorescence-based single-molecule tech-
niques allow the real-time observation of the trajectory of mole-
cules labeled with single fluorophores, which are excited with a
laser of the appropriate wavelength. There are two complementary
fluorescence techniques that differ in their excitation and detec-
tion modalities, total internal reflection fluorescence (TIRF) and
confocal [26]. When two different fluorophores are attached to
the system of interest, single-molecule fluorescence resonance
energy transfer (smFRET) can be measured between them
[22,24]. The fluorophores can be attached to different molecules
to study their association and relative movements or alternatively,
to different sites of the same molecule, allowing the measurement
of conformational changes. In force spectroscopy methods [21], the
dynamics of the protein acting on DNA are obtained by attaching
the protein DNA-complex under study between a surface and a
micron-size bead that is subjected to an external field. The nature
of this external field, which dictates some of the main pros and
cons of each technique, can be magnetic (magnetic tweezers), pho-
tonic (optical tweezers) or hydrodynamic (tethered particle tech-
niques). The basic principles of operation of some of these
techniques are briefly explained in the legends of Figs. 2, 3, 4 and 6.

Here, we review the main highlights of recent in vitro single-
molecule studies of some of the replisome’s main components;
replicative DNApols, helicases, and single-stranded DNA binding
proteins (SSBs) as well as recent developments in single-
molecule research on fully or partially reconstituted replisomes.
rrows show the direction of the replication fork and leading strand (top) is depicted
d by 4 proteins: DNApol (gp5) and its processivity factor thioredoxin (Thrdx), the
tion on the lagging strand and synthesizes primers (brown) for the discontinuous
l tail of the helicase and replicate the two DNA strands. DNApols can also exchange
s with the DNApols and the helicase, regulating their activities. B) The Escherichia coli
e translocates in 50–30 direction on the lagging strand, promotes strand separation,
e DNApol III holoenzyme is responsible for DNA synthesis and is made up of three
mp or processivity factor, and (iii) the seven-subunit clamp loader complex (CL) that
p to three, readily exchangeable, core polymerase complexes bind to each fork. The
ior of the DNApols at each strand. The SSB protein protects ssDNA and promotes
ic S. cerevisiae core replisome. The key components include: i) the 11-subunit
i) three multi-subunit DNA polymerases: the leading-strand Pol e, lagging-strand Pol
kazaki fragments, iii) the replication factor C involved in attaching the processivity
nteract transiently with the eukaryotic replisome, some of which are known to be
omplexed to histones. (Adapted from [15]). (For interpretation of the references to
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2. Replicative DNA polymerases

Replicative DNA polymerases (DNApol) are the molecular
motors responsible for synthesizing the new complementary
strands of DNA. Helped by processivity factors, these enzymes
use one strand of the DNA as a template and catalyze a processive
stepwise addition of the corresponding complementary deoxynu-
cleoside triphosphate (dNTP) on to the terminal 30 end of the nas-
cent DNA strand (primer).

The dNTP incorporation cycle involves large conformational
changes of the DNApol subdomain referred to as the fingers, which
pivots between ‘open and close’ positions in response to dNTP
binding and hydrolysis reactions (Fig. 2) [27–29]. Structural and
computational studies suggested that this conformational change
could be coupled with translocation directly, pushing or pulling
the DNApol to the next template position (power stroke models
[30,31]). In contrast, in vitro single-molecule nanopore [32–36],
and optical tweezers [37] studies argued for a Brownian
ratchet mechanism. According to this model, upon nucleotide
incorporation, the DNApol diffuses freely between pre- and post-
translocated states, and binding of the correct incoming dNTP
stabilizes the post-translocated state [38]. The actual mechanism
Fig. 2. Single-molecule Förster resonance energy transfer (smFRET). A) smFRET is base
acceptor (red) fluorophores, which results in a decrease in the donor (green) and a conco
energy transfer reports on the distance and dynamics of intra- and inter- molecular inte
efficiency depending on donor and acceptor proximity (adapted from [9]). B) Schemat
change in Pol I Klenow fragment. The donor fluorophore (green) is attached to the prime
fingers pivot between the open and closed positions the distance between the two fluctu
intensity time traces (green donor and red acceptor), and smFRET efficiency trajectories
panel) show 4 major populations that the authors assigned to the open, ajar (intermed
bound at the distant exonuclease site (B and C panels are adapted from [41]). (For interp
web version of this article.)
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of translocation of DNA and RNA polymerases along nucleic acids
is still a subject under investigation [39].

