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Abstract

The human gut microbiome plays a key role in human health1, but 16S characterization lacks 

quantitative functional annotation2. The fecal metabolome provides a functional readout of 

microbial activity and could be used as an intermediate phenotype mediating these interactions3. 

In the first comprehensive description of the fecal metabolome, examining 1116 metabolites of 

786 individuals from a population-based twin study (TwinsUK), the fecal metabolome was found 

to be only modestly influenced by host genetics (h2=17.9%). One replicated locus at the NAT2 
gene was associated with fecal metabolic traits. The fecal metabolome largely reflects gut 

microbial composition explaining on average 67.7% (±18.8%) of its variance. It is strongly 

associated with visceral fat mass, illustrating potential mechanisms underlying the well-

established microbial influence on abdominal obesity. Fecal metabolic profiling appears as a novel 
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tool to explore links between microbiome composition, host phenotypes, and heritable complex 

traits.

There is growing evidence that the gut microbiome contributes to maintain homeostasis of 

host metabolism1. Disruption of this intricate system is associated with diseases such as 

obesity4,5 and insulin resistance6. Metabolomics and the gut microbiome are strongly 

related, with microbes producing many of the body’s chemicals, hormones and vitamins7. 

The gut microbiome has been reported to have an effect on circulating levels of several 

metabolites such as branched-chain amino acids potentially causing insulin resistance6. 

However, despite the advances of next generation sequencing platforms, which allow 

profiling of complex microbial communities using 16S sequencing, annotation is sparse. 

Moreover, the microbiome only codes microbial possibilities rather than their actual activity 

and cannot differentiate between alive and dead microbes8, nor determine the transcriptional 

activity of the genes within each bacterial genome2. Fecal metabolomics, however, reports 

specifically on the metabolic interplay between the host, diet and the gut microbiota3 and 

complements sequencing-based approaches with a functional readout of the microbiome. 

Here we provide the first comprehensive description of the fecal metabolome in a large 

population-based setting with the additional advantage of the twin model. We report (i) fecal 

metabolites associations with age, gender and obesity; (ii) host genetic influences; and (iii) 

uni- and multivariable dependencies with the gut microbiome.

We analyzed fecal samples of 786 predominantly female twins of the TwinsUK cohort, aged 

65.2 (±7.6), with an average BMI of 26.1 (±4.7) (Supplementary Table 1) and we replicated 

our genetics results in an independent sample of 230 individuals, aged 66.9 (±8.6) with an 

average BMI of 27.2 (±5.2). Untargeted metabolomics profiling of the participants’ fecal 

samples was conducted by Metabolon, Inc., using mass spectrometry, measuring a total of 

1116 metabolites, 866 of them with known chemical identity. Among the metabolites 

identified, 570 were common and detected in at least 80% of the samples, while 345 were 

detected in at least 20% but in less than 80% of all samples (Fig 1a). The latter were 

analyzed as dichotomous traits (present/absent in a sample) and metabolites measured in less 

than 20% of the samples were discarded from further analysis. 647 of the 1116 measured 

metabolites were not detected in blood samples of the same individuals profiled on the same 

platform (Fig 1b). This suggests that the fecal metabolome provides complementary 

information to blood metabolomics. We did not find significant associations between 915 

fecal metabolites and age after correcting for multiple testing. However, a multivariate 

partial least squares discriminant analysis incorporating all the common 570 metabolites 

could distinguish the oldest decile (>75 years) from the youngest decile (<56 years) of the 

study population (AUC=0.71, p=6.8×10-6, Fig 2b) and one metabolite, phytanate, was 

significantly different between the oldest and youngest deciles (p=5.0×10-3) (Fig 2a), 

suggesting non-linear associations between the fecal metabolome and age in line with 

previous reports on the effects of age on the gut microbiome9,10.

BMI was associated with eight metabolites at an FDR (Benjamini-Hochberg) of 5%: five 

fecal lipids, including arachidonate (β [95% CI] = 0.13 [0.07:0.19], p=1.1×10-5), the 

hemoglobin metabolite bilirubin (β [95% CI] = 0.13 [0.06:0.19], p=8.9×10-5), and two 
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unknown metabolites (Supplementary Table 2). We then looked for associations with 

visceral fat mass, a measure of abdominal obesity, correcting for BMI, and found a total of 

102 statistically significant associations (FDR<5%, 13 passing Bonferroni correction), 

which together explain 28.4% of the observed total variance of visceral fat (p<2.2×10-16) 

(Supplementary Table 2). In contrast, we find only 8 metabolites associated with BMI, 

which is an imprecise measure of adiposity and measures overall mass without distinction 

between lean and fat mass11. However, the gut microbiome is known to play a major role in 

fatty acid metabolism and adiposity which may be better reflected by visceral fat 

measures12,13. Emerging evidence also suggests a role of the intestinal microbiota in 

visceral development by interacting with dietary components14. We have previously shown 

strong associations between visceral fat mass and the gut microbiome composition15,16. 

