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Abstract

totiviral ORFs were also included in these analyses.

highly variable with no similarities to the host ORFs.

Background: Synonymous codons are used differentially in organisms from the three domains of life, a phenomenon
referred to as codon usage bias. In addition, codon pair bias, particularly in the 3’ codon context, has also been described
in several organisms and is associated with the accuracy and rate of translation. An improved understanding of both
types of bias is important for the optimization of heterologous protein expression, particularly in biotechnologically
important organisms, such as the yeast Xanthophyllomyces dendrorhous, a promising bioresource for the carotenoid
astaxanthin. Using genomic and transcriptomic data, the codon usage and codon context biases of X dendrorhous open
reading frames (ORFs) were analyzed to determine their expression levels, GC% and sequence lengths. X. dendrorhous

Results: A total of 1,695 X. dendrorhous ORFs were identified through comparison with sequences in multiple databases,
and the intron-exon structures of these sequences were determined. Although there were important expression variations
among the ORFs under the studied conditions (different phases of growth and available carbon sources), most of these
sequences were highly expressed under at least one of the analyzed conditions. Independent of the culture conditions,
the highly expressed genes showed a strong bias in both codon usage and the 3’ context, with a minor association with
the GC% and no relationship to the sequence length. The codon usage and codon-pair bias of the totiviral ORFs were

Conclusions: There is a direct relation between the level of gene expression and codon usage and 3' context bias in X.
dendrorhous, which is more evident for ORFs that are expressed at the highest levels under the studied conditions.
However, there is no direct relation between the totiviral ORF biases and the host ORFs.
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Background

With the exception of methionine and tryptophan, amino
acids are encoded by two to six synonymous codons ac-
cording to the standard genetic code, and degenerate co-
dons are used at different frequencies, a phenomenon
known as codon usage bias (CUB) [1]. Several biological
factors, such as the gene GC composition and length, mu-
tation frequency and pattern, gene expression level, tRNA
abundance, gene translation initiation signals and protein
structure, influence the CUB [2-9].

The existence of CUB has been described in metazoans
[10], D. melanogaster [11], bacteria [12,13], insects [14],
archaea [15] and viruses [16-18]. It has been proposed that
viral genomes adapt to the host codon usage to efficiently
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use the host’s translational resources [19,20]. Previous
studies have reported interspecies or even intraspecies dif-
ferences between highly and poorly expressed genes, likely
associated with translational efficiency [21,22]. Highly
expressed genes typically exhibit higher bias in synonym-
ous codon usage, and it has been proposed that mutation
pressure and natural selection are the major forces influ-
encing this phenomenon, favoring translationally superior
codons [23-27]. Thus, the most optimal codons are signifi-
cantly more represented in highly expressed genes than in
poorly expressed genes [28,29]. In addition to CUB, codon
context bias reflects preferences related to the sequential-
ity of a pair of codons (codon pair). Codon context bias is
likely associated with the accuracy of decoding, indicating
the ability of the translational machinery to detect codon
pairs present at ribosomal decoding sites [30-33]. One hy-
pothesis is that translation rates are influenced by the
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compatibilities of adjacent tRNAs at the A- and P-sites
on the surface of translating ribosomes. The results of a
recent in vivo study suggested that the codon context
primarily influences the speed at which proteins are
synthesized in E. coli [34]. Preferred and avoided codon
pairs have been observed in the three domains of life,
and it has been reported that 3’ codons primarily show
selective effects on the codon context [35].

Both CUB and codon context bias analyses have been
recommended for the optimization of heterologous gene
expression, as parameters that significantly favor gene
expression [36]. Thus, knowledge of the CUB and codon
context bias is of critical interest for genetic improvement
when heterologous expression is used to favor the prod-
uctivity of biotechnologically important microorganisms.
The basidiomycetous yeast Xanthophyllomyces dendror-
hous is relevant to biotechnology, as this microorganism
synthesizes the carotenoid astaxanthin. This pigment has
strong antioxidant properties beneficial for human health,
including potential benefits for the treatment of degenera-
tive diseases [37]. In addition, astaxanthin is commonly
used in aquaculture for the pigmentation of the flesh of
salmonid fishes, which is a considerably important factor
in this industry. Although X. dendrorhous is a promising
source of natural astaxanthin, natural production in
wild-type strains is not sufficient to be economically
competitive against the chemical synthesis of this pigment.
Therefore, considerable effort has been made to improve
the production of carotenoids in X. dendrorhous, including
culture optimization, classical random mutagenesis and
metabolic engineering approaches (reviewed in [38]). Un-
fortunately, the molecular tools to genetically modify this
yeast remain scarce [39], limiting the number of potential
modifications that may be of interest. Thus, knowledge of
the CUB and codon context bias for this yeast would be a
pivotal contribution to the design of new metabolic engin-
eering strategies to improve astaxanthin biosynthesis in
this organism. In addition, totiviruses have recently been
identified in X. dendrorhous strain UCD 67-385 [40]; un-
like mammalian viruses, these viruses lack an extracellular
infection route and are cytoplasmically transmitted.