Accuracy during DNA replication is a must [40]. One of the two
main factors contributing to fidelity is the ability of DNApols to
select the dNTP complementary to the template strand. smFRET
studies using the Klenow fragment of DNApol I as a model system
followed the conformational dynamics of the fingers subdomain
under various conditions and revealed the existence of previously
unrecognized intermediates states within the open and closed
transitions, Fig. 2 [41–48]. These states may serve as kinetic check-
points to discriminate against incorrect substrates during the dNTP
incorporation cycle, conferring to the fingers conformational
dynamics a novel role in replication fidelity. The second main fac-
tor contributing to fidelity is the capacity of DNApols to excise mis-
incorporated incorporated nucleotides at the exonucleolytic active
site (Exo). This site is separated by up to ~ 60 Å from the polymer-
ization active site (Pol) and only binds single-stranded DNA [30],
which imposes tight structural and kinetic requirements for effi-
cient primer strand transfer. Single-molecule fluorescence
[45,49–53], and force spectroscopy, Fig. 3A and 3B, [54–58] studies
on several replicative DNApols revealed that the primer transfer
between the distant Pol and Exo sites, far from a one-step reaction,
d on the non-radiative energy transfer between nearby located donor (green) and
mitant increase in the acceptor (red) fluorescence signals. Monitoring the degree of
ractions on the sub–10 nm scale. Bottom panel shows a characteristic trace of FRET
ic illustration of labeling strategy used to probe the finger-closing conformational
r DNA and the acceptor fluorophore (red) to the tip of the fingers subdomain. As the
ates, which induce changes in FRET signal. C) Left panel. Characteristic fluorescence
(blue) for a DNApol-DNA complex labeled as in B. FRET efficiency histograms (right
iate) and closed conformations of the fingers subdomain, and a population of DNA
retation of the references to colour in this figure legend, the reader is referred to the



Fig. 3. Optical tweezers and ‘Fleezers’. A): Diagram of a dual-beam optical tweezers setup. Two high numerical aperture objectives focus two counter-propagating 808 nm
lasers, A (in green) and B (in yellow) inside a flow cell to form two optical traps. The position of each laser is controlled by piezo actuators. The two traps are superimposed in
the same spatial position so that they function as one trap, effectively. To monitor the optical trap position beam-splitters divert a small percentage of the incoming light of
each laser to position sensitive detectors (PSDs). The light leaving from each trap is sent to a different PSD to measure forces [100]. A CCD camera and a blue LED light (blue
line) allow visualization of the interior of the flow cell (adapted from [101]). The panel on the right shows idealized lateral view of the flow cell showing a DNA molecule
attached between two micron-sized polystyrene beads, one in the optical trap (orange cone) and the other on top of a micropipette. B) Experimental set-up to measure
polymerization and exonucleolysis activities of individual DNApols with dual-beam optical tweezers [55]. A single DNA molecule containing a single-stranded gap is tethered
to functionalized beads as in (A). At constant mechanical tension below 30 pN, the DNApol converts the single-stranded template (ssDNA) to double-stranded DNA (dsDNA).
This activity is followed in real-time as a gradual shortening of the distance between the beads (Dx, green). Tension above 30–40 pN shifts the equilibrium towards the
exonuclease activity, which is measured as a gradual increase in the distance between the beads (Dx, red). C) The force–extension curves of dsDNA and ssDNA can be
described using polymer physics models (red lines) (reviewed in [102]). At constant force, the conversion from one polymer to the other by DNApol activities is captured as a
change in extension D) Experimental set-up to measure the wrapping dynamics of E.coli SSB with a hybrid instrument that combines high-resolution optical tweezers with
fluorescence detection (Fleezers, [103]). Polystyrene beads (grey) are held in separated optical traps (orange cones), tethered by a DNA molecule containing a short ssDNA
region. The DNA is labeled with a FRET acceptor at the ss-dsDNA junction (red dot) and the SSB (tetramer) with the FRET donor (green dot). Fluorophores are excited by
a ~ 500 nm laser (green cone). E.coli SSB binds to ssDNA and wraps either 35 or 65 nucleotides depending on the experimental conditions (as shown on the left diagram).
ssDNA wrapping decreases the extension between the beads (Dx). E) Simultaneous measurement of tether extension (top) and FRET efficiency (bottom) enables
determination of both the position of SSB along the tether and the amount of ssDNA wrapped (adapted from [104]). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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is a highly dynamic process that involves numerous conforma-
tional intermediate states along the proofreading pathway. These
states may work as fidelity checkpoints essential to fine-tune the
equilibrium between the Pol and Exo cycles required for robust
but simultaneously faithful replication.

