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Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective therapy for Parkinson’s disease (PD). Nevertheless,
DBS has been associated with certain nonmotor, neuropsychiatric effects such as worsening of emotion recognition from facial
expressions. In order to investigate facial emotion recognition (FER) after STN DBS, we conducted a literature search of the
electronic databases MEDLINE and Web of science. In this review, we analyze studies assessing FER after STN DBS in PD
patients and summarize the current knowledge of the effects of STN DBS on FER. The majority of studies, which had clinical
and methodological heterogeneity, showed that FER is worsening after STN DBS in PD patients, particularly for negative
emotions (sadness, fear, anger, and tendency for disgust). FER worsening after STN DBS can be attributed to the functional role
of the STN in limbic circuits and the interference of STN stimulation with neural networks involved in FER, including the
connections of the STN with the limbic part of the basal ganglia and pre- and frontal areas. These outcomes improve our
understanding of the role of the STN in the integration of motor, cognitive, and emotional aspects of behaviour in the growing
field of affective neuroscience. Further studies using standardized neuropsychological measures of FER assessment and including
larger cohorts are needed, in order to draw definite conclusions about the effect of STN DBS on emotional recognition and its

impact on patients’ quality of life.

1. Introduction

Deep brain stimulation (DBS) has evolved into one of the
most effective established therapies for the treatment of
movement disorders, with subthalamic nucleus (STN) being
a major target for Parkinson’s disease (PD) [1, 2]. DBS, with a
high-frequency electrical stimulation (>100Hz) of specific
brain targets, mimics the functional effects of a lesion.
High-frequency stimulation exerts an inhibitory effect on
neuronal activity; proposed mechanisms are the masking of
encoded information by imposing a high-frequency pattern
[3], suppression of abnormal beta oscillations [4, 5], stimula-
tion of inhibitory gamma-aminobutyric acid (GABAergic)
afferents to the target nucleus [6] or other efferent projections
or passing fibres [7], and lastly the inhibition of production
or release of neurotransmitters and hormones [8]. Neverthe-
less, it has become clear that the mechanisms involved in

DBS are more complex, as neural elements may be excited
or inhibited, reaching novel dynamic states of equilibrium
and developing various forms of neural plasticity [9].

The basal ganglia are part of cortico-subcortical net-
works involved in the selection (facilitation or inhibition)
of not only movements but also behaviours, emotions, and
thoughts. STN, located at the diencephalic-mesencephalic
junction, has a central position in the corticobasal ganglia-
thalamocortical circuits, each of which has sensorimotor,
associative, and limbic functions [10]. STN can be function-
ally divided into sensorimotor (dorsolateral), limbic (medial),
and cognitive-associative (ventromedial) areas [11]. The STN
is not only a relay station controlling thalamocortical excit-
ability (the so-called “indirect” pathway of the basal ganglia
circuit) [11, 12] but also an important input regulatory
nucleus of the basal ganglia, receiving projections from the
frontal cortex (the so-called hyperdirect pathway [13, 14]),
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Ficurk 1: Flow diagram of studies assessed for the review.

thalamus, and brainstem. Indeed, the contribution of STN to
nonmotor, especially limbic, functions has attracted increas-
ing attention based on the results of animal studies [15-18] as
well as studies of PD patients receiving high-frequency stim-
ulation [19-22].

STN DBS has proven beneficial effects on different motor
symptoms of the disease (particularly tremor, rigidity, motor
fluctuations, and levodopa-induced dyskinesias) [23, 24],
which seem to be long-lasting [25]. Additionally, it allows
a significant reduction (in the range of 50 to 60%) of
dopaminergic medication postoperatively [24, 26]. There
is also evidence that STN DBS reduces anxiety, pain, and
nonmotor fluctuations [27] and improves sleep and gener-
ally patients’ quality of life [23, 28]. Nevertheless, adverse
effects on some neuropsychiatric, cognitive, and behav-
ioural symptoms following STN DBS have been reported
such as increased apathy [27, 29], impulsivity [27], hypo-
mania [30, 31], and even attempted or completed suicide
[22, 32]. STN DBS may also result in worsening of mem-
ory and overall cognition [33, 34], processing speed [33],
attention [33], verbal fluency [33-35], and executive func-
tions [33-35]. These adverse effects occur particularly in
PD patients with preexisting cognitive [27] or behavioural
symptoms [23, 36, 37] as well as older patients (>70 years),
patients with high dopaminergic treatment, reduced levo-
dopa response and axial signs such as postural instability
and freezing of gait or dysarthria [38, 39].

Among neuropsychiatric symptoms of PD, facial emo-
tion recognition (FER) has also been reported to change after
STN DBS. Yet, the results of studies concerning FER after
STN DBS are inconsistent [40-49]. The ability to recognize
emotions in others’ facial expressions is an essential compo-
nent for nonverbal communication and social interactions
[50]. In fact, impaired FER can lead to poor social integration
and difficulties in interpersonal relationships such as the feel-
ing of frustration and this of social isolation [51], which is
linked to poorer mental health and quality of life [52, 53].
Deficits in interpreting social and emotional cues can affect

PD patients’ social behaviour and have implications for living
with family members or caregivers [54].