The much larger number of fecal metabolite associations with visceral fat than with BMI are 

consistent with these findings and highlight the strong influence of metabolic processes in 

the gut influencing abdominal adiposity.

Visceral fat-associated metabolites were significantly enriched for amino acids (43 

metabolites, enrichment p<2×10-4) but also included 14 fatty acids, including arachidonate 

(β=5.07 [2.55:7.59], p= 8.2×10-5), 8 nucleotides, 6 sugars and 6 vitamins. The strong 

association between the fecal metabolome and central obesity confirms hypotheses on the 

involvement of microbial amino acid metabolism in obesity and suggests new mechanisms, 

such as microbial vitamin B metabolism. We have previously found several microbe families 

associated with lower visceral fat mass15 and reduced weight gain in germ-free mice 

receiving human fecal transplants17. By analyzing the fecal metabolome, we found the 

abundance of the same families to be strongly associated with decreased abundance of 

amino-acids (see below), suggesting that their association with visceral fat may be mediated 

by the availability of amino acids (Fig 3). This may be due to increased utilization or 

decreased production of amino acids by these bacteria, or the result of more complex host-

microbe interactions.

The gut microbiome is heritable17,18 and we found a heritable variance component for 210 

OTUs, which explained on average 22.7% of the observed total variance. To test whether 

host genetic also influences the fecal metabolome we first estimated its heritability, taking 

advantage of the twin structure in our data (Fig 4) using structural equation modelling (148 

MZ pairs, 155 DZ pairs). For 428 metabolites the best fitting model contained a heritable 

variance component (A), which explained on average 17.9% (±9.7%) of the metabolite 

variation. Long chain fatty acid-containing metabolites, such as 1-palmitoyl-2-arachidonoyl-

GPC (H2=60.7% [95% CI 43.4:78.0]) and stearoylcarnitine (H2=54.3% [36.4:72.3]), were 

amongst the most heritable metabolites. For 279 metabolites, including the coffee-metabolite 

5-acetylamino-6-amino-3-methyluracil (C=30.3% [20.0:40.6]), the best fitting model was 

the CE model, where the common environment component (C) explained on average 14.8% 

(±8.1%) of the variance. For the remaining 208 metabolites, the best fitting model was the E 

model where the entire variation of the metabolite is due to individual differences such as 

the microbiome or individual diet (Supplementary Table 2). We found a significantly 

stronger environmental effect on lipids than other metabolites (enrichment p-value < 

2×10-4).
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We subsequently conducted GWAS for the 428 metabolites with a heritable component 

(Supplementary Table 3) and identified three metabolites (the amino-acid 3-

phenylpropionate and two lipids eicosapentaenoate and 3-hydroxyhexanoate) significantly 

associated with genetic loci after correcting for multiple testing (p<1.2×10-10=5×10-8/428) 

(Table 1, Fig 5a). We also tested for genetic associations of metabolites ratios, which can be 

better proxies for chemical reactions than single metabolites19. After correcting for 31,226 

tested ratios we found the ratio of 5-acetylamino-6-amino-3-methyluracil and 1,3-

dimethylurate was associated with a locus on chromosome 8 (rs35246381, p=7.0×10-21, p-

gain=7.5×109) (Table 1, Fig 5b). We replicated our GWAS results in an independent sample 

of 230 individuals. Out of the 4 loci we tested, only the metabolite ratio of 5-acetylamino-6-

amino-3-methyluracil and 1,3-dimethylurate was significantly associated in the replication 

cohort (p=3.6×10-10; meta-analysis p=3.3×10-36). The two metabolites 5-acetylamino-6-

amino-3-methyluracil and 1,3-dimethylurate are products of caffeine metabolism20. The 

associated locus at the NAT2 gene codes for a N-acetyltransferase, which catalyzes the 

degradation of caffeine metabolites21 (Supplementary Figure 4). Associations of this locus 

with other caffeine-metabolites (1-methylxanthine, 4-acetamidobutanoate and 1-

methylurate) have been previously observed in blood22 and urine23 and likely reflect 

efficiency of the degradation of caffeine. We then explored if there were any eQTLs or other 

functional variants in strong LD with the top SNP. Although we found three eQTLs 

(rs11996129, rs1112005, rs1799930) for NAT224, these are only in weak LD (r2<0.16) with 

rs3524638125 and the associations between these SNPs and the metabolite ratio is weaker 

than that of the top SNP (p=3.6×10-10 vs p=9.4×10-7). The tissues where the expression of 

