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Abstract

Mitigation of a severe influenza pandemic can be achieved using a range of interventions to reduce transmission.
Interventions can reduce the impact of an outbreak and buy time until vaccines are developed, but they may have high
social and economic costs. The non-linear effect on the epidemic dynamics means that suitable strategies crucially depend
on the precise aim of the intervention. National pandemic influenza plans rarely contain clear statements of policy
objectives or prioritization of potentially conflicting aims, such as minimizing mortality (depending on the severity of a
pandemic) or peak prevalence or limiting the socio-economic burden of contact-reducing interventions. We use
epidemiological models of influenza A to investigate how contact-reducing interventions and availability of antiviral drugs
or pre-pandemic vaccines contribute to achieving particular policy objectives. Our analyses show that the ideal strategy
depends on the aim of an intervention and that the achievement of one policy objective may preclude success with others,
e.g., constraining peak demand for public health resources may lengthen the duration of the epidemic and hence its
economic and social impact. Constraining total case numbers can be achieved by a range of strategies, whereas strategies
which additionally constrain peak demand for services require a more sophisticated intervention. If, for example, there are
multiple objectives which must be achieved prior to the availability of a pandemic vaccine (i.e., a time-limited intervention),
our analysis shows that interventions should be implemented several weeks into the epidemic, not at the very start. This
observation is shown to be robust across a range of constraints and for uncertainty in estimates of both R0 and the timing of
vaccine availability. These analyses highlight the need for more precise statements of policy objectives and their assumed
consequences when planning and implementing strategies to mitigate the impact of an influenza pandemic.
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Introduction

In the event of the emergence of a new human influenza A

strain with a high case fatality rate indicating the possibility of a

global pandemic with severe impact, control strategies primarily

aim at limiting morbidity and mortality rather than halting

transmission completely. This is because transmission of influenza

A is difficult to block due to its short generation time and efficient

transmission characteristics [1]. In the early days of the H1N1

influenza pandemic in Mexico in 2009 [2], social distancing

measures were implemented with the aim of slowing the epidemic

during its early stages. For any future pandemic of a directly-

transmitted infectious agent, it is expected that similar strategies

will be used in high resource settings while the pathogen is being

identified, epidemiological studies to both characterize transmis-

sion [3,4,5,6,7] and determine pathogenicity are completed [8,9]

and strain-specific control options, such as vaccines, are being

developed [10,11]. For influenza, policy options are clearly outlined

in national pandemic plans, but there is rarely any clear statement

of policy objectives [12]. The problem is that these different

objectives are potentially conflicting in their effects, and clear

prioritisation is therefore necessary. Is the aim to minimize

mortality and morbidity, is it to limit the peak prevalence of

serious disease so that public health resources are not over-

whelmed or is it to minimise the impact of the intervention on

society and economy? In this paper we form a framework for

policy makers to consider these potentially conflicting objectives.

A number of studies have investigated the role of targeted

interventions at different phases of the epidemic based on

mathematical models which include various levels of population

structure and spatial complexity [13,14,15,16,17,18,19,20]. How-

ever, none of these studies have addressed how multiple policy

objectives are met by the common interventions, or how a clear

statement of the key policy aims guides which set of interventions

work best. It is typically assumed by policy makers that the more

intervention measures implemented as early as possible in the

course of the epidemic the better the outcome in terms of

mitigation. Reservations about this strategic approach rest on the

costs, and societal impact plus economic implications of sustaining

control measures over a long period of time. In recognition of this
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the USA pandemic plan, for instance, mentions a maximum

duration of 12 weeks for many transmission-reducing interventions

[21]. However, there has been no quantitative analysis of when

such an intervention should be initiated. Should it be as soon as

the first cases are discovered, or later in the outbreak when more

cases have arisen? Neither has it been acknowledged that planned

levels of coverage with antiviral treatment or pre-pandemic

vaccines may implicitly determine the magnitude of social

distancing interventions required.

Studies have shown that during the 1918–19 influenza

pandemic public health control strategies and changes in

population contact rates lowered transmission rates and reduced

mortality and case numbers [22,23]. Similar measures were

arguably effective for H1N1 in Mexico in 2009 [3]. Strategies used

then, and to be considered in future, include social distancing

measures, such as school closures [24,25], restaurant and cinema

closures [26], and transport restrictions [27,28,29]. There are a

number of other measures, such as hand washing and the use of

face masks [30], which may reduce contact rates [31,32].

Transmission will also be affected by changes in human behaviour

in response to a pandemic, as was observed in travel and mixing

patterns during the severe acute respiratory syndrome (SARS)

outbreak in 2003 [29].

Within the last 100 years, there have been two international

outbreaks of a directly transmitted pathogen with high case fatality

rates in which social distancing measures were implemented. The

first was the influenza pandemic of 1918, where non-pharmaceu-

tical public health strategies were effective at reducing morbidity

and mortality in a number of settings [22]. However, the impact of

these interventions on transmission was highly variable. An

analysis of cities in the USA showed reductions in transmission

ranged from approximately 0–60% (Figure 1). These interventions

were held in place from 1 week to 3 months. One might expect

that interventions with higher impact were held in place for

shorter time, but there was no systematic relationship between the

duration and the impact of interventions (Figure 1, black circles).