2. Methods

In order to further investigate the issue of FER after STN
DBS, we conducted a literature search of the electronic data-
bases MEDLINE and Web of science between 2000 and
2019 for studies published in English language. The key
search terms were as follows: facial emotion recognition,
Parkinson’s disease, subthalamic nucleus, and deep brain
stimulation. The inclusion criteria were (1) studies assessing
emotion recognition from facial stimuli in PD patients
undergoing STN DBS and (2) studies providing data in
different conditions (pre- or postoperative and ON or OFF
stimulation). The exclusion criteria were (1) review articles
and (2) unsuitable study design or stimuli, e.g., affective pic-
tures, films, and vocal stimuli. The search was implemented
by manual search of the references of the identified studies.
The search yielded 24 studies, from which 10 were excluded,
resulting in a total of 14 studies, which were included in the
review. A flow chart of studies assessed for this review can
be seen in Figure 1. The data that were extracted from the
included studies were as follows: authors’ name, year of
publication, sample size, patients’ characteristics (sex, age,
duration, and severity of disease), FER test (number of stim-
uli and emotions and display time), levodopa equivalent
dose before and after STN DBS, assessment conditions
(stimulation ON or OFF and medication on or off), assess-
ment time point after STN DBS, and outcome on FER per-
formance (response accuracy and reaction time). Quality
assessment of studies was done using the Methodological
Index for Non-randomized Studies (MINORS) [55], which
was greater than 10 in all included studies indicating a good
quality. In this review, we discuss the discrepancies between
studies and the mechanisms through which STN DBS can
affect FER in PD patients.
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3. Results

3.1. Studies Assessing Facial Emotion Recognition after STN
DBS. A few studies assessed recognition of emotional facial
expressions after STN DBS with relatively inconsistent find-
ings. The characteristics of studies assessing FER in PD
patients undergone STN DBS are summarized in Table 1.
In the recent meta-analysis of Coundouris et al. [56] examin-
ing social perceptual function in PD, the subanalysis con-
cerning DBS showed that PD patients were significantly
impaired in perception functions after STN DBS surgery
from either facial or vocal stimuli compared to matched
healthy controls (HC). The majority of studies included PD
patients eligible for DBS according to standard inclusion
and exclusion criteria [57], i.e., patients with idiopathic PD
and severe motor disability, clear response to levodopa,
occurrence of disabling levodopa-related motor complica-
tions and absence of dementia, significant neuropsychiatric
disorders, and abnormalities on brain MRI. All patients
underwent bilateral STN DBS. The HC included in some
studies had no history of neurological disease, brain injury,
or dementia and were most commonly matched for age, gen-
der, and education with the PD patients. A variety of facial
stimuli was used in the studies with the most common ones
the Ekman and Friesen series [58], the Hess and Blairy series
[59], the Nim Stim Set [60], and the Karolinska directed
emotional faces database [61]. Moreover, most studies
included various background neuropsychological testing
with most common global cognitive measures (such as the
Mini mental state examination and Mattis dementia rating
scale), semantic and phonemic verbal fluency tasks, and
executive function testing such as the Stroop test, the trail
making test, and the Wisconsin card sorting test, while only
a few used visuospatial tests [40, 46, 62] and the Benton facial
recognition test [41, 42, 44, 46, 49, 62, 63].

Regarding the methodology of studies conducted so far,
patients were tested in alternating experimental settings with
stimulation ON or OFF and medication on or off, i.e., DBS
ON/med on, DBS ON/med off, DBS OFF/med on, and DBS
OFF/med off. Studies have either compared the pre- to post-
operative condition after STN DBS within the same PD
group [40-42, 63, 64], matched PD groups [44, 48, 49], or
PD patients with matched HC [46, 48, 62, 65]. Most studies
reported impaired FER after STN DBS compared to before
surgery [40-44]. Predominately, the recognition of negative
emotions worsened after DBS [40, 43, 44, 63]. Yet, others
failed to show a significant change of FER after surgery
[46-49]. One study [62] reported that the combined effects
of DBS and L-dopa were beneficial for recognition of emo-
tional facial expressions. Additionally, a few studies com-
pared the ON versus OFF DBS stimulation condition
postoperative in PD patients [43, 45, 46, 62]. Aiello et al.
[46] and Mondillon et al. [62] showed no significant differ-
ence in FER after STN DBS with the stimulator either ON
or OFF as long as the patients were on medication. In the
off medication state, PD patients exhibited a worse FER rec-
ognition in the ON stimulation condition as opposed to OFF
[62]. Moreover, Geday et al. [66] reported that STN stimula-
tion affected the general perception of facial expressions; i.e.,

these were scored as less pleasant in the ON condition as
opposed to OFF. Lastly, Wagenbreth et al. [45] in a recent
study assessed postoperative PD patients in an explicit emo-
tional processing task, where the patients had to name the
emotional status depicted in the eye region, and showed a
general decrease in response accuracies under STN DBS in
the ON condition compared to the OFF condition.
Regarding the recognition of specific emotions (i.e., the
seven basic emotions: happiness, surprise, fear, anger, sad-
ness, disgust, and neutral), few studies showed a significant
reduction of decoding accuracy for sadness [40, 41, 63], fear
[41, 42, 44, 63], anger [40], and a trend for disgust [40] after
DBS compared to before, although there was not always a
comparison with a HC group before surgery. Moreover,
Enrici et al. [48] showed a significant impairment of FER
for surprise in the STN-DBS-PD group compared to the
HC group. With regard to specific emotion performances
in different stimulation conditions, Schroeder et al. [43]
showed impaired anger recognition in PD patients in the
ON STN condition compared to the OFF condition, while
Mondillon et al. [62] found a significant decrease in the rec-
ognition of disgust ON STN stimulation and a tendency
toward impaired recognition of fear OFF stimulation com-
pared to HC (both off medication). Aiello et al. [46] reported
that in the OFF condition soon after surgery (5™ postopera-
tive day), patients were impaired in recognizing sadness,
while few months after (2-6 months) and with the stimulator
ON, they exhibited impaired disgust recognition compared
to HC (which was also evident preoperative). Furthermore,
Wagenbreth et al. [45] showed that ON condition of STN
DBS worsened the explicit processing for disgust stimulus
material (eye region and words) but improved the explicit pro-
cessing of fear stimuli compared to the OFF condition. In con-
trast, Biseul et al. [44] showed that a deficit in recognition of
fear (compared to the pre-operative state and HC) was identi-
cal in the PD patients with the stimulator either ON or OFF.