In addition, many DNApols present an intrinsic ability to
unwind the DNA fork during replication. Ensemble measurements
showed that this strand displacement activity is limited to a few
nucleotides by the partition of the primer from the Pol to the Exo
domains [59]. Magnetic and optical tweezers studies revealed that
individual DNApols destabilize the fork’s next base pair with an
average energy of 1–2 kBT per dNTP incorporated [60–62].
This energy is smaller than the average stability of the fork
(~2.5 kBT/ bp) explaining why a stably closed fork junction slows
down the polymerization rate, induces frequent pauses (as
observed in smFRET studies too [63]), and shifts eventually the
equilibrium towards the Exo conformation. These processes
prevent excessive strand displacement activity by the lagging
DNApol, which, as shown by in vitro ensemble studies, is detrimen-
Fig. 4. Magnetic tweezers. A) Diagram of a magnetic tweezers setup. A paramagnetic be
stuck directly to the surface are used as a reference for drift correction. Permanent magn
(arrows). The orientation of magnetic field exerts horizontal and/ or vertical magnetic fo
real-time the motion of the tethered bead. The changes in DNA extension are recorded in
Representative DNA unwinding trace of a single T4 helicase using magnetic tweezers. A D
constant tension, the DNA unwinding activity of the helicase opens the hairpin, which r
rezipping rate is limited by helicase translocation rate on ssDNA (adapted from [134]).
using magnetic tweezers. Experimental run showing: i) initial DNA unwinding rate by th
loop formation (Vpriming), and iii) sudden extension increase due to loop release upon p
limited by helicase translocation on ssDNA (adapted from [135]).
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tal for primer removal during Okazaki fragment maturation
[64,65]. During replication of the leading strand, engagement of
the helicase (and presumably SSBs) with the displaced strand
would help decrease the energy barrier for DNA unwinding, pre-
venting the Pol-Exo partition. Under these conditions, both
enzymes would coordinate their DNA unwinding properties to pro-
mote processive DNA replication [66,67].
3. Replicative DNA helicases

Replicative helicases form hexameric rings that utilize energy
derived from binding and hydrolysis of nucleoside triphosphates
(NTPs) to translocate along ssDNA and partially destabilize the fork
junction to facilitate DNA unwinding [68,69], Fig. 4. Interestingly,
eukaryotic (and archaeal) helicases form hetero-hexameric rings
that encircle the leading strand in its central channel and
translocate in the 30�50 direction. In contrast, their prokaryotic
counterparts form homo-hexameric rings that encircle the lagging
ad is tethered to the surface of a flow cell via a functionalized DNA molecule. Beads
ets produce magnetic field that pulls the bead in the direction of the field gradient
rces to stretch force or twist the DNA molecule. A CCD camera is used to follow in
real time by computer-assisted analysis of the bead image (adapted from [133]). B)
NA hairpin is tethered between the paramagnetic bead and the flow cell surface. At
esults in an increase of the DNA molecule extension. Upon full unwinding, hairpin
C) Detection of the T4 primosome helicase and priming activities on DNA hairpins
e T4 helicase (Vunwinding), ii) apparent decrease in the unwinding rate due to priming
rimer synthesis by the primase (Loop size). After hairpin unwinding, rezipping is



R. Bocanegra, G.A. Ismael Plaza, C.R. Pulido et al. Computational and Structural Biotechnology Journal 19 (2021) 2057–2070
strand and translocate in the 50�30 direction [70]. In both cases,
unwinding of the fork is promoted by steric exclusion of the
non-circled strand from the central channel [68,70–72]. In addition
to DNA unwinding, hexameric helicases play a fundamental role as
one of the central organizing centers of replisomes.