During the SARS outbreak of 2003, the aim of intervention

strategies was to eliminate transmission, not only to mitigate the

effects of the epidemic. Elimination was possible due to the

characteristics of the virus - post-symptomatic transmission and a

long generation time [1]. Large scale reductions in the

transmission rate of SARS (.70%, Figure 1, [33]) were brought

about by a number of public health interventions. These

interventions were held in place for several weeks. The small

amount of data available perhaps suggest a trend towards lower

impact interventions being held in place for longer to achieve

elimination (Figure 1, open triangles), but an important driver of

the duration of these interventions was the number of cases that

were present when the interventions started. These empirical data

from two severe outbreaks suggest that moderate reductions in

influenza transmission can be achieved and maintained at a

population level for a number of weeks.

The impact of any particular intervention is difficult to estimate

from past epidemics due to variation in the viral strain and its

transmission properties, and due to the concurrent effects of many

different behavioural responses and government led initiatives.

Planning therefore depends increasingly on the predictions of

mathematical models of viral spread that permit analyses of the

potential impact of various interventions, alone or in combination

[13,34,35,36,37,38,39].

In this paper we consider the effectiveness of contact-reducing

interventions during the first six months after the initial cases,

before a pandemic vaccine is available, and evaluate optimum

interventions for a range of policy objectives or constraints, such as

a limited stockpile of treatments or non-specific vaccine. Analyses

are based on a mathematical model of virus transmission and the

impact of control measures. We focus on the identification of

policies that minimise peak demand for public health services and

those which minimise the potential costs or socio-economic impact

as evaluated by a simple cost function. This paper is not designed

Figure 1. Magnitude and duration of responses to previous
severe mortality outbreaks. Estimates of the reduction in the
reproduction number and the duration of interventions during
responses to the SARS outbreak in 2003 by country [18] (open
triangles) and during the 1918 influenza pandemic in cities in the USA
[22] (closed circles). A transmission reduction of 0% reflects an
intervention which was estimated to have no effect on transmission.
doi:10.1371/journal.pcbi.1001076.g001

Author Summary

In the event of an influenza pandemic which has high
mortality and the potential to spread rapidly, such as the
1918–19 pandemic, there are a number of non-pharma-
ceutical public health control options available to reduce
transmission in the community and mitigate the effects of
the pandemic. These include reducing social contacts by
closing schools or postponing public events, and encour-
aging hand washing and the use of masks. These
interventions will not only have a non-intuitive impact
on the epidemic dynamics, but they will also have direct
and indirect social and economic costs, which mean that
governments will only want to use them for a limited
amount of time. We use simulations to show that limited-
time interventions that achieve one aim, e.g., contain the
total number of cases below some maximum number of
treatments available, are not the same as those that
achieve another, e.g., minimize peak demand for health
care services. If multiple aims are defined simultaneously,
we often see that the optimal intervention need not
commence immediately but can begin a few weeks into
the epidemic. Our research demonstrates the importance
of tailoring pandemic plans to defined policy targets with
some flexibility to allow for uncertainty in the character-
istics of the pandemic.

Mitigation Strategies for Pandemic Influenza A
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to give specific policy guidance. Box 1 outlines a number of factors

which should be considered in designing policy which are not

covered here. Our aim is to develop an understanding of how

different policy objectives determine the optimal mix, timing of

introduction and duration of implementation of the available

mitigation strategies.

Methods

Transmission model
All results have been obtained with a model based on the well-

known deterministic SIR-model, that has proven its value in many

studies of infectious diseases [40,41]. We parameterized the model

with a mean infectious period of 2.6 days (recovery rate c= 1/2.6),

and a basic reproduction number R0 = 1.8 (see Ferguson et al [13])

with a population of size n = 58.1 million. The population was

subdivided into proportions of the population in the classes

of x susceptibles, y infectives, and z immunes, with dynamics

given by

dx

dt
~{b tð Þxy

dy

dt
~b tð Þxy{cy

dz

dt
~cy

ð1Þ

The parameter b tð Þ is the transmission rate, i.e. the number of

contacts an infective has per day in which the infection is passed

on, and has the baseline value b0~R0c~1:8=2:6. Simulations

were started with 1 infective, n21 susceptibles, and no immunes.

Social distancing and epidemic dynamics
We investigated the impact of a social distancing intervention

on transmission through a constant reduction in transmission, w,

resulting from an unspecified combination of public health

measures, maintained over a time period, D. In model terms,

the transmission rate b tð Þ was assumed to change during inter-

vention from the baseline rate b0 to a reduced rate 1{wð Þb0. This

happened from t~T1, the start of the intervention, until

T2~T1zD, the end of the intervention of duration D. For the

duration we considered three options, first an intervention that is

kept in place indefinitely, second an intervention with a fixed

duration of twelve weeks, which is the maximum duration

mentioned in the USA national pandemic plan [21], and third

an intervention until the a pandemic specific vaccine is available,

after six months. In the ‘indefinite’ scenario, the duration of the

epidemic was formally defined as the time until ynv1.