NAT2 is highest, after liver, are in the jejunal and colonic mucosa, duodenum colon and 

small intestine26 (see URLs). This is consistent with polymorphisms in the NAT2 gene being 

associated with the concentration of caffeine derived metabolites in feces. We explored the 

relationship between caffeine and the fecal metabolites 5-acetylamino-6-amino-3-

methyluracil and 1,3-dimethylurate and find that their ratio is positively correlated with both 

coffee intake and serum caffeine levels (Supplementary Figure 4). These genetic association 

data illustrate how part of the complex metabolism of caffeine takes place in the intestine 

before reaching the liver and that the links between the host genetic makeup and xenobiotic 

concentrations can be captured by fecal metabolites. In addition to caffeine, the NAT2 
enzyme is also involved in metabolism of various xenobiotics and is therefore related to 

variance in drug response and toxicity27. There is work showing that the composition of the 

gut microbiome regulates xenobiotic enzymes, for instance the expression of NAT2 is 1.5 

higher in germ free animals than in the large intestine of control animals28. Taken together 

with our results these data fit with a picture of xenobiotic metabolism being regulated jointly 

by host genetic variation and gut microbiome composition.

We then investigated the extent to which the fecal metabolome reflect metabolic processes of 

the gut microbiome. We regressed metabolite levels against microbial diversity (quantified 

by the Shannon index), and found that 575 metabolites across all pathways showed a 
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significant association with microbial diversity at a FDR of 5%, with 347 passing a 

Bonferroni correction. We estimated the proportion of variance in each metabolite explained 

by microbiome composition using the unweighted UniFrac beta-diversity metric, a measure 

of overall phylogenetic dissimilarity between individuals’ microbiota29. We found that gut 

microbial composition explained a significant proportion of the observed variance of 710 

metabolites, on average 67.7% (±18.8%) of the observed variance, ranging from 22.1% for 

1-linolenoylglycerol to 100% for several amino acids (Supplementary Table 2). Amongst 

others, the microbiome explained a significant proportion of the variance of the 8 BMI-

related and 101 of the visceral fat-related metabolites. Xenobiotics showed the strongest 

associations with microbial composition (enrichment p-value <1×10-4), which explained the 

entire observed variance for some of them including the B-vitamins nicotinate and 

pantothenate.

To explore the associations of the fecal metabolome with gut microbes at a finer taxonomic 

resolution we regressed each metabolite against the 581 most abundant operational 

taxonomic units (OTUs), adjusting for potential confounding factors including Shannon 

diversity. We found 42,645 significant associations of 907 different metabolites with 579 

different OTUs after adjusting for multiple testing (FDR<5%). We also calculated 

associations of fecal metabolites with collapsed taxonomical levels, ranging from genus to 

phylum level (Supplementary Table 4). 264 metabolites were only associated with microbes 

at the OTU level, with the remainder also associating with broader taxonomic groupings.

Lastly, to investigate the connectivity of the fecal metabolome with microbes, we calculated 

a Gaussian graphical model (GGM) combining 435 common metabolites with a known 

chemical identity with 241 OTUs with complete taxonomy assignment to at least genus 

level. The resulting model consists of 2553 independent associations, 1035 of them amongst 

metabolites, 946 amongst microbes and 572 connecting metabolites and microbes 

(Supplementary Table 5 and Figure 5). All but 9 variables form one connected component. 

We detect 19 clusters in the largest component, 9 of which contain both microbes and fecal 

metabolites and 10 consist of metabolites only. Xenobiotics have higher node degrees 

(p<3×10-4) and were more densely connected with OTUs (p<2.4×10-3). Our model 

demonstrates the high degree of interrelatedness between gut microbiome and fecal 

metabolome, despite the very different technologies used.

In conclusion, although state of the art metagenomic sequencing allows quantitative and 

functional annotation of species and microbial pathways30, 16S sequencing data has 

limitations including the lack of quantitative functional annotations. Fecal metabolomics 

provides a complimentary functional readout of microbial metabolism as well as its 

interaction with host and environmental factors. We have focused on the relationship 

between fecal metabolites and host and microbial genetics. Future studies should further 

investigate the influence of environmental factors, particularly nutrition and consider the 

influence of stool frequency/type on fecal metabolite measurements, as these are known to 

be associated with fecal microbiome composition31,32. The fecal metabolome can thus be 

used as intermediate phenotype that promotes microbial effects on the host and vice-versa. 