In vitro single-molecule studies have contributed significantly
to decipher the operation of these molecular motors [73]. Together
with ensemble studies, in singulo research showed that eukaryotic
and archaeal helicases load onto duplex replication origin DNA as
double-hexamers in a sequential manner [74–77]. Then, a set of
’firing factors’ are required to convert each double hexamer into
two active helicases competent for DNA unwinding and replisome
progression [78–83]. Although the translocation mechanism of
eukaryotic-type helicases is still under debate, magnetic tweezers
studies suggested that the eukaryotic CMG translocate and
unwinds DNA via an random walk biased by ATP binding/hydroly-
sis with a high propensity to pause in the absence of accessory fac-
tors [84]. For prokaryotic helicases, single-molecule studies
(together with biochemical and structural measurements) sup-
ported a sequential hand-over-hand translocation mechanism
with an overall kinetic step size of 1 bp/NTP, which may depend
on the sequence context [85–88].

Overall, single-molecule studies revealed that the real-time
kinetics of replicative helicases is frequently interrupted by pauses
and slipping events, and strand separation is the rate-limiting step
of their mechano-chemical cycle [87,89–94]. The poor unwinding
‘activeness’ of replicative helicases would avoid replisome uncou-
pling upon DNApol stalling [95], and suggest that their activity
would be strongly regulated within the replisome to achieve rapid
and processive replication. In fact, single-molecule and bulk stud-
ies have shown that slippage and pause events decrease and
DNA unwinding rates increase when the helicase works at the fork
in coordination with DNApol, primases [66,67,86,96–99] and/or
SSB proteins (see below).
4. Single-stranded DNA binding proteins (SSBs)

SSB proteins are essential for the replisome’s proper operation
and play pivotal roles during genome maintenance (for review
[105,106]). During DNA replication, SSBs bind to the lagging strand
with high affinity in a sequence-independent manner and consti-
tute the nucleo-protein complex upon which other components
of the replisome work. Many SSB contain several Oligosaccharide
Binding domains (OB-folds), allowing them to bind a variable num-
ber of nucleotides in vitro (review in [107]). These different binding
modes may be used selectively in different DNA maintenance pro-
cesses [108].

Single-molecule studies have revealed new information about
the equilibrium constants and energetics of the binding of several
prokaryotic and eukaryotic SSBs to individual ssDNA molecules
[109–120]. One of the most extensively studied SSB proteins at
the single-molecule level is the homo-tetrameric SSB of E. coli
(EcoSSB). Depending on the ionic conditions and SSB density on
ssDNA, EcoSSB wraps in vitro ~ 17, 35 or (56)65 nucleotides/ tetra-
mer [121]. smFRET and force spectroscopy measurements uncov-
ered a highly dynamic binding of EcoSSB to ssDNA, in which the
major binding modes can interchange reversibly in discrete steps
[104,122] and, individual EcoSSB tetramers can diffuse along
ssDNA by a reptationmechanism [123,124] while in different bind-
ing modes [104], Fig. 3D and 3E. These results explained how
EcoSSB could be redistributed along ssDNA by genome mainte-
nance proteins and remain tightly bound to ssDNA. Diffusion along
ssDNA has also been reported at the single-molecule level for other
SSB proteins [109,120,125]. Also, single-molecule fluorescence and
force spectroscopy studies showed that on long ssDNA segments,
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EcoSSB can interact with distant intramolecular sites [126] and
reposition itself via long-range intersegment transfer [127].
Single-molecule imaging of labeled EcoSSBs showed that interseg-
ment transfer also occurs during DNA replication in vitro and vivo
and SSB recycling for multiple Okazaki fragments would depend
on the concentration of competing SSBs in solution [128]. Concen-
tration dependent exchange was also reported at the single-
molecule level for the eukaryotic RPA SSB protein [110].

In vitro single-molecule studies also revealed that at the replica-
tion fork SSBs stimulate the average rates and processivity of the
lagging and leading strand DNApols as well as those of the replica-
tive helicases, by establishing functional and/or physical interac-
tions with these molecular motors [80,129–131]. Simultaneously,
the gradual release of the lagging strand during DNA replication
has been shown to select the binding mode of the human mito-
chondrial SSB [132], highlighting the reciprocal interactions
between the replisome components at the fork.
5. Replication machineries: Replisomes

The composition of the replisome varies among different organ-
isms extensively. However, the structure and physical–chemical
properties of the DNA impose basic operating principles to repli-
somes, Fig. 1. Next, we will summarize the main findings of
single-molecule studies on the operation of model prokaryotic
and eukaryotic replisomes.