4. Discrepancies between Studies

4.1. Methodological Differences of Studies. Most studies asses-
sing FER after STN DBS had small sample sizes (<30) except
for one [47]. Furthermore, the majority of studies had as out-
come the accuracy score in FER tasks, without additionally
measuring the reaction time of the participants’ responses,
which in the case of prolongation would also indicate impair-
ment. The reasons for discrepancies between studies could be
methodological, concerning study design, i.e., FER task, test-
ing conditions, or time of assessment. With regard to FER
tasks, they varied in terms of stimulus material used. The
majority of studies [41, 42, 44, 63] used facial stimuli from
the Ekman and Friesen series in its original black and white
version [58]. Nevertheless, two studies used computer trans-
formed stimuli with intensities of two emotions [43] or inter-
mediate expressions differing in emotional intensity [40].
Other studies used stimuli containing the region around the
eyes as well [45, 49]. Less commonly, authors used facial
stimuli in color such as the Karolinska directed emotional
faces database [67] or Nim Stim Set [60]. The methodological
drawbacks of FER tasks should also be born in mind; most
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tasks use static facial expressions, categorization, and forced
choice tasks (naming of emotional faces), which are less sen-
sitive than visual analog scales, mainly because of categoriza-
tion biases [68]. The patients have to select the appropriate
label among the choices that are mostly negative, so the prob-
ability of an incorrect response is higher for the negative
emotions. Moreover, low-intensity facial stimuli are associ-
ated with worse FER performance [52]. The studies included
in our review did not test for different intensities of stimuli
except for one [40], which showed FER worsening after sur-
gery irrespective of stimuli intensity. The number of stimuli
also varied across studies. Another factor is the time given
to patients to select the appropriate answer, which was vari-
able among studies as well. In case of no time limit, it is pos-
sible that patients recruit other perceptual strategies [69, 70].
With regard to this, Mondillon et al. [62] used a rapid repre-
sentation design, which may correspond more properly to
the microexpressions encountered in everyday life [71].

The follow-up periods after STN DBS also varied ranging
from days to 48 months after surgery. In fact, some studies
testing FER relatively soon after surgery (3 months) [40-42,
63] found a worsening of FER, whereas the few studies asses-
sing FER later on (one year after surgery) [47, 48] did not. It
can be argued that the histological changes after DBS surgery
evolve with time as neuronal plasticity develops [9], which
makes the interpretation of the results of studies with differ-
ent assessment times after surgery challenging. Moreover,
differences of patients’ characteristics might at least partly
account for the discrepancies between studies. Although
patients” age, disease duration, and general cognitive mea-
sures were comparable among studies, subtle cognitive or
affective differences might have been present. Moreover, the
mean Hoehn and Yahr score was <2 in most studies on med-
ication [41, 42, 48, 49, 63], whereas few studies either did not
report the score [43-46, 62] or reported it off medication
[40]. Despite the fact that most studies included patients
according to standard DBS selection criteria [57], others
recruited early PD patients [49] or used additional criteria
such as a certain motor response to DBS or the absence of a
dysexecutive syndrome [62].

4.2. Clinical Factors: Influence of Electrode Positioning,
Stimulation, and Disease on Facial Emotion Recognition
Changes after STN DBS. Most FER studies verified accurate
DBS electrode placement using imaging techniques, intra-
operative microelectrode recordings and macroelectrode
stimulation, while only a few studies reported additional con-
firmation of the electrode positioning by MRI postopera-
tively [43, 48, 62, 66]. However, studies did not report FER
outcomes in relation to the exact localization of DBS elec-
trodes and active contacts, which can be reconstructed using
specialized software based on postoperative imaging. Vari-
able electrode positioning after STN DBS is thus a factor that
could possibly have accounted for discrepancies of observed
results. Another important issue is how to distinguish the
effects induced by surgery from those induced by STN stim-
ulation. A few studies addressed this issue by comparing the
test scores with stimulation “ON” versus “OFF” [43, 62, 66].
The OFF stimulation assessment is done one hour after turn-

ing the stimulator off; however even then, there are effects of
stimulation present, meaning that it is not a complete “OFF”
condition. This time corresponds to the time until most of
the motor symptoms reappear [72], but it is unclear what
happens with the nonmotor effects. Moreover, the same
applies to the long-lasting neural reorganization following
STN stimulation [9], which cannot be eliminated by merely
turning the stimulator OFF [54]. Additionally, contact con-
figuration (bipolar or monopolar) and stimulation param-
eters, including frequency, pulse width, and especially
stimulation intensity, varied between patients among studies
resulting in the variable volume of nucleus tissue stimulated
and thus variable nonmotor and emotional effects [73, 74].
Indeed, altering stimulation parameters can often lessen the
stimulation-induced behavioural problems [75]. In this
respect, only half of the studies reported the stimulation
parameters of PD patients [41-43, 45, 46, 49], which were
selected based on patients” optimal motor effect.

Another issue is whether PD patients with normal FER
performance before and deficit after DBS actually had a sub-
tle FER deficit before DBS being revealed after surgery.
Indeed, PD patients exhibit significant social perceptual def-
icits including FER impairment [56, 76]. Areas involved in
the process of recognizing emotions in faces such as the
amygdala, basal ganglia, insula, the orbitofrontal, and ante-
rior cingulate cortex are affected by PD-related pathology
[77]. Not all studies examined the presence of a FER deficit
before surgery by comparing with HC. For example, PD
patients in the study of Aiello et al. [46] had a FER impair-
ment (for disgust, on medication) compared to HC even
before DBS, unlike other studies. With regard to whether
FER impairment after STN DBS is due to the disease’s natu-
ral progression [78] or rather an effect of DBS, studies
showed a FER deficit already three months after DBS in PD
patients who had an intact FER prior to surgery [40-42].
Moreover, McIntosh et al. [49], who recruited early PD
patients randomized in two PD groups (optimal drug ther-
apy or optimal drug therapy and DBS), used various affective
tasks including few facial emotional stimuli and found an
impairment of emotion assessment in PD patients as
opposed to healthy participants but no difference irrespective
of treatment type or treatment state (ON, OFF).