Transmission-reducing public health interventions for influenza

are unlikely to completely halt transmission [22,23,42,43]. It is

most likely that mitigation strategies will be ‘sub-critical’

interventions which reduce the effective reproduction ratio (the

mean number of new infections per infected individual) towards,

but not below, 1. Thus, we assumed that wv1{1=R0~0:444.

Numerical simulations of the model were used to evaluate the

impact of the interventions twelve months after the first case.

Impact is primarily measured by (the reduction in) the total

number of cases. We also evaluated two other measures of

effectiveness: firstly, the (reduction in) peak prevalence, since high

prevalence may overwhelm public health facilities and as such

increase both morbidity and mortality; and secondly, the socio-

economic costs of the interventions, determined both by the level

of intervention and the duration they are in place, calculated as the

simple cost function w|D.

Antiviral drugs
Many countries have stockpiled antiviral drugs in preparation

for an influenza pandemic [12]. Whilst these may be used

prophylactically to reduce transmission [35,44,45], most pandemic

strategies advocate the use of antivirals to treat cases of infection or

to treat those cases where other risk factors suggest that disease

severity may be high [46]. The treatment of cases will reduce

morbidity and mortality and has been shown to be cost-effective

for high risk patients [47]. We focus on the treatment of cases in

combination with transmission-reducing intervention as above.

We make the assumption that treatment of cases does not affect

transmission. The assumption is made firstly because drugs are

given upon case notification, which is when much infectiousness

may have passed [1], and secondly because symptomatic patients

will be advised to remain at home reducing their contacts. The

additional transmission reduction in transmission due to antivirals

will thus be minor. The use of antivirals for severely ill patients could

have implications for occupancy and therefore availability of

isolation units and high dependency beds. Whilst this might change

the infectious profile of the few severely ill patients who would have

access to these facilities, it does not affect the majority of cases and

detailed consideration of these logistics is outside the scope of this

study. In addition, we do not include the possible effect of mass

treatment on resistance [48] and therefore on the efficacy of the

drugs. Consideration of these effects may lead to a range of different

policy objectives, taking into account combination therapy or

sequential deployment of different lines of therapy [49].

Pre-pandemic vaccines
As well as stockpiling antivirals, it may be possible to reduce

transmission and severity of disease by stockpiling a partially-

Box 1. Epidemic-Specific Characteristics Affecting Suit-
ability of Interventions.

N Epidemiological characteristics of a future pandemic are
not yet known and will be uncertain early in the
epidemic. However, transmission estimates used for
influenza pandemic planning proved to be close to
those observed during the 2009 H1N1 pandemic [3]. Key
parameters include R0, epidemic growth rate, generation
time distribution, age-specific attack rate, asymptomatic
case ratio, case fatality ratio, hospitalisation rates,
treatment requirements, cross-immunity, drug resistance.

N Setting specific parameters will affect the growth rate
and peak prevalence of an outbreak. These include age
structure of the population, contact rates within and
between age-groups, household structure, school atten-
dance patterns, pre-existing immunity.

N Spatial structure may be important in certain settings,
particularly population density, transport links and
accessibility of health care services. Therefore interven-
tions may be applied differently in different areas,
depending on the spatial scale. Influenza growth rates
are very rapid, so spread between areas could be rapid.

N The early course of an outbreak. When there are small
numbers of cases and variable importation rates, there
will be stochastic effects which will facilitate or slow the
transition from localised outbreaks to exponential
growth of the epidemic. This will affect the optimal
timing of interventions.

Mitigation Strategies for Pandemic Influenza A
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protective pre-pandemic vaccine in advance of the pandemic [12].

Even partially effective vaccines can have large beneficial effects

because the unvaccinated are indirectly protected from infection

by those portions of the vaccinated population who are not

infected or are less severely affected and possibly have reduced

infectiousness (‘herd’ immunity – see [40]). Use of an imperfect

vaccine can, however, also lead to increased incidence if reduc-

tions in infectiousness are associated with corresponding increases

in the infectious period [50,51]. Effectiveness estimates for a pre-

pandemic vaccine are not available, but evidence from cross-

protection studies led to the assumption that both susceptibility to

infection and infectiousness may be reduced by 30% [13,52]. The

duration of infectiousness is assumed to be unchanged, precluding

any increased incidence in the presence of the vaccine. We

evaluate a partial vaccination strategy, in combination with a

transmission reducing intervention, aiming to keep the number

of unvaccinated cases (epidemic size) less than 25% of the

population.