As the first step for DNA replication, the replisome components
assemble at the replication origin. smFRET studies revealed the
ATP-dependent assembly pathway of the T4 replisome. Interest-
ingly, while the T4 DNApol could use multiple pathways to load
on the leading strand [136], the primosome (helicase and primase)
assembles into the lagging strand in a single and orderly fashion
[137,138]. Upon helicase loading, 1–3 primase molecules bind to
the helicase hexamer, which in turn, stabilizes the complex on
the DNA fork and stimulates helicase activity [138–140]. Simulta-
neously, helicase loading turns on the activity of the leading strand
DNApol holoenzyme [141]. Overall, these results showed a finely-
tuned orchestration between replisome components to ensure a
proper replisome assembly on to the DNA.

The antiparallel nature of the lagging and leading DNA strands
forces a precise series of highly coordinated events within the repli-
some to ensure the synchronized synthesis of the two strands. On
the one hand, leading and lagging strand DNApols move in opposite
directions (Fig. 1). In prokaryotes, ensemble studies showed that
this problem is solved by forming of a ‘trombone loop’ in the lagging
strand to reorient the lagging-strand DNApol to advance in parallel
with its leading-strand counterpart, Fig. 1 [142,143]. Single-
molecule fluorescence and flow stretching assays with the reconsti-
tuted T7 replisome followed the dynamics of ‘trombone loop’
formation and revealed that two events ensure the timely release
of loops: the primer synthesis and the actual completion of the
Okazaki fragment [144]. On the other hand, the primosome faces
a similar directionality problem; the primase (usually associated
with the helicase) makes primers opposite to helicase movement
(Fig. 1). Single-molecule studies showed that T7 and T4 replisome
components overcame this problem by the transient formation of
a ’priming loop’ between the helicase and the primase [135,145],
Fig. 4C and Fig. 5. This mechanism keeps the primer in physical
proximity to the replication complex and ensures hand-off to the
lagging-strand polymerase without transiently blocking the
replisome advance [145]. The T4 study also showed that one of
the primase subunits can dissociate from the primosome complex
to remain with the newly synthesized primer [135].

The discontinuous synthesis of the lagging strand also requires
either replacement or recycling of the lagging DNApol to the next



Fig. 5. smFRET detection of priming loop formation by the T7 replisome. A) Diagram showing a priming loop during the activity of a partially reconstituted T7 replisome. In
T7, helicase and primase activities are carried out by the same polypeptide (gp4). During primer synthesis (red line), the excess DNA unwound by the helicase activity loops
out allowing the primase-DNA interaction to stay intact as leading strand synthesis proceeds. Red A and green D, represent DNA bound acceptor and donor fluorophores,
respectively, used to detect primosome activity. B) Schematic representation of fluorescently labelled DNA fork to investigate priming loop formation by smFRET. Red and
green dots show the location of the acceptor and donor fluorophores, respectively, with respect to the priming sequence (pink). C) smFRET unwinding assays show: a) Before
DNA unwinding the distance between the two fluorophores prevents FRET (bottom plot). b) As the T7 replisome unwinds the dsDNA, the donor shows an increase in intensity
(green trace) due to protein-induced fluorescence enhancement. c) When the replisome reaches the priming sequence, the primase domain engages the lagging strand at this
position causing the acceptor (red trace) to come close to the donor, as DNA unwinding continues. This event is detected as an increase in FRET. d) As the priming loop grows
in size the donor and acceptor move apart, this was detected as a decrease in FRET. Adapted from [145]. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Okazaki fragment. In vitro single-molecule fluorescence studies
showed that the T7 replisome addresses this issue by associating
several DNApols with the replisome [96,146], which are exchanged
continuously at the lagging strand at a frequency similar to that of
Okazaki fragment synthesis [147]. In addition, some of the lagging
strand DNApols can be released from the replisome to complete
Okazaki fragment synthesis behind and independent of the replica-
tion complex [148]. Similarly, ensemble and in vivo studies
revealed that the E.coli replisome also contains more than two
DNApols; Up to three DNApol (Pol III) cores could work in coordi-
nation and exchange at the fork while remaining attached at the
replisome [149,150], Fig. 1. A tripolymerase replisome has been
shown to present functional advantages such as increased proces-
sivity and increased efficiency in lagging-strand synthesis [151]. In
addition, in vitro and in vivo single molecule fluorescence experi-
ments on T7 [146,147] and E. coli [152,153] replication systems
showed that DNApols associated with the replisome can also be
exchanged with other DNApols in solution in a concentration
dependent manner. DNApol exchange was also demonstrated in
ensembles studies for the bacteriophage T4 [136,154]. In addition
to DNApols, dynamic exchange has been reported also between
different types of polymerases [155–157] and for other compo-
nents of the replisomes [158]. These observations depict the repli-
some as highly dynamic molecular entity. The dynamic exchange
of polymerases at the fork, by molecules already associated with
the replisome or by proteins in solution, promotes the processivity
of the replication complex and may allow the recruitment of fac-
tors necessary to correct lesions, overcome protein barriers in the
DNA template, or replace a damaged polymerase without disman-
tling of the replisome structure [159].