5. How STN DBS Can Affect Facial Emotion
Recognition in PD

5.1. The Limbic Role of STN. A large number of structures
including the orbitofrontal cortex, the anterior cingulate cor-
tex, the amygdala, the right parietal cortex and visual pro-
cessing areas like the occipitotemporal cortex participate in
multiple processes and at various points in time in the recog-
nition of emotions in faces [79, 80]. Moreover, neural sub-
strates responsible for FER involve the basal ganglia limbic
loop [81]. The STN can be considered part of a widely dis-
tributed neural network involved in FER either through pro-
cessing limbic, ie., emotional and associative information
within the nucleus itself, or through its impact on other sub-
cortical and cortical limbic areas. The limbic part of the STN
is partly reciprocally connected with limbic parts of the basal



ganglia [82, 83] such as the ventral striatum [84, 85] and
ventral pallidum [11], the major output region of the limbic
circuit [81]. There are also efferents from the STN to the sub-
stantia nigra, mostly to the pars reticulata [86] responsible for
the regulation of dopamine release [11, 87], pedunculopon-
tine nucleus [88], and amygdala [89, 90]. Additionally, the
medial (limbic) tip of the STN projects to the ventral tegmen-
tal area, from which the mesolimbic dopaminergic pathway
originates, involved in mediating primary motivational
behaviours [11]. STN is also part of the indirect pathway con-
necting the striatum and internal globus pallidus, which is
considered the “stop” or “no-go” pathway reducing thalamic
and cortical activity [91]. Furthermore, STN receives input
directly from the cortex through the hyperdirect pathway
[14] and particularly from the frontal and prefrontal areas
such as the anterior cingulate cortex [13, 92] and the orbito-
frontal cortex [90, 93], which participate in the recognition of
emotions in faces [79, 80].

Indeed, various studies support the involvement of STN
in limbic functions. Vicente et al. [94] reported that STN
stimulation affects the subjective experience of emotion,
and Serranova et al. [95] showed that aversive stimuli were
scored as more unpleasant with STN DBS ON compared to
OFF. Conversely, in the study of Schneider et al. [96], stimu-
lation (ON) had a positive mood induction effect and
improved emotional memory. Neurophysiological studies
support the limbic role of STN as well. Kithn et al. [97]
showed a modulation of STN local field potential alpha
activity a few days after DBS on medication in response to
emotionally arousing pictures (irrespective of valence, i.e.,
direction of behavioural activation away from unpleasant or
towards pleasant stimuli). In contrast, Briicke et al. [98]
and Huebl et al. [99] found a significant modulation of
STN alpha activity with emotionally arousing pictures, which
correlated with the valence but not the arousal, i.e., intensity
of the emotional activation [98]. With regard to this, Sieger
et al. [100] showed that the activity of some STN neurons
was related to emotional valence, whereas the activity of dif-
ferent neurons responded to arousal. Moreover, functional
neuroimaging studies support the STN involvement in emo-
tional processes, for example, when viewing emotion-
inducing short film excerpts (such as disgust, amusement,
and sexual arousal [101]) or pictures of beloved persons
(maternal and romantic love [102]).

Therefore, the changes in emotional processing tasks
after STN DBS such as the worsening in FER might be attrib-
uted to a direct effect of DBS on STN or disruption of its con-
nections with the other basal ganglia or cortical areas
involved in FER after surgery. Interestingly, STN DBS may
modulate neural functions in different ways including both
short- and long-term mechanisms of neuroplasticity [89].
Peron et al. [73] suggest that STN DBS might bring instability
into the basal ganglia system, which synchronizes the neural
activity of distinct areas involved in FER such as the orbito-
frontal cortex and the amygdala [42] or recognition of facial
stimuli such as the fusiform area [66]. Haegelen et al. [103]
suggest that the inhibition of the STN by DBS would lead
to failure of transmission of cortical information to limbic
areas such as substantia nigra pars reticulata and the ventral
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tegmental area, which are additionally affected by dopaminer-
gic loss in PD. Another hypothesis based on Graybiel’s model
[104] is that the basal ganglia and in particular the limbic cir-
cuit including STN select emotional patterns without con-
scious control (just like they select motor patterns) based on
their connections with cortical and subcortical areas. STN
DBS would disrupt this coordination process and lead to mis-
interpretation of emotional stimuli. Another mechanism that
explains how STN DBS may result in FER worsening is the
modulation of STN oscillatory activity [4, 5, 105, 106]. Indeed,
there is an emerging role of low-frequency alpha- and beta-
oscillations in the STN in PD, which are not exclusively motor
[107] and seem to be involved in limbic and emotional infor-
mation processing [108]. In fact, STN areas involved in the
origin of beta activity project not only to sensorimotor areas
but also to areas associated with cognitive, behavioural, and
emotional functions such as prefrontal, frontal, higher order
sensory, and temporal areas [107].