Using associations with obesity, we demonstrate that fecal metabolomics are a useful tool to 

complement future genomic and microbiome studies.

Zierer et al. Page 5

Nat Genet. Author manuscript; available in PMC 2018 November 28.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Online Methods

Study population

Study participants were 786 twins from the TwinsUK cohort. TwinsUK (a national twin 

registry) has been recruited since 1992 through media campaigns and is representative of the 

population of the UK in terms of life style33. The study population is predominantly female 

(93.4% females), with an average age of 65.2 (±7.6) and an average of BMI of 26.1 (±4.7). 

Ethical approval by St Thomas’ Hospital ethics committee; all participants provided 

informed written consent.

Results of the genome-wide association study were replicated in an independent set of 230 

individuals (98.3% female) from the TwinsUK study, aged 66.9 (±8.6) and an average BMI 

of 27.2 (±5.2) (Supplementary Table 1).

Data collection

Sample collection, DNA extraction, and sequencing of the samples within this study has 

been described previously17,18. Briefly, the fecal samples were collected, refrigerated and 

kept in ice packs until they were frozen at -80°C (mostly within 24 hours from collection) 

before further processing. A number of participants (15%) sent their samples by post.

Metabolomics profiling

Metabolite concentrations were measured from fecal samples by Metabolon Inc., Durham, 

USA, using an untargeted LC/MS platform as previously described22,34 (see supplemental 

methods for details).

Sample preparation for global metabolomics—Samples were stored at –80°C until 

processed. Sample preparation was carried out as described previously34 at Metabolon, Inc. 

Lyophilized feces samples were extracted at a constant per mass basis. Briefly, recovery 

standards were added prior to the first step in the extraction process for quality control 

purposes. To remove protein, dissociate small molecules bound to protein or trapped in the 

precipitated protein matrix, and to recover chemically diverse metabolites, proteins were 

precipitated with methanol under vigorous shaking for 2 min (Glen Mills Genogrinder 2000) 

followed by centrifugation. The resulting extract was divided into five fractions: 1) acidic 

positive ion conditions, chromatographically optimized for more hydrophilic compounds; 2) 

acidic positive ion conditions, chromatographically optimized for more hydrophobic 

compounds; 3) basic negative ion optimized conditions using a separate dedicated C18 

column; 4) negative ionization following elution from a HILIC column; 5) reserved for 

backup.

Three types of controls were analyzed in concert with the experimental samples: a pooled 

sample generated from a small portion of each experimental sample of interest served as a 

technical replicate throughout the platform run; extracted water samples served as process 

blanks; and a cocktail of standards spiked into every analyzed sample allowed instrument 

performance monitoring. Instrument variability was determined by calculating the median 

relative standard deviation (RSD) for the standards that were added to each sample prior to 
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injection into the mass spectrometers (median RSDs were determined to be 5%; n = 31 

standards). Overall process variability was determined by calculating the median RSD for all 

endogenous metabolites (i.e., non-instrument standards) present in 90% or more of the 

pooled technical replicate samples (median RSD = 12%, n = 832 metabolites). Experimental 

samples and controls were randomized across the platform run.

Mass spectrometry analysis—Extracts were subjected to UPLC-MS/MS35. The 

chromatography was standardized and, once the method was validated, no further changes 

were made. As part of Metabolon’s general practice, all columns were purchased from a 

single manufacturer’s lot at the outset of experiments. All solvents were similarly purchased 

in bulk from a single manufacturer’s lot in sufficient quantity to complete all related 

experiments. For each sample, vacuum-dried samples were dissolved in injection solvent 

containing eight or more injection standards at fixed concentrations, depending on the 

platform. The internal standards were used both to assure injection and chromatographic 

consistency. Instruments were tuned and calibrated for mass resolution and mass accuracy 

daily.

All methods utilized a Waters ACQUITY UPLC and a Thermo Scientific Q-Exactive high 

resolution/accurate mass spectrometer interfaced with a heated electrospray ionization 

(HESI-II) source and Orbitrap mass analyzer operated at 35,000 mass resolution. The 

sample extract was dried then reconstituted in solvents compatible to each of the four 

methods. Each reconstitution solvent contained a series of standards at fixed concentrations 

to ensure injection and chromatographic consistency. One aliquot was analyzed using acidic 

positive ion conditions, chromatographically optimized for more hydrophilic compounds. In 

this method, the extract was gradient eluted from a C18 column (Waters UPLC BEH 

C18-2.1x100 mm, 1.7 µm) using water and methanol, containing 0.05% perfluoropentanoic 

acid (PFPA) and 0.1% formic acid (FA). Another aliquot was also analyzed using acidic 

positive ion conditions; however, it was chromatographically optimized for more 

hydrophobic compounds. In this method, the extract was gradient eluted from the same 

aforementioned C18 column using methanol, acetonitrile, water, 0.05% PFPA and 0.01% FA 

and was operated at an overall higher organic content. Another aliquot was analyzed using 

basic negative ion optimized conditions using a separate dedicated C18 column. The basic 

extracts were gradient eluted from the column using methanol and water, however with 