Overall, the discontinuous synthesis of the lagging strand
implies a series of ‘slow’ steps, which are not required for the con-
tinuous synthesis of the leading strand. Single-molecule studies
suggested two alternative mechanisms to explain how the discon-
tinuous lagging strand synthesis would keep pace with that of the
leading strand: 1) the lagging strand synthesis or primase activity
would halt the advance of the leading strand transiently
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[99,130,160,161]. 2) The lagging-strand DNApol synthesizes DNA
faster than the leading strand polymerase [145]. Interestingly,
the prevailing deterministic view of a coordinated synthesis of
the two strands was challenged recently by in vitro single-
molecule fluorescence (TIRF) studies with the reconstituted E.coli
replisome [95]. This study presented clear evidence showing that
instead of a deterministic coupling, the two strands could replicate
autonomously, Fig. 6. The observed coordination would be the out-
come of the stochastic behavior of the DNApols at each strand,
which start, stop, and move at variable rates.

The emerging picture coming out from in vitro single-molecule
studies in prokaryotes is that of a stochastic, dynamic replisome in
which protein–protein and protein-DNA associations are continu-
ally broken and reformed. Interestingly, recent in vitro [162,163]
and in vivo [164] single-molecule studies of S. cerevisiae replisome
operation showed that in eukaryotes, the lagging strand DNApols,
and other subunits of the replisome, also present dynamic
exchange but associate more stably with the replisome than their
prokaryotic counterparts, Fig. 7. These pioneer works point to rel-
evant differences between the operational dynamics of prokaryotic
and eukaryotic replisomes and forecast exciting discoveries in the
near future.

6. Summary and outlook

In the last 60 years, the combination of biochemical, structural,
genetic, and more recently, single-molecule approaches has pro-
vided a solid understanding of the molecular mechanisms underly-
ing the complex choreography of the replisome components
during replication of the double helix of the DNA. We have identi-
fied the leading dancers, their looks and their roles. We have also
begun to realize the stochastic nature and the high adaptability
of the replisome machinery, which changes its composition and
operation mode continuously. This property would play an essen-
tial role in coping with constraints associated with the various
stages of DNA replication and would ensure robust replication
under varying conditions.



Fig. 6. Single-molecule TIRF assays to visualize leading- and lagging strand synthesis by the E.coli replisome. A) Schematic of a single-molecule TIRF microscope and flow-cell.
TIRF microscopy use evanescent waves to excite only those molecules located within ~100 nm of the surface, substantially reducing the background fluorescence. B) Side-on
view of the flow cell, showing surface-attached DNA, flow direction, the excitation beam (561 nm, green lines) and the evanescent wave range (green). C) Diagram of the
rolling-circle assay to detect single-turnover replisome progressions. The template was adsorbed onto a cover-glass via biotin-streptavidin interaction. Upon assembly of a
pre-initiation complex (BIND), replication was initiated (START) by introducing primase, clamp, SSB in the presence of all four dNTPs and rNTPs. D) dsDNA extension can be
followed in real-time by stretching under flow (from left to right) in the presence of SYTOX Orange. The figure shows a representative field in which several circular template
molecules (small foci at the start of reaction) are replicated to yield long products. F) Kymographs of three actively extending molecules (from D) showing the length of the
replication product as a function of time. Bottom, linear fits to trajectories yield average rates of fork movement (magenta, cyan, and green traces). Adapted from [95]. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