To consider vaccination with a pre-pandemic vaccine, the

transmission model was adjusted to include infection of vaccinated

individuals:

dx

dt
~{bx yzeI y

V

� �

dx
V

dt
~{eSbxV yzeI y

V

� �

dy

dt
~bx yzeI y

V

� �
{cy

dy
V

dt
~eSbx

V
yzeI y

V

� �
{cy

V

dz

dt
~cy

dz
V

dt
~cy

V

ð2Þ

In this adjusted model, xV , yV , and zV are the proportion of

vaccinated individuals, and eI ( = 0.7) and eS ( = 0.7) are the

relative infectiousness and susceptibility of vaccinated versus

unvaccinated individuals. It is assumed that vaccinated cases

would not require treatment, and therefore were not included in

the epidemic size or peak prevalence. Simulations were carried out

with a vaccine coverage of 10%, starting with one unvaccinated

infective.

Scenarios
To place our results in a more realistic context whilst not giving

precise policy guidance, we consider two scenarios for pandemic

planning in high resource settings. They are scenarios which are

covered in a number of pandemic plans. We will outline the range

of interventions which can achieve these aims.

Scenario 1: A strain-specific vaccine is expected to be available

within 6 months of the start of a pandemic. In order to minimize

morbidity and mortality, social-distancing interventions will be

used to ‘buy time’ until the vaccine is available. Antiviral drugs are

available to treat symptomatic cases with a stockpile for up to 25%

of the population. Social-distancing interventions will be used to

ensure that symptomatic cases are kept below this level and to

minimize socio-economic impact and peak demand for hospital

and other public health services by minimizing prevalence in the

population.

Scenario 2: This scenario is very similar to Scenario 1, except

that in addition a pre-pandemic vaccine is available which can be

rapidly rolled out to 10% of the population. The question of

interest will be the extent to which the pre-pandemic vaccine will

reduce the level of intervention required.

Since we are considering interventions implemented early in the

epidemic, key epidemiological parameters may still be in the

process of being estimated. Therefore, we investigated which

strategies are least sensitive to incorrect estimation of R0, i.e.

R0 = 1.7 or 2.0. In addition, availability of a pandemic vaccine

may be delayed, or the pre-pandemic vaccine may be less effective

than anticipated, so we ran our simulations out to an eight-month

period and with a vaccine efficacy of eS~eI~0:863 (50% less

reduction in transmission).

Results

We first investigate the impact of social distancing interventions

alone. The received wisdom of outbreak control strategies is that

the maximum level of control measures should be put in place as

rapidly as possible. However, there may be delays before control

strategies are implemented due to difficulties in identifying the

early stages of a novel outbreak, as well as other logistical, political

and economic constraints. Because the interventions considered

here are sub-optimal, cases will continue to occur whilst the

intervention is in place, but at a slower rate than in the

unconstrained epidemic. This means controls may need to be

held in place for a long time, which may be costly. Detailed

derivations of the analytical results are given in a Text S1.

Long-term interventions
One possible policy choice is to maintain an intervention

irrespective of cost until the last case has recovered from the

disease. This will always reduce the total number of cases and peak

prevalence. These quantities can be expressed or approximated by

analytical expressions, which we derive in Text S1 and illustrate

using numerical simulations. The final proportion of the

population affected by an unconstrained epidemic, aNI, is given

by solving [40,41]

aNI~1{e{R0aNI ð3Þ

The final size increases monotonically with increasing R0 and does

not depend on the generation time of the infection [40]. For a long

term intervention, implemented at T1 and held in place until there

are no cases (Figure 2), the final epidemic size, aLI (proportion of

the population who have been infected) is given by

aLI~1{ 1{I T1ð Þð Þwe{R0 1{wð ÞaLI ð4Þ

where I T1ð Þ is cumulative incidence up to time T1. In the

exponential growth phase, the cumulative incidence can be

approximated by

I T1ð Þ~
1

n

R0

R0{1

� �
exprT1 ð5Þ

where r is the epidemic growth rate, given by r~ R0{1ð Þc.

For our parameter values, this approximation works well until

about T1 = 49 days (7 weeks), when equation (5) overestimates

I T1ð Þ by 22%. The final epidemic size decreases monotonically as

the timing of the intervention, T1, becomes earlier, and as the size

of the intervention, w, becomes larger (Figure 2). However, before

week 5 I T1ð Þ is very small, so interventions starting earlier do not

have much effect (Figure 2).

Mitigation Strategies for Pandemic Influenza A
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In the absence of an intervention the maximum prevalence

occurs when dy=dt~0, or when x~1=R0, and the maximum

prevalence is (using the equations above and x 0ð Þ&1 approxi-

mations to the initial conditions) is [40]

ymaxNI
~1{

1

R0
1zln R0ð Þ ð6Þ

which increases with increasing R0, and, as with the unconstrained

epidemic size, does not depend on the generation time.

In the presence of the intervention, maximum prevalence is

dependent on the proportion of the population who are still

susceptible at the time of the intervention. If the intervention is

initiated before the peak in the unconstrained epidemic, and if

cumulative incidence is sufficiently high and the proportion of the

population still susceptible at the start of the intervention is less

than 1= R0 1{wð Þð Þ, then peak prevalence will be at the start of the

intervention, y T1ð Þ.
On the other hand, if the cumulative incidence is less than

1{1= R0 1{wð Þð Þ there will be a peak during the intervention

(Figure 2), which is given by

ymaxduring
~1{

1

R0 1{wð Þ 1zln R0 1{wð Þð Þzwln 1{I T1ð Þð Þð Þð7Þ

If the intervention is initiated after the peak of the unconstrained

epidemic, then there will not be another peak in prevalence

during the intervention, since there will be too few susceptible

individuals.