6.5mM ammonium bicarbonate at pH 8. The fourth aliquot was analyzed via negative 

ionization following elution from a HILIC column (Waters UPLC BEH Amide 2.1x150 mm, 

1.7 µm) using a gradient consisting of water and acetonitrile with 10mM ammonium 

formate, pH 10.8. The MS analysis alternated between MS and data-dependent MSn scans 

using dynamic exclusion. The scan range varied slightly between methods but covered 

80-1000 m/z.

Compound identification, quantification, and data curation—Metabolites were 

identified by automated comparison of the ion features in the experimental samples to a 

reference library of chemical standard entries that included retention time, molecular weight 

(m/z), preferred adducts, and in-source fragments as well as associated MS spectra and 

curated by visual inspection for quality control using software developed at Metabolon35,36. 
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Identification of known chemical entities is based on comparison to metabolomic library 

entries of purified standards. Commercially available purified standard compounds have 

been acquired and registered into LIMS for distribution to the various UPLC-MS/MS 

platforms for determination of their detectable characteristics. Additional mass spectral 

entries have been created for structurally unnamed biochemicals, which have been identified 

by virtue of their recurrent nature (both chromatographic and mass spectral). These 

compounds have the potential to be identified by future acquisition of a matching purified 

standard or by classical structural analysis. Peaks were quantified using area-under-the-

curve. Raw area counts for each metabolite in each sample were normalized to correct for 

variation resulting from instrument inter-day tuning differences by the median value for each 

run-day, therefore, setting the medians to 1.0 for each run. This preserved variation between 

samples but allowed metabolites of widely different raw peak areas to be compared on a 

similar graphical scale.

A total of 1116 different metabolites were measured in the 786 fecal samples, of which 210 

were observed in less than 20% of the samples and thus excluded from further analysis due 

to lack of power. 345 metabolites were observed in more than 20% but less than 80% of the 

samples and were thus analyzed qualitatively as dichotomous traits (observed in a sample vs. 

not observed). The remaining 570 metabolites, which were observed in at least 80% of all 

samples, were scaled by run-day medians, log-transformed and scaled to uniform mean 0 

and standard deviation 1 and analyzed quantitatively (Fig 1). Metabolite ratios were 

calculated from the run-day median normalized metabolite levels and subsequently log-

transformed and scaled to a mean of 0 and standard deviation of 1.

We analyzed effects of sample storage time (i) in the fridge before samples were frozen and 

(ii) in the freezer before being further analyzed. To this end we regressed metabolite 

concentrations against storage times. After correcting for multiple testing, we found 

significant storage effects on 7 metabolites (FDR < 0.05) (Supplementary Figure 6). We, 

thus, corrected all further analyses for both storage time in the fridge and freezer, to avoid 

spurious results. Despite correcting all models for the storage time, we cannot ultimately 

eliminate a potential confounding effect due to storage time and future studies should 

investigate its influence on fecal metabolites.

Microbial sequencing

16S rRNA was extracted from fecal samples, PCR amplified, barcoded per sample and 

sequenced using the Illumina MiSeq, as previously described18. DNA was isolated from the 

samples using the PowerSoil kit. The V4 region of bacterial 16S rRNA gene sequences was 

PCR amplified using the 515F and 806R primers37. Reads were barcoded per sample and 

combined for multiplexed sequencing using the Illumina MiSeq to generate 250bp paired-

end reads. Paired-end reads were merged with a minimum overlap of 200nt using fastq join 

within QIIME, which was also used to de-multiplex the sequence data.

Pre-processing of sequences and their clustering to operational taxonomic units followed the 

Sumaclust de novo approach as previously described for a subset of samples from38. In 

brief, 16S sequence reads for all samples were filtered to remove chimeric sequences 

produced during PCR, using USEARCH for chimera identification39. Remaining reads were 
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then collapsed to operational taxonomic units (OTUs) using the Sumaclust algorithm for de 

novo clustering in QIIME 1.9.0, this method selected as de novo OTUs more accurately 

group reads at the 97% level40, and Sumaclust was the one of the best performing greedy 

clustering algorithms in previous comparisons38. Taxonomy was assigned to OTUs by 

alignment of representative sequences to the Greengenes 13_8 database with a 97% 

similarity threshold using UCLUST.