R. Bocanegra, G.A. Ismael Plaza, C.R. Pulido et al. Computational and Structural Biotechnology Journal 19 (2021) 2057–2070
However, a complete understanding of the replisome operation
will require defining the basic mechanistic, kinetic and dynamic
processes that rule its operation at the molecular level and how
these processes respond to external variables. Bottom-up in vitro
single-molecule approaches, moving gradually from the study of
individual components to increasingly complex replisomes, will
help to set the path to addressing these challenges in combination
with biochemical, structural and genetic advances. The assembly of
robust reconstituted replisomes in singulowill be pivotal to explor-
ing the effects of post-translational modifications, DNA roadblocks,
DNA bound proteins, and disease-related mutations on the repli-
some operational dynamics.

In vitro single-molecule research will have to surmount several
challenges and limitations to continue to play a relevant role in the
study of the inner molecular workings driving DNA replication
(and DNA metabolism, in general). Many of these challenges are
currently the subject of intense research. One major limitation of
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some in vitro single-molecule technologies is their low throughput,
which implies that acquisition of statistically significant results is
very time consuming. Recent developments in acoustic force spec-
troscopy [165], multiplexing magnetic tweezers [166–168] and
microfluidic systems [169] overcame this issue, at least partially,
by allowing researchers to obtain increasingly large sets of high-
resolution data. Furthermore, to elucidate the complex dynamics
and mechano-chemical processes that govern the operation of a
multi-nucleoprotein complex such as the replisome, it will be nec-
essary to interrogate different variables of the system simultane-
ously. In this regard, the recent development of hybrid methods
that combine single-molecule manipulation with fluorescence
microscopy [103,170–175] will enable to correlate the real-time
kinetics of DNA replication to the structural organization and/or
to inter- or intramolecular structural changes of the replisome
components. Progress in this area will be conditioned by advances
in chemical methods that allow efficient fluorescent labeling of



Fig. 7. Multicolor single-molecule TIRF assays to visualize simultaneously DNA synthesis and protein dynamics of the S. cerevisiae replisome. A) Schematic representation of
the pre-assembly replication assay. A DNA molecule containing a premade replication fork at one end is attached at both ends to the surface of the flow cell of a TIRF
microscope. Upon preassembly of the replisome, the flow cell is washed to remove the excess of DNApols and other replisome components and replication is initiated. B)
Kymographs showing the advance of the replication fork and the stability and stoichiometry of eukaryotic DNApols. DNA was stained with SYTOX orange and Pol e (blue), Pol
d (yellow), and Pol a-primase (green) were labeled fluorescently. As DNA synthesis proceeds, the leading strand appears as a diffraction-limited spot that moves along the
template in one direction (left). All three DNA polymerases co-localize with the leading-strand spot during replication of thousands of nucleotides (center). This observation is
consistent with a stable interaction of the DNApols with the replisome. The stoichiometry of each DNApol (right) was obtained by dividing the intensity at the fork by the
intensity of a single polymerase. Adapted from [162]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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proteins without affecting their function. Also, the combination of
optical tweezers with precise temperature control systems [101],
will help to define the crucial role of temperature on the real-
time kinetics and mechano-chemistry of DNA replication. Another
drawback of single-molecule manipulation methods is that manip-
ulation is often restricted to a specific spatial coordinate. New opti-
cal tweezers set ups with multiple, freely adjustable optical traps
will undoubtedly help to overcome this issue [176]. Ultimately,
characterization of the real-time kinetics, dynamics and
mechano-chemistry of individual replisomes in the context of
molecular crowding characteristic of living cells will require trans-
fer single-molecule position and force detection techniques to
in vivo conditions. To this end, non-invasive approaches can be
envisaged that make use of molecular force probes that change
state as a function of the force applied to them [177,178] and/or
spectroscopically stable fluorophores that change their emission
spectra as a function of mechanical force [179,180]. As stated
above, many of these challenges are currently the subject of signif-
icant interdisciplinary research, because ‘the future is now’.
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