5.2. Changes in Cerebral Metabolism after STN DBS. Neuro-
imaging studies have shown changes in glucose metabolism
or regional blood flow after STN DBS in areas associated with
facial emotion processing. Indeed, many PET studies showed
a decrease in resting state-metabolism post-DBS (in the ON
condition) in precentral, frontal areas such as the anterior
cingulate gyrus [109-111] and temporal areas [42, 110]. Con-
trarily, other studies found a significant increase in regional
cerebral metabolism at rest after STN DBS in limbic and
associative projection territories of the basal ganglia such as
the prefrontal [112, 113], frontal, and anterior cingulate cor-
tices [66, 113, 114] as well as temporal and parietal cortex
[115]. Interestingly, Le Jeune et al. [42] reported a positive
correlation between impairment of fear recognition and
glucose metabolism changes in the right orbitofrontal cortex.
Hence, STN DBS may induce modifications in the striato-
thalamo-cortical circuits involving the orbitofrontal and
anterior cingulate cortex or modulate a frontal network
connected to the limbic and associative STN territories.
Moreover, Le Jeune et al. [42] showed an increase in the acti-
vation of the right fusiform gyrus after STN DBS (in the ON
condition), whereas Geday et al. [66] found a reduced activa-
tion (off medication) when PD patients viewed emotional
faces (as opposed to neutral faces) compared to HC. Based
on these observations, the difficulty of PD patients to decode
emotions after STN DBS might be attributed to the inhibition
of the activity in the fusiform gyrus, which is normally
induced by emotional visual stimuli and particularly facial
stimuli [116, 117], or in a network including the fusiform
gyrus and the STN [66]. Other neuroimaging studies
[42, 63] suggested that STN DBS may also modify the
activity of amygdala, a key structure for FER, which has also
connections with the orbitofrontal and anterior cingulate
cortices [118]. Indeed, STN, particularly its anterior-ventral
part, is functionally connected with medial temporal struc-
tures including the hippocampus and amygdala [89, 90, 107].
Furthermore, a part of the ventral amygdalofugal pathway,
one of the main efferent pathways of the amygdala, passes
close to (through and around) the STN [89] and might be
affected from surgery.
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5.3. Role of Neurotransmitters in Facial Emotion Recognition
after STN DBS. Another widely discussed issue is the contri-
bution of reduction of dopaminergic therapy after DBS to
FER impairment. Gray and Tickle-Degnen [76] in their
meta-analysis reported that emotion recognition impairment
of PD patients was greater, although not significantly, in the
hypodopaminergic state compared to the medicated state,
consistent with the assumed role of dopamine in emotion
regulation [119]. In contrast, Coundouris et al. [56] in their
meta-analysis showed that medicated PD patients had signif-
icantly greater social perceptual deficits than nonmedicated
PD patients, which might be due to the dopaminergic
overdose of regions involved in social perception, relatively
intact from dopaminergic denervation [56]. Dopamine
might therefore have beneficial effects on FER rather in the
advanced stages as opposed to the early stages in which the
mesocorticolimbic pathways are relatively spared [52]. Fur-
thermore, the dopaminergic loss in PD varies and progresses
in different ways in the affected areas including limbic areas
[120]. If FER impairment after STN DBS surgery had been
exclusively due to levodopa reduction, the levodopa equiva-
lent dose (LED) reduction should have been more pro-
nounced in those studies showing a substantial FER
impairment after DBS, which was not the case (LED reduc-
tion ranging from 10 to 76%) [40-42]. Vice versa, the studies
that found no significant FER differences should have had
small LED reduction, which was again not the case (ranging
from 19 to 63%) [63, 64]. Peron et al. [41] showed a postop-
erative FER deficit of fear and sadness irrespective of dopa-
minergic medication modification, and Enrici et al. [48]
found no correlation of FER with LED in the two PD groups
(PD group on dopaminergic therapy and PD group under
STN DBS and dopaminergic therapy). On the other hand,
Mondillon et al. [62] showed a greater benefit in FER perfor-
mance when the two therapies (DBS and L-Dopa) were com-
bined. Moreover, another study [121] found that levodopa
reduced the reaction time in both the facial emotional and
control Stroop subtasks in PD patients postoperatively.
Another study [122], using an emotional valence-dependent
categorization task a few days after surgery with the stimulator
not yet turned on, showed that dopamine enhanced process-
ing of pleasant information.

In studies assessing the ON versus OFF stimulation con-
dition, while there was a worse FER performance ON stimu-
lation and off medication in some studies [43, 62], in other
studies [44, 46], there was no significant FER impairment
on medication. Nonetheless, even in the studies that tested
patients on medication [40-42, 44, 46-49, 63], it is unclear
if it was the “best on” due to potential dopaminergic fluctua-
tions [73]. Moreover, the patients were not under their regu-
lar medication in all cases (for example, Mondillon et al. [62]
defined as on medication the situation 1 hour after the intake
of 1.5 of the usual morning L-dopa dose). On the other hand,
off medication was defined as being oft medication for 12 [43,
46, 62] or 24 hours [49]. Based on these results, it is plausible
to hypothesize that impaired FER after DBS is unlikely to be
explained by a sole dopamine deficiency but L-dopa might
interfere subtly with DBS effects and compensate the FER
worsening to an extent. Indeed, controlled L-dopa doses

may partially correct the stimulation-induced inactivation
of the orbitofrontal cortex and activate the striatocortical cir-
cuit [62]. Additionally, dopamine modulates the activity of
glutamatergic cortical and GABAergic pallidal afferents to
the STN [88]. Moreover, both STN DBS and dopaminergic
treatment reduce the pathological increase in beta oscilla-
tions [123-125], induce functional inhibition of the STN,
and have synergistic effects (the so-called hyperdopaminergic
behavioural effects) [27].