De novo clustering across all samples within the TwinsUK cohort produced ~300,000 OTUs 

after singleton removal; however, the majority of these were of low abundance and found in 

very few samples (table density 0.002). The OTU table was subset, discarding samples with 

fewer than 10,000 reads and OTUs that were not found in at least 25% of these samples. 

This resulted in a table of 581 OTUs (table density 0.547) (Supplementary Table 7). OTU 

counts were converted to relative abundances (over all reads in each sample), a pseudo count 

of 10-6 was added to account for zero counts, and the abundances were log transformed. The 

transformed abundances were then used as the response in models with sequencing run, 

sequencing depth, individual who extracted the DNA, individual who loaded the DNA and 

sample collection method as technical covariates. The residuals of these models were then 

used in downstream analysis of OTU abundances. The same normalization and control for 

technical effects was also carried out on taxonomic abundances collapsed at each taxonomic 

level. Collapsed taxonomies included counts from all OTUs. Shannon alpha diversity was 

also calculated from the complete OTU table. Each sample was rarefied to a depth of 10,000 

reads 50 times. Diversity metrics were calculated for each sample in each table and the mean 

across all tables taken as the final measure. Beta diversity was calculated from all OTUs 

excluding singletons using the unweighted UniFrac algorithm29.

Visceral fat measurements

Measurements of whole body composition were performed using the DXA fan-beam 

technology (Hologic QDR; Hologic, Inc., Waltham, MA, USA) as previously described41. 

Briefly, subjects were positioned in a standardized manner, in a supine position with the 

clothes removed and wearing a gown. The DXA machine was calibrated on a daily basis 

using a spine phantom and on a weekly basis using a step phantom, as suggested by the 

manufacturer. The scans were analyzed using the QDR System Software Version 12.6.

Regions of interest were defined manually by the same operator following the SOP, which 

was derived from the manufacturer’s guidelines. The lower horizontal margins were placed 

above the pelvis, just above the iliac crest, while the upper horizontal margins were placed at 

the half of the distance between the acromions and the iliac crest. The vertical margins were 

adjusted just at the external borders of the body so that all the soft tissue was included.

This DXA-based measurement of visceral fat has been validated against VF measured by 

CT scan and shown to be reliable and reproducible42.

Statistical analysis

To assess the influence of age and gender on metabolite measurements, we regressed all 

metabolites against age and gender, correcting for family structure as random intercept using 

the R package lme443. Moreover, we calculated linear and logistic regression models, 
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respectively, to assess the relationship of the fecal metabolome with obesity, measured as 

BMI and visceral fat mass (measured by double X-ray absorptiometry, see supplementary 

methods), respectively adjusting for age, sex, storage time and family as random intercept 

(see supplemental methods for formulas). Visceral fat measurements were available for 647 

individuals. The following regression models were used:

a) Associations of metabolites with age and gender

Metabolite ~ age + gender + storage time (fridge) + storage time (freezer) + (1 |

family)

b) Associations with BMI

BMI ~ Metabolite + age + sex + storage time (fridge) + storage time (freezer) 

+ (1 |family)

c) Associations with visceral fat mass

visceral fat ~ Metabolite + age + sex + BMI + height + height2 + storage time 

(fridge) + storage time (freezer) + (1 |family)

d) Associations with microbial alpha diversity

Metabolite ~ microbiome diversity + age + sex + BMI + storage time (fridge) + 

storage time (freezer) + (1 |family)

e) Associations with OTUs and taxa

Metabolite ~ microbe (OTU/taxa) + microbiome diversity + age + sex + BMI + 

storage time (fridge) + storage time (freezer) + (1 |family)

Partial Least Squares Discriminant Analysis—We used a partial least squares 

discriminant analysis (PLD-DA) to investigate global differences between the metabolic 

profiles of the youngest and oldest decile of our study population. To this end, all missing 

values were imputed using the mice package44 and metabolite levels were adjusted for 

storage times and family structure by linear mixed models. Residuals of these models were 

then used to train a PLSDA model as implemented in the mixOmics package45. The 

predictive performance was assessed using a 10-fold cross validation.

Heritability analysis—We used structural equation modelling to estimate the genetic (A), 

the common environment (C) and the unique environment (E) components of the total 

variance for each metabolite46. To this end we used the R package mets (version 1.1.1) to fit 

maximum-likelihood models, adjusting for age and sex and storage time. For each 

metabolite we fitted four models, estimating (1) A, C and E components (2) A and E 

components, (3) C and E components and (4) E component only. The best model was 

selected by minimizing the Akaike Information Criterion (AIC). In case of dichotomous 

metabolite abundances, a liability-threshold model was fitted using the bptwin function of 

the mets package. Additionally, intraclass correlation coefficients (ICCs) were calculated 

from variance components of a one-way analysis of variance for MZ and DZ twins 

individually, using the ICC package47.