These analytical results can be used to understand the effect of

an intervention on the final size and peak prevalence, but we do

not have neat expressions for the resulting duration of the whole

epidemic (time until final case recovers) when an intervention is in

place, and therefore we turn to simulation (Figure 2). The higher

the transmission rate, the shorter the epidemic, which may be a

desirable policy outcome.

For influenza-like parameters, a few weeks delay may have only

moderate deleterious consequences for peak prevalence, peak

incidence or epidemic size (Figure 2). This delay will result in

higher peak prevalence, but it will also result in a considerably

shorter epidemic than an early intervention (Figure 2A circular

inset and 2B). This may be a desirable outcome in economic

terms. The level of reduction in transmission has similar effects,

where a more effective intervention put in place early in the

epidemic will lead to the smallest epidemic size and peak

prevalence, but the longest epidemic duration (Figure 2C and D).

In brief, the earlier a long term intervention is put in place and

the more effective it is at reducing transmission, the greater the

beneficial effect in terms of total epidemic size and peak

prevalence. Interventions of this kind are likely to be the most

Figure 2. Effect of timing and strength of interventions on outcome for long-term interventions. A, C: Prevalence of infectious cases
under different control scenarios (dotted line indicates unconstrained epidemic). B, D Effect of interventions on total number of cases (solid bars),
peak prevalence (striped bars), and time until final case recovers (diamonds). A, B intervention commences week 3, 5, 6 and 7 with a 33.3% reduction
in transmission. C, D intervention commences week 5 with 11.1%, 22.2%, 33.3% and 44.4% reduction in transmission.
doi:10.1371/journal.pcbi.1001076.g002

Mitigation Strategies for Pandemic Influenza A
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costly, and, counter-intuitively, may have to be held in place the

longest. A strong argument to start an intervention early, however,

is that the epidemic peak occurs later for early interventions

(Figure 2A), allowing time to prepare public health facilities, to

manufacture a strain specific vaccine and because there is great

uncertainty about severity in the early stages of an outbreak [8].

Short-term interventions
The drawbacks of a long intervention period are recognised in

the USA national pandemic plan, where a maximum duration of

12 weeks intervention is anticipated - another policy choice we

considered. As above, we first consider some analytical expres-

sions, and illustrate them using numerical simulation.

For a single short term intervention from T1 to T2~T1zD, the

final epidemic size, aSI , is given by

aSI~1{
1{I T1ð Þ

1{I T1zDð Þ

� � w
1{w

e{R0aSI ð8Þ

Note that, although I T1ð Þ can still be approximated during the

exponential phase of the epidemic (equation (5)), we cannot

approximate I T1zDð Þ. In this case, the relationship between the

final epidemic size and intervention parameters is more complex

because cumulative incidence at the time the intervention is lifted

depends both on cumulative incidence at the time the intervention

is initiated and the size of the intervention, w. For example, if the

duration of the intervention and its starting time are fixed, the

epidemic size is optimized for intermediate values of the size of the

intervention, w (Figure 3B, D).

With a short-term intervention, there are three possible

maximum prevalence points. Firstly, prior to the intervention

(equation (6)), during the intervention (equation (7)), or after the

intervention

ymaxpost~1{
1

R0
1zlnR0z

w

1{w
ln

1{I T1ð Þ
1{I T1zDð Þ

� �� �

~ymaxNI
{

1

R0

w

1{w
ln

1{I T1ð Þ
1{I T1zDð Þ

� � ð9Þ

(note that I T1ð ÞvI T1zDð Þ). The peak value could also occur at

the point at which the intervention starts, i.e. when y~y T1ð Þ. The

conditions for each peak being the maximum are given in Table 1.

A large magnitude intervention (large w) may actually be

deleterious, leading to a larger resurgence in prevalence after the

intervention than an intervention with a smaller reduction in

transmission.

With a short-term intervention, there is no longer a monotonic

relationship between the policy outcomes and the magnitude and

length of the intervention. Therefore strategies which contain the

epidemic size below certain levels are unlikely to be the same

Figure 3. Effect of timing and strength of interventions on outcome for an intervention of 12 weeks. A, C: Prevalence of infectious cases
under different control scenarios with dotted line indicating unconstrained epidemic. B, D Effect of interventions on total number of cases (solid
bars), peak prevalence (striped bars), and time until final case recovers (diamonds). A, B intervention commences week 3, 5, 6 and 7 with a 33.3%
reduction in transmission. C, D intervention commences week 5 with 11.1%, 22.2%, 33.3% and 44.4% reduction in transmission.
doi:10.1371/journal.pcbi.1001076.g003

Mitigation Strategies for Pandemic Influenza A
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interventions which contain peak prevalence below particular

targets.