Whereas much attention has been directed to the role of
dopamine in emotional processing in PD, another issue to be
addressed is the role of other neurotransmitters. There is evi-
dence that serotonin plays a role in emotional processing
from facial stimuli [126-128] and can modulate the basal
ganglia circuitry [129]. Indeed, the basal ganglia including
the STN receive serotoninergic innervation from the raphe
nuclei [130]. Thus, the behavioural effects of DBS could be
induced by the interaction between STN and midbrain raphe
serotonergic neurons [131]. Indeed, bilateral high-frequency
stimulation of the STN inhibited the firing rate of serotoner-
gic neurons in the dorsal raphe nucleus [132] and serotonin
release in the prefrontal cortex and hippocampus in animal
PD models [133]. Moreover, apart from serotonergic, norad-
renergic systems seem to play a role in the STN DBS effects as
well [134]. It is possible that different functions within the
STN are mediated by different neurotransmission systems
and that distinct but overlapping neuronal populations mod-
ulate STN output [86]. High-frequency stimulation reduces
STN hyperactivity and, apart from restoring the function of
the dopaminergic system in the motor territories, may dis-
turb the balance between the dopaminergic and other neuro-
transmission systems [40, 86].

5.4. Contribution of Cognitive and Other Neuropsychiatric
Symptoms to Facial Emotion Recognition after STN DBS.
Emotions are closely related to cognitive processes and are
often determined by the cognitive evaluation of events,
depending on the meaning of these events for the individual’s
welfare and goals [73]. In fact, the identification of emotions
can be seen as a complex cognitive process, relying on many
cognitive domains such as working memory, language, and
visuospatial perception [78]. Most of the studies assessing
FER after DBS measured neuropsychological function as well
[40-42, 44, 46-48, 63]. Regarding the contribution of cogni-
tive changes to FER worsening after DBS, while some studies,
which showed a total or specific emotion FER worsening
after DBS also showed worsening of cognitive measures such
as verbal fluency [40, 41] or correlation between the two
functions [46], others did not [41, 42, 63]. Moreover, most
studies did not find a connection between FER worsening
after DBS and global cognitive measures [40, 42, 44, 63] or
executive functions [41, 44, 63], which remained unchanged
after surgery. On the contrary, studies that did not find FER
impairment after STN DBS reported a significant improve-
ment in some neuropsychological measures such as mini
mental state examination and immediate recall [46, 47]. It
is also noteworthy that the different tasks assessing emotion
recognition vary in the cognitive resources they demand
[52]. The contribution of visuospatial perception decline
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after surgery to FER worsening is also a controversial issue
as some studies reported a worsening of visuospatial abili-
ties postoperative [135, 136], whereas others [40] found a
FER impairment without a visuospatial perception deficit.
It is noteworthy that not all studies did a nonemotional
facial recognition test such as the Benton test (although
such deficits are not common in PD patients) and only
two studies [43, 62] tested for visual contrast sensitivity.
Visual and emotional systems are indeed closely connected:
the amygdala is connected to superior colliculus, anterior
cingulate, orbitofrontal, and cortical temporal visual areas
[137], but it seems unlikely that the complex emotional rec-
ognition process is solely dependent on the visual percep-
tion abilities, which participate in the rather early stages of
FER [79].

A common neuropsychiatric effect of STN DBS is the
modulation of inhibitory control [138]. STN DBS can alter
impulse control and in some cases induce or exacerbate cer-
tain impulsive behaviour in PD patients [139]. The inhibi-
tion as a cognitive process is essential to emotional
processing [73]. Indeed, the inhibitory (no-go) signal from
the STN, mediated by connections with frontal areas [138],
delays automatic responses and gives additional time for
central processing of a behaviour [140]. From another per-
spective, it could be assumed that the worsening in FER after
DBS could be partly due to impairment of inhibition control
leading to more impulsive decisions and inaccurate choices
of the right emotion. In that case, reaction times after pre-
sentation of facial emotional stimuli would be shorter in
the ON condition, similar to the global decrease in reaction
time in response to high conflict trials [140, 141]. The
majority of studies did not assess reaction times for FER
tasks. A study [121] using an emotional Stroop task showed
that stimulation (ON condition) significantly reduced reac-
tion times, whereas another [45] showed longer reaction
times specifically for disgust recognition irrespective of stim-
ulation condition. The potential involvement of anxiety,
depression, or apathy in FER impairment after DBS is
another issue not widely addressed among studies possibly
because patients with major affective disturbances were
excluded preoperatively. Nevertheless, FER impairment in
PD occurs independently of patients’ depression status
[76]. Interestingly, Dujardin et al. [40], who found a worsen-
ing of FER, found a reduction of anxiety after surgery. In the
study of Albuquerque et al. [47], the neuropsychiatric symp-
toms (apathy and depression) could not be predicted from
the emotion recognition tests. Moreover, Drapier et al. [63]
found no correlation between the postoperative worsening
of apathy and emotion recognition and suggested that each
of these functions has separate functional networks, proba-
bly passing through the STN. On the other hand, Enrici
et al. [48] found a significant negative correlation between
apathy and FER performance in both PD groups (receiving
dopaminergic therapy or both dopaminergic therapy and
STN DBS).

5.5. Neurosurgical Issues. The neurosurgical target for DBS
in PD is the sensorimotor area of the STN (dorsolateral
territory). However, the small size of this structure
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(approximately 3 mm coronal x 6 mm sagittal x 12 mm axial)
compared with the size of each contact of the implanted elec-
trode (1.5mm high x 1.27 mm wide) suggests that DBS may
influence other areas of the STN besides the motor one and
particularly its limbic territory, through current diffusion
depending on pulse width and voltage [40]. Moreover, there
seems to be a substantial overlap between the different areas
of the STN [13] and there is evidence that they are connected
by GABAergic interneurons [142]. Indeed, Lambert et al.
[89] reported that most cortical regions had projections to
all the STN functional subterritories and vice versa. Another
factor is the role of surgical trajectory for the electrode place-
ment: electrodes are inserted through the frontal lobes (and
possibly the dorsolateral prefrontal cortex) and often cause
lesion of fibres connecting the thalamus or the head of the
caudate nucleus with the frontal lobes, which are regions
involved in higher cognitive processes [36]. Indeed, York
et al. [143] observed that cognitive and emotional changes
six months following bilateral STN DBS may be related to
the surgical trajectory and electrode placement. The implan-
tation of the electrode might also affect different cognitive
functions such as attention and working memory [33], as
well as patients’ performance in emotion recognition tasks
by increasing impulsivity [138]. There is also a “microlesion”
effect, which reflects the posttraumatic tissue reaction within
the STN caused by the implantation of electrodes [144]. This
effect, although typically short lived and less likely to affect
the DBS outcome, can induce changes to the regional metab-
olism in STN, globus pallidus, ventral thalamus, and sensori-
motor cortex [145, 146].