Zierer et al. Page 10

Nat Genet. Author manuscript; available in PMC 2018 November 28.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Genome-wide association study—Genetic variation was measured using whole 

genome sequencing, as previously described (Nature genetics, in revision). In brief, samples 

were sequenced using the Illumina HiSeqX sequencer with 150 base paired reads. Reads 

were then mapped to hg38 genome using ISIS Analysis Software (v. 2.5.26.13; Illumina) 

and missing genotypes were filled in with reference homozygous calls48. Genomes with a 

ratio of heterozygous to homozygous variants higher than 2.5 were excluded leaving 739 

individuals for further analysis. A cohort-based high confidence region of the genome was 

constructed by concatenating positions with greater than 90% “PASS” call rate using data 

from 3 sets of 100 randomly selected genomes. Variants outside of the high confidence 

region and duplicated variants were removed. We moreover excluded 273,355 variants with 

Hardy-Weinberg p<10-6, calculated from 420 unrelated individuals, leaving 8,208,502 

biallelic SNPs and 1,408,051 InDels with minor allele frequency higher than 1% for further 

analysis.

We fitted linear mixed models to test for associations of heritable fecal metabolites with 

genetic variants, correcting for age, sex, storage time using GEMMA49 incorporating data 

from 739 individuals with fecal metabolomics and sequencing data. The twin structure of 

our data was taken into account by adjusting for the family relatedness using the sample 

kinship matrix. The score test implemented in GEMMA was used to assess significance of 

the associations. We considered metabolite-associations with a p-value lower than 1.2×10-10 

significant, which corresponds to a genome-wide significance cut-off of 5.0×10-8, corrected 

for 428 tested metabolites. Additionally, we tested for genetic associations with all pairwise 

metabolite ratios of fecal metabolites with known chemical identity and a heritable variance 

component. We used the p-gain statistic to assess independence of the single metabolites19. 

The p-gain is defined as the minimal p-value of the associations of either of the single 

metabolites divided by the p-value of the metabolite ratio. A high p-gain statistic indicates 

that the ratio carries additional information compared to individual metabolites. We 

considered metabolite ratios with p < 1.6×10-12 (= 5×10-8 / 31,226 metabolite ratios) and p-

gain > 3.1×105 (= 10 × 31,226 metabolite ratios) significant.

Four genome-wide significant associations were replicated in 230 individuals of the 

TwinsUK study, adjusting for the same confounding factors. Results of discovery and 

replication were combined using fixed-effects inverse variance meta-analysis.

Associations of the fecal metabolome with the gut microbiome—To assess 

associations of the fecal metabolome with the gut microbiome, we first regressed metabolite 

concentrations against the Shannon alpha diversity, adjusting for age, sex, BMI, storage time 

and family structure using 644 individuals with both fecal metabolomics and 16S 

sequencing data available.

We then estimated the proportions of variance of each metabolite explained by the 

microbiome by regressing the fecal metabolite concentration against the microbial beta-

diversity. This technique is commonly used to estimate heritability from genetic kinship 

matrices50,51. To this end we calculated a restricted maximum likelihood model (REML), 

regressing the metabolite level against the microbial similarity, adjusting for age, sex, BMI 

and the storage time in fridge and freezer and technical covariates (sequencing run, 
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sequencing depth, individual who extracted the DNA, individual who loaded the DNA and 

sample collection method) using the R package regress. The proportion of variance 

explained by microbial similarity (M2) and its standard error were calculated from the 

variance components using the R package gap52 and p-values were calculated from the ratio 

of M2 over its standard error.

Next, we aimed to identify microbes and taxonomical units that are associated with 

metabolite levels. To this end we regressed 581 inverse normalized operational taxonomic 

units (OTUs) against all 915 metabolites, adjusting for age, sex, BMI, sample storage times, 

family structure and the alpha diversity. Benjamini-Hochberg correction was applied to 

account for multiple testing. We further calculated associations at different taxonomical 

units, from genus to phylum level.

Lastly, to assess multivariate dependencies between the fecal metabolome and the 

microbiome, we inferred a graphical model combining 423 metabolites with known 

chemical identity that were observed in at least 80% of the samples with 241 OTUs that 

were assigned complete taxonomy at least to the genus level. Sparse graphical models were 

inferred using the GeneNet package53 and edges with false discovery rate < 0.05 were 

included in the model. We used the Fruchterman-Reingold algorithm54 to determine an 

unbiased graph layout and identified network modules by optimizing the modularity score as 

implemented in the igraph package55 (see supplemental methods for further details).