For influenza-like parameters a 12-week intervention will almost

certainly lead to a resurgence of the epidemic once the controls are

lifted (Figure 3A, C). If peak prevalence is very much lower during

the intervention than it would be with no intervention, the

implemented policy may even result in almost no change in the

total epidemic size (Figure 3). For late, or less effective,

interventions, prevalence during the intervention is higher than

for early, or more effective, interventions,, resulting in fewer

susceptible individuals remaining when the intervention is lifted. In

this case the second peak is smaller, and reductions in total

epidemic size are larger (Figure 3).

For short term interventions, in contrast to long-term strategies,

peak prevalence, peak incidence, and epidemic size cannot all be

minimized by the same strategy. For instance, a 33% reduction in

transmission timed to minimise total epidemic size (Figure 3A, B,

initiated week 7) may not be the intervention which minimises

peak prevalence (Figure 3A, B, initiated week 6). Both these

strategies have small and late resurgent epidemics (Figure 3A,

circular inset), with cases beyond the end of the year. Similarly, an

intervention initiated at week 5 may minimise peak prevalence for

a 33% reduction in transmission (Figure 3C, D), or minimize

epidemic size with a 22% reduction in transmission (Figure 3C,

D), but neither of these strategies are optimal if the aim is to have

the epidemic exhaust itself most rapidly, with the quickest

epidemic being the one without any intervention.

The intervention always reduces peak prevalence from what it

would have been in the absence of an intervention. However, which

particular value is the peak value is determined by the timing of the

intervention and the magnitude of the intervention (Table 1). Each

of these vary according to the characteristics of the intervention, and

the underlying epidemic. For a fixed starting time and duration,

there is a non-linear relationship between peak prevalence and the

reduction in transmission, w (Figure 3). The value of w for which

peak prevalence is minimized is almost certainly not that at which

the total epidemic size is minimized (Figure 3).

Scenario 1: Limited antivirals, 6 months to vaccine
availability

It is not possible to achieve a symptomatic epidemic size of 25%

of the population with a 12 week intervention for these parameter

values. We therefore consider a scenario in which an intervention

is initiated in the first weeks or months of the outbreak and held in

place until 6 months after the start of the outbreak.

Many different interventions can be used to constrain the

epidemic size to 25% of the population. They range from an early

intervention with a mild reduction in transmission, to a late, more

impactful intervention (Figure 4A). To achieve this aim whilst

minimising peak prevalence it is not necessary to initiate the

intervention early, in fact a delay may even be beneficial

(Figure 4B). But, the intervention must start before 7 weeks (for

these parameter values), when the number of cases prior to the

intervention becomes large.

If we evaluate the socio-economic ‘cost’ of these interventions

as a simple product of the duration of the intervention and the

reduction in transmission achieved, a delay also reduces the

costs of the intervention, and the ideal intervention is more

clearly defined (Figure 4B). Delay is valuable because transmis-

sion is being reduced, not eliminated, and therefore some of

the effort in constraining the epidemic at the early stages is

redundant.

Choices about intervention policy will be made early in the

epidemic when parameters are uncertain. For example, R0 and the

date of availability of the vaccine could be over or under

estimated. Of course, designing this intervention based on an

overestimate of R0 means that the epidemic is smaller than

expected, and so the intervention is too large and there are fewer

cases overall (Figure 4C). An underestimate in R0 means that the

epidemic is larger than expected and so the intervention is not

large enough to contain the epidemic and there are more cases

than expected (Figure 4C). In either of these cases, the intervention

would have to be adjusted during the outbreak. If the ‘optimum’

intervention, which minimised peak prevalence, is chosen, it is

more robust to changes in R0 than the other options (Figure 4C).

Table 1. Maximum prevalence in the presence of an intervention.

Condition
Maximum
prevalence

Local peak
prior

Increasing
prevalence during

Local peak
during

Local
peak post

x T1zDð Þvx T1ð Þv
1

R0

ymaxNI
Y N N N

x T1zDð Þv 1

R0

vx T1ð Þv
1

R0 1{wð Þ
y T1ð Þ N N N N

1

R0

vx T1zDð Þvxcvx T1ð Þv
1

R0 1{wð Þ
y T1ð Þ N N N Y

1

R0

vxcvx T1zDð Þvx T1ð Þv
1

R0 1{wð Þ
ymaxpost

N N N Y

x T1zDð Þv 1

R0

v

1

R0 1{wð Þvx T1ð Þ
ymaxduring

N Y Y N

1

R0

vx T1zDð Þv e{1

R0 1{wð Þ1=w
v

1

R0 1{wð Þvx T1ð Þ
ymaxduring

N Y Y Y

1

R0

v

e{1

R0 1{wð Þ1=w
vx T1zDð Þv 1

R0 1{wð Þvx T1ð Þ
ymaxpost

N Y Y Y

1

R0 1{wð Þvx T1zDð Þvx T1ð Þ
ymaxpost

N Y N Y

The interventions range from late interventions at the top of the table to short and early interventions at the bottom of the table. Note that x tð Þ~1{I tð Þ and

xc~x T1ð Þ1=w
R0e{ R0 x T1ð Þ{1ð Þ� �1

w
{1

.
doi:10.1371/journal.pcbi.1001076.t001
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A delay in the availability of vaccine increases the number of cases,

but picking a late intervention minimises this effect.