5.6. Lateralization. The connections between STN and cor-
tex are ipsilateral [89]. Emotional auditory stimuli evoked
activity in the right ventral STN in an electrophysiological
study [147]. Another study [121] reached the conclusion
that STN DBS induced hypoactivation of the right fusiform
gyrus. Moreover, an imaging study [66] showed that the
inhibition of the activity of the lateral fusiform face area
was the result of the stimulation of the right STN. In another
neuroimaging study [107], there was an asymmetry found in
a patient with DBS-induced hypomanic episodes, with the
left STN showing lower connectivity to the prefrontal cortex.
Additionally, Lambert et al. [89] reported partly asymmetri-
cal projections of the STN with the temporal pole favoring
the left and the orbital gyrus favoring the right. All limbic
connections were more prominent in the left hemisphere
apart from a right-sided dominance of connections with
the middle-frontal gyrus, middle anterior cingulate, and
superior precentral gyrus [89]. Thus, there might be a later-
alization favoring the right STN, in accordance with the
knowledge that the right hemisphere is generally more active
in emotional processing [148]. Interestingly, Coundouris
et al. [56] in their meta-analysis found that patients with left
side PD onset, i.e., right hemisphere-driven pathology had
poorer emotion recognition ability. As most studies did not
examine this parameter, future research could investigate
the effect of variable stimulation of the right STN on social
abilities or even inactivation in specific (emotional demand-
ing) social situations [66].
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5.7. Impact of STN DBS on Specific Emotions. Regarding mis-
attribution of emotions, Biseul et al. [44] found that most
common misattribution of fear in the postoperative PD
group was surprise, while Peron et al. [41] reported that the
pattern of misattribution did not change as compared to
before surgery. The misattribution for negative emotions
could be due to various reasons. Negative emotions are gen-
erally more difficult to recognize [149, 150] having overlap-
ping features unlike happiness that can be easily recognized
from the feature of smile [151, 152]. From another perspec-
tive, it could be due to the general increase in positive affect,
which has been linked to STN DBS [96, 153]. It seems that
some neural areas are engaged in the perception of all basic
emotions such as the amygdala, the ventral striatum, and
frontal and temporal areas [154-156] but the activation pat-
tern of recognition of separate emotions is partially distinct
[154]. Additionally, one neural structure can have multiple
functions, depending on the functional network and coacti-
vation pattern at a given moment [155]. Another reason
could be that the areas associated with the recognition of neg-
ative emotions may be subject to greater dopaminergic
denervation in PD such as the amygdala, insula, and the orbi-
tofrontal and anterior cingulate cortices [157-159] or that
they are involved in an archaic evolutionary preserved route
responsible for the recognition of threatening stimuli which
might be affected in PD [160]. However, whether STN or
its subareas are particularly associated with the network pro-
cessing negative emotions is not clear. Le Jeune et al. [42]
suggested that the negative emotion network passes through
the STN, whereas Peron et al. [73] proposed that STN DBS
induces modifications in all components of emotion irre-
spective of stimulus valence (positive or negative). As happi-
ness was the only positive emotion tested across studies
(surprise can be viewed as a transition emotion) and the ana-
tomical substrates for positive emotions are much less inves-
tigated (with the exception of superior temporal gyrus and
anterior cingulate cortex for the processing of happiness
[156, 161]), future studies should include more positive emo-
tions (e.g., gratitude, serenity, hope, pride, amusement, inspi-
ration, and relief) as well as more complex negative emotions
(e.g., annoyance, anxiety, guilt, despair, and jealousy).

5.8. Are There Risk Factors for Facial Emotion Recognition
Changes after STN DBS? It seems that different risk factors
such as patients’ vulnerability before DBS, dopamine dosage,
or stimulation [37] may influence the STN DBS neuropsychi-
atric outcome. Indeed, patients with marginal cognitive or
behavioural functioning such as older patients are at risk of
developing postoperative behavioural decompensation
[162]. Other factors that could explain why such behavioural
symptoms differ between patients after surgery could be per-
sonality traits, the social environment, cultural differences,
and learned behaviours [36]. The anatomical variability
between subjects [107] and the variability in terms of cogni-
tive capacities (e.g., mild cognitive impairment) should also
be taken into consideration. Another aspect that could be
explored in future studies is whether FER worsening after
DBS occurs in a subgroup of patients with distinct nonmotor
characteristics, i.e., a predominant nonmotor subtype for
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example the nontremor dominant subgroup, which is more
associated with cognitive and affective symptoms [120], or
the diffuse phenotype, likely to have mild cognitive impair-
ment, orthostatic hypotension, and REM sleep behaviour
disorder at baseline and more rapid progression of nonmotor
symptoms [163]. Argaud et al. [52] suggested that hypomi-
mia may play a role to emotional processing difficulties in
PD. Thus, a subject of future studies could also be to examine
hypomimia after STN DBS in relation to FER change. There-
fore, there seems to be a complex interplay between predis-
position, surgical, and postoperative issues.