Pathway enrichment—We used pathway annotation as provided by Metabolon for 

pathway enrichment using the page algorithm. Enrichment p-values were estimated using 

permutation tests with 10,000 random permutations as implemented in the R-package 

piano56.

Graphical model inference—To assess multivariate dependencies between the fecal 

metabolome and the microbiome we inferred a graphical model combining 435 metabolites 

with known chemical identity that were observed in at least 80% of the samples with 241 

OTUs that were annotated at least down to the genus level. To obtain a full data matrix we 

first imputed missing metabolite levels using mice44. A sparse graphical models was 

inferred using the GeneNet algorithm53 selecting edges with FDR < 0.05. We used the 

Fruchterman-Reingold algorithm54 to determine an unbiased graph layout and identified 

network modules by optimizing the modularity score as implemented in the igraph 

package55. For visualization purposes, we collapsed all metabolites of the same pathway to 

one node, which was connected to all neighbors of all its members. Microbes were collapsed 

by family. For both the full and the collapsed network, we calculated several centrality 

measures of nodes, including node degrees, as number of neighbors, clustering coefficients, 

as proportion of neighbors that are connected, and betweenness centralities, as proportion of 

shortest paths incorporating a node.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Number of measured fecal metabolites.
1116 metabolites were detected in 786 fecal samples. (a) 570 of those were detected in at 

least 80% of all samples and 345 were detected in less than 80% but more than 20% of all 

samples. The first were analyzed continuously, while we dichotomized the latter in present/

absent. 210 metabolites that were present in less than 20% of the samples were excluded 

from further analysis. (b) 469 metabolites where observed in both, fecal and blood samples 

of the sample individuals, while 647 metabolites are unique to feces. 499 of these 647 

metabolites were observed in at least 20% of the fecal samples.
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Figure 2. Association of the fecal metabolome with age.
We compared the fecal metabolome between the oldest (>75 yrs., n=79) and youngest decile 

(<56 yrs., n=80) of the study population. (a) First, we investigated the age effect for all 

metabolites individually using logistic regression models and found one metabolite, 

phytanate, significantly different between the youngest and the oldest decile of our data. (b) 

Then, we fitted a multivariate PLS-DA model to distinguish the older (red) from the younger 

(blue) group. We estimated the area under the receiver operations curve (AUC) at 0.71 

(p=6.8×10-6) in a 10-fold cross-validation.
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Figure 3. Associations of fecal metabolites with gut microbiome corespond to microbial effect on 
visceral fat.
Visceral fat mass was significantly associated with 43 fecal amino acids (all positively) 

(n=647) and 32 OTUs (n=540) (6 positively in orange, 26 negatively in green). Red tiles 

indicate positive associations between these metabolites and OTUs (β > 0) and blue tiles 

negative associations (β < 0); grey tiles indicate non-significant associations (FDR > 5%). 

Microbial associations with fecal metabolites correspond to their respective associations 

with visceral fat, indicating that the microbial metabolic profile is more closely related to the 

host phenotype than taxonomy.
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Figure 4. Intraclass correlation of fecal metabolites in MZ and DZ twins.
The intraclass correlation coefficients (ICCs) were calculated from variance components of a 

one-way analysis of variance separately for monozygotic (MZ, n=148 pairs) and dizygotic 

(DZ, n=155 pairs) twins for each metabolite. Positive values of their respective differences 

indicate more similar metabolic profiles between MZ than DZ twins.
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Figure 5. Host genetic influence on the fecal metabolome
Genome-wide association studies were conducted for 428 heritable fecal metabolites and 

31,226 fecal metabolite ratios (n=739). P-values were calculated using the score test 

implemented in GEMMA. (a) The Manhattan plot illustrates the genetic associations of fecal 

metabolites in the discovery sample. The horizontal line indicates the Bonferroni cutoff of 

1.2×10-10. Three loci (red) pass the Bonferroni threshold. (b) The second Manhattan plot 

shows genetic associations with metabolite ratios in the discovery sample. The horizontal 

line indicates the Bonferroni cutoff of (p<1.6×10-12). Two loci pass the threshold, however 
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only the association with 1,3-dimethylurate / 5-acetylamino-6-amino-3-methyluracil (p = 

6.2×10-21, red) passed filtering by p-gain (p-gain > 8.9×105) and thus is considerably 

stronger than the association of each individual metabolite. Boxplots, QQ-plots, and regional 

association plots for each of the four loci are shown in Supplementary Figures 1-3.
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