Scenario 2: Additional benefit of pre-pandemic vaccine
Use of an imperfect vaccine for only 10% of the population

results in a slower epidemic with fewer cases (Figure 5). The use of

a pre-pandemic vaccine means that interventions which contain

the total number of cases and peak prevalence can be rolled out

later (Figure 5A), compared to the non-vaccination scenario. Also,

as can be seen from the simple cost function (Figure 5B), the level

of intervention can be reduced if pre-pandemic vaccines are used.

The true economic value of this reduction in costs depends on the

relative costs of vaccination, cases and interventions. The general

picture remains the same as without vaccination. To minimize

peak prevalence, the intervention should be initiated earlier than

to minimize costs, but both objectives require interventions that

commence several weeks into the epidemic growth phase

(Figure 5B). Sensitivity to the value of R0 or the effectiveness of

the pre-pandemic vaccine highlights that once again the most

robust strategies are those that are minimize peak prevalence

(Figure 5C).

Discussion

In the absence of detailed analyses, it is often argued that

epidemic outbreak control is best achieved by putting all

mitigation options into play as early as is feasible. There may be

delays before control strategies are implemented due to difficulties

in identifying the early stages of a novel outbreak [53], as well as

other logistical, political and economic constraints. Of course, if

interventions are held in place until a pandemic vaccine is

available a greater level of reduction and earlier start of

intervention will result in fewer cases, and a lower peak prevalence

and incidence if intervention starts before the peak. However, not

only are the costs of an intervention held for a long time likely to

be high, but high demand for health services will be extended over

a longer time period. Our results indicate that an intervention

starting at a few weeks into the epidemic is almost as effective at

reducing epidemic size and peak prevalence as one starting at

week 0. As such, given that the social and economic burden will be

greater when starting earlier, starting a little bit later may be a

better policy option. However, this will crucially depend on the

socio-economic costs of both cases and interventions and on the

estimated severity of the epidemic, which may be uncertain in the

early stages of the epidemic [8].

As noted in the introduction, the drawbacks of a long

intervention period are recognised in the USA national pandemic

plan, where a maximum intervention duration of twelve weeks is

anticipated [21]. Using a twelve-week intervention, we have

illustrated how the introduction of a short term intervention

complicates the dynamics and increases the potential for conflict

between policy aims. Interventions of limited duration are very

likely to result in a resurgence of the epidemic once they are lifted,

unless it is imposed late in the epidemic or with low effectiveness.

However, the height of this resurgence can be managed. A twelve-

week interventions minimizing peak logistical pressure (peak

prevalence and incidence) need not be very strong but require a

timely start. On the other hand, an intervention that minimizes

total epidemic size needs to be stronger and can start later,

preventing a second peak.

A number of American cities experience a second peak in

mortality following the lifting of interventions during the 1918

pandemic [22,43]. Re-analyses of a number of cities showed that

multiple interventions were more effective at controlling transmis-

Figure 4. Comparison of intervention strategies which ‘buy
time’ until a strain-specific vaccine is available 6 months into
the epidemic and contain symptomatic cases to utilize a
stockpile of treatments for 25% of the population. A Uncon-
trolled epidemic (black dotted curve) and epidemic curves for five
different strategies, starting at different times: T1 = 0, 2, 4, 6, or 7 weeks
into the epidemic. The required reductions in transmission are w = 32%,
34%, 36%, 37% and 49%. B Peak prevalence (solid curve) and costs of
interventions calculated as wT1 (dashed curve), in relation to the time of
commencement of intervention. C Excess number of cases for the five
strategies if the parameters of the epidemic are different to those for
which these interventions were designed: the availability of a strain
specific vaccine is delayed until 8 months (black), transmission has been
overestimated and R0 = 1.7 (dark grey), or transmission has been
underestimated and R0 = 2 (light grey).
doi:10.1371/journal.pcbi.1001076.g004
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sion than single interventions [43]. In addition, it was found that

the later multiple interventions were implemented, the less

effective they were in reducing mortality [22,43]. This was most

notable when controls were implemented when excess mortality

was higher than ,100 per 100,000 [22]. This conclusion cannot

be so easily drawn in epidemics for which interventions were

initiated prior to this threshold [22]. Here, we have shown that for

short term interventions implemented during this early part of the

epidemic earlier commencement is not always better, and that the

outcome is highly sensitive to the timing and effectiveness of

interventions.

Our two scenarios for policy design illustrate that applying one

objective and then another sequentially (e.g. limiting total cases

and then minimising peak prevalence for that epidemic size) can

be used to resolve potentially conflicting aims. Our results also

show that the most extreme and earliest mitigation interventions

are not always the best, and not always the least costly. It has not

previously been highlighted that the level of stockpiles will

quantitatively affect the required magnitude of social-distancing

interventions so that all those who require treatment will receive it.