6. Conclusion

In summary, the majority of studies published so far showed
that facial emotion recognition in PD patients after STN DBS
surgery worsens compared to the condition before surgery
[40-42, 63], while a few studies showed no significant
impairment of FER after STN DBS [46, 64]. In addition, stud-
ies showed worse FER in the ON STN condition compared to
OFF without dopaminergic medication [43, 62], while on
medication there was no significant difference reported [46,
62]. The main findings and considerations regarding the
effects of STN DBS on FER are summarized in Table 2. Lim-
itations of the current review should be acknowledged such
as the small sample sizes of studies, the variable follow-up
periods after surgery, and possibly different sensitivity of
FER testing used among studies, as well as the fact that the
studies were mainly observational and not randomized con-
trol trials. Moreover, it cannot be excluded that studies with
positive findings were more likely to be published compared
to studies showing no difference after DBS. Additionally, the
studies were conducted in PD patients, where the STN
involvement might reflect a compensatory response. Never-
theless, evidence points to a functional role of STN in limbic
circuits. Indeed, there are various factors that need to be elu-
cidated in future studies such as the methodological discrep-
ancies of studies, neurosurgical issues, the role of the disease
itself, and that of dopaminergic medication. Whether the
postoperative FER changes are transient or persistent is also
unclear at the moment. Therefore, long-term follow-up stud-
ies with testing at various time points after surgery are
needed. Moreover, larger patient cohorts should be tested
in future studies using standardized, validated neuropsycho-
logical measures of FER, which would include all basic emo-
tions and measure both FER response accuracy and reaction
time as outcome. Furthermore, it would be interesting for
future studies to look at the correlation of FER outcomes with
electrode position in relation to STN and volume of tissue
activated by DBS.

FER changes after STN DBS can be attributed to the
functional role of the STN in cognitive and limbic circuits
[103, 164, 165] or to the interference of STN stimulation
with the integration of neural networks involved in FER
[42, 66]. Importantly, networks are not static but dynamic
[166], adapting to current demanding tasks or situations.
In this way, FER might be affected variably in the time
course after DBS. Thus, the role of STN is extended: STN
represents a central position for multilevel integration of
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TABLE 2: Main findings and considerations regarding the effects of STN DBS on facial emotion recognition (FER) in PD.

(i) The majority of studies, which had clinical and methodological heterogeneity, showed that FER in PD patients worsens after STN DBS
compared to before surgery, particularly for negative emotions (sadness, fear, anger, and tendency for disgust).

(i) Most studies showed worse FER in the ON STN condition compared to OFF without dopaminergic medication, while on medication

there was no significant difference.

(iii) Neurophysiological studies showed modulation of STN alpha activity after DBS in response to emotionally arousing pictures.

(iv) Neuroimaging studies showed changes in glucose metabolism or regional blood flow after STN DBS in areas associated with FER such as
the orbitofrontal cortex, the anterior cingulate cortex, the fusiform gyrus, or amygdala.

(v) Impaired FER after STN DBS is unlikely to be explained

by a sole dopamine deficiency resulting from dose reduction postoperatively, but L-dopa might subtly interfere with DBS

effects and compensate FER worsening to an extent.

(vi) An association between FER worsening after DBS and global cognitive measures could not be shown in most studies, while the
contribution of visuospatial abilities postoperative is a controversial issue.

(vii) FER worsening might be associated with impairment of inhibition control after STN DBS, whereas the potential involvement of anxiety,

depression, or apathy is unclear at the moment.

(viii) The surgical trajectory, electrode positioning, stimulation, and current diffusion to nearby limbic STN territory might contribute to

DBS effects on FER.

(ix) FER worsening after STN DBS can be attributed to the functional role of the STN in limbic circuits and the interference of STN
stimulation with neural networks involved in FER such as the connections of the STN with the limbic part of the basal ganglia and

pre- and frontal areas.

motor, cognitive, and affective information [107]. DBS
interferes with information interplay in the STN, coming
from structures such as the prefrontal cortex, anterior
cingulate, and amygdala. STN stimulation facilitates the
recruitment of movement-related prefrontal areas, which is
accompanied by motor improvement [167, 168]; however,
it might exert an opposite effect on associative and limbic
basal ganglia projection areas and lead to inflexibility of
mental responses [169]. Hence, STN high-frequency stimu-
lation is capable to restore the motor circuit, but might cause
a functional imbalance in the nonmotor (limbic) circuit,
which could explain why most studies reported worsening
of FER after DBS.

Facial expressions are strong nonverbal displays of emo-
tions, which signal valence information to others and are
important communication elements in social interactions.
Future studies should assess if difficulties in emotion recog-
nition and processing have an impact on patients’” and care-
givers’ quality of life. Indeed, patients after DBS surgery
exhibit frequently difficulties in their relationship with close
family members and their socioprofessional environment
[170]. Impaired FER might contribute to these difficulties
in interpreting social cues. Another issue is whether the neu-
ropsychiatric deficits after DBS could be improved through
interventional strategies or even prevented. This stresses
the importance of neuropsychological approach of PD
patients after STN DBS, favorably in the context of a multi-
disciplinary team, in order to optimize motor and nonmotor
DBS outcome.

DBS is an effective therapy for PD. There is plenty of evi-
dence that it is more effective than optimal drug therapy [24].
Carefully selected patients experience besides a significant
motor improvement a substantial benefit in the quality of life
[23], which outlasts adverse effects. DBS is an important
therapeutic intervention for patients with medically intracta-
ble motor symptoms, in whom nonmotor symptoms are not

predominant [1, 24], which stresses the importance of indi-
vidualization of PD treatment depending on patients’ symp-
toms. The aspects discussed in the present article improve
our understanding of the role of the STN in emotional con-
trol in the growing field of affective neuroscience. However,
the impact of STN DBS on social perception abilities requires
further research. Carefully designed studies in PD patients
prior to and after STN DBS can add to our knowledge con-
cerning the role of STN in social interaction and better
inform individualized clinical decisions on DBS treatment
in PD.
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