Any level of stockpiled antiviral drugs will reduce morbidity and

mortality and therefore reduces the need for transmission-reducing

interventions, as not all cases need to be prevented, but the

availability of drugs means that demand for these drugs should not

exceed supply. In addition, our results illustrate that even low

coverage with imperfect vaccines can lead to reductions in the

required interventions level to meet a defined objective for control.

There are many complexities involved in quantifying the effect

of interventions which are not included here, the complexities of

transmission by age and spatial heterogeneities, the likely

behavioral changes during an epidemic that affect transmission,

seasonal variation in transmission, the logistics of delivery of pre-

pandemic vaccines and drugs, the economic costs of an outbreak

and potential development of resistance to antiviral drugs.

Detailed investigations are required to tailor general policies to

particular settings, and therefore we are not attempting to make

quantitative policy recommendations (see Box 1). However,

uncertainties with regard to characteristics of the next pandemic

strain will make it difficult in general to do very detailed

optimization analyses. Decisions on stockpiling must be based on

knowledge from previous pandemics and seasonal influenza, but

when a pandemic is at hand one has to work with the stockpiles

available. Intervention measures can be additionally imposed if a

shortage of drugs is expected, or lifted to reduce the impact of

intervention on society and economy, if drug supplies permit. Our

analyses show that there is indeed some time to choose the

appropriate level of control, as very early commencement of

intervention is hardly ever optimal for these time-limited

interventions.

Our analyses also illustrates that even a simple inclusion of

‘costs’ changes what is optimal by comparison with analyses that

are just based on impact on epidemiological measures. Economic

costs typically enter the equations in a non-linear term as indicated

in our model formulation. However, including empirically derived

cost functions will probably lead to the inclusion of more highly

non-linear functions. This highlights the need to include more

robust economic constraints into future epidemiological model

analyses for public health policy support. In our view, this is a

more urgent need than that of increasing the complexity of

epidemiological description within models of infectious disease

control. Concomitantly, there is the associated need for measure-

ment of the appropriate cost functions. Data is available for both

drug and vaccine purchase but this is regarded as confidential at

present as neither the pharmaceutical industry nor government

Figure 5. Addition of a pre-pandemic vaccine for 10% of the
population. Comparison of intervention strategies which ‘buy time’
until a strain-specific vaccine is available 6 months into the epidemic and
contain symptomatic cases to utilize a stockpile of treatments for 25% of
the population when 10% of the population are vaccinated with a vaccine
which reduces susceptibility and infectiousness by30%. A Uncontrolled
epidemic (black dotted curve) and epidemic curves for five different
strategies, starting at different times: T1 = 0, 2, 4, 6, or 7 weeks into the
epidemic. The required reductions in transmission are w = 28%, 30%, 31%,
32% and 33%. B Peak prevalence (solid curve) and costs of interventions
calculated as wT1 (dashed curve), in relation to the time of commence-
ment of intervention. C Excess number of cases for the five strategies if
the parameters of the epidemic are different to those for which these
interventions were designed: the pre-pandemic vaccine is less effective
(black), transmission has been overestimated and R0 = 1.7 (dark grey), or
transmission has been underestimated and R0 = 2 (light grey).
doi:10.1371/journal.pcbi.1001076.g005
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health departments are keen to say how much was paid per dose as

a function of total volume purchased. Future research must

address the detail of cost and benefit, both in terms of

measurement of direct and indirect socio-economic costs, the

costs of stockpiling and the benefits of reducing the impact of the

epidemic and in terms of using a template for analysis that reflects

the dynamics of virus transmission and the impact of control

measures.

In our model we have considered contact-reducing interven-

tions, the use of antiviral medication, and vaccination with a pre-

pandemic vaccine. For insight into the effect of other control

options, it is useful to understand what characterizes these three

particular control measures. Antivirals work on the individual

level, contact reduction on the population level, and vaccination

on both. Contact reduction and vaccination are preventive

measures, whereas treatment is reactive. Treatment and vaccines

require stockpiling, and both are flexible with respect to possible

timings of introduction during the epidemic. Contact reduction is

flexible in both planning and timing, but has major implications

for the normal functioning of society.

This flexibility implies that a broad range of more complex

strategies could be envisaged, for example implementing and

lifting a hierarchy of controls in response to the dynamics of the

epidemic and importation of cases. However, the simple scenarios

illustrated here highlight the complexities in selecting the best

intervention policy, in terms of magnitude, timing and duration of

interventions. The optimum intervention in terms of minimising

peak logistical pressures (peak prevalence or incidence), may not

be the same as one which minimises total epidemic size, and will

almost certainly not be the one minimising direct social or

economic impact from the intervention itself. The aims of a public

health intervention policy must therefore be clearly defined, so

that in the early phase of a pandemic sufficient resources can be

put into characterizing the virus strain and measuring key

epidemiological parameters as an essential template for decisions

on what is the optimal mitigation strategy.

Supporting Information

Text S1 Detailed derivations of the mathematical expressions for

epidemic size and peak prevalence.

Found at: doi:10.1371/journal.pcbi.1001076.s001 (0.90 MB PDF)
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