Although the codon usage of X. dendrorhous has been
previously described, the analysis was performed using
only ten ribosomal genes [41]. However, the current ap-
plication of next-generation technologies has provided
additional information to conduct more representative
studies. In the present study, we evaluated the codon
usage and codon context bias of multiple X. dendrorhous
genes using genomic and transcriptomic data obtained
from the yeast cultured with two different carbon
sources (glucose and succinate) during two different
phases of growth (exponential and stationary). The level
of gene expression was included as a parameter in these
analyses for the comparison of codon usage and codon
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context biases among highly and lowly expressed genes,
and the gene expression was also compared against toti-
virus genes resident in this yeast.

Results

Open reading frame (ORF) identification and expression
analysis

The X. dendrorhous strain UCD 67-385 was grown in
minimal media supplemented with glucose or succinate
as the sole carbon source, and the cells were collected at
the early exponential (~18 h) and initial stationary
(~72 h) phases of growth, generating a total of four dif-
ferent conditions (G18, S18, G72 and S72: Glucose or
Succinate and I8 or 72h of culture). Total RNA was
purified from the yeast pellets, and the quality of sam-
ples was assessed and sequenced using the Illumina
GAII and HiSeq platforms. Open reading frames (ORFs)
of at least 300 bp in length were predicted using tran-
scriptome contigs, and subsequently these sequences
were mapped to five genomic scaffolds of 1.1 to 2.4 Mbp
in length (approximately 8.1 Mbp in total). Only the
mapped ORFs identified under the four conditions were
analyzed, and ORFs showing 100% identity with genome
sequences, including a well-defined exon-intron structure,
were selected and compared with the database using the
Blast2GO server [42]. Among the 2,434 sequences ana-
lyzed, 1,695 sequences showed positive Blastx hits to at
least one conserved protein domain in the InterPro data-
base [43] (maximum e-value 107°°) (Additional file 1).
The remaining 739 sequences with no Blastx hits were not
included in the following analyses. In each of the four con-
ditions, the transcriptional levels of each ORF were quan-
tified as reads per kilobases per million mapped reads
(RPKM) as previously described [44]. In general, the ana-
lyzed ORFs were highly expressed (Figure 1A), and among
the four conditions, the percentages of ORFs with RPKM
values considered as low- to moderate- (1-30 RPKM),
quite high- to high- (31-100 RPKM) and over- (>100
RPKM) expressed, ranged from 2.9 to 10.7, 14.7 to 31 and
58.3 to 82.4%, respectively. The major percentages of
over-expressed ORFs were observed after culturing X.
dendrorhous in both carbon sources for 72 h, with 82.4%
for succinate and 75.8% for glucose. Considering the high-
est RPKM value for each ORF observed among the four
conditions, the percentages of low- to moderate-, quite
high- to high- and over-expressed ORFs were 1.6, 10 and
88.4%, respectively. Variations in the expression levels
of each ORF were determined by normalizing the RPKM
value of each ORF in the reference condition to the lowest
RPKM value of the respective ORF among the four condi-
tions. The majority of the ORFs showed considerable vari-
ations in expression among the four conditions, although
most of the genes were over-expressed (Figure 1B).
Smaller differences in the RPKM values were observed
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Figure 1 Expression levels of the 1,695 ORFs from X. dendrorhous. A: Expression level of each ORF in RPKM. The color code scale represents the
RPKM values as indicated in the figure. B: Comparison of the expression levels of each ORF between the four analyzed conditions. The RPKM
values of each ORF in each condition were normalized to the lowest RPKM value observed for each ORF. The color code scale represents the
expression fold-changes as indicated in the figure. In both panels, G18 and S18 represent the early log-phase of growth in cultures with glucose
or succinate as the sole carbon source, respectively; G72 and S72 correspond to the initial stationary phase of growth with glucose or succinate
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after 18 h of culture, and the lowest values were observed
using succinate as the sole carbon source. Taking the ratio
between the highest and the lowest RPKM value of each
ORF among the four conditions as a fold-change in ex-
pression, the percentages of ORFs with 1-2, 2.1-5, 5.1-10,
10.1-50 and >50-fold-changes, were 21, 59, 14, 5 and 1%,
respectively. The ten ORFs showing the highest expression
levels and the highest fold-changes, without considering
the ribosomal genes, are listed in Table 1.

Codon usage bias analysis

To analyze the X. dendrorhous CUB, the ORFs were
classified according to their expression level under Each
Condition (EC grouping), with RPKM values ranging from
i) 1-30, ii) 31-70, iii) 71-100, iv) 101-999 and v) >1,000.
The ribosomal ORFs commonly used as references for
highly expressed genes were grouped separately (R group-
ing). However, as an ORF can be poorly expressed under
one condition but highly expressed under another, the
ORFs were also classified using the same RPKM value

ranges but only considering the Highest RPKM Value
observed among the four conditions (HV grouping). In
addition, the ORFs were also classified according to the
Average RPKM Value among the four conditions (AV
grouping). The analysis of relative synonymous codon
usage was performed for each group within a classification
using the CodonW program/server/software (http://
mobyle.pasteur.fr/cgi-bin/portal.py#forms::CodonW, [24]),
and the results are illustrated in Figure 2. Although a dir-
ect relation between the expression level and the codon
usage was observed in the EC grouping, some variations
were observed, depending on the condition (Figure 2A).
However, a clearer tendency was observed in the HV and
AV grouping, where ORFs with higher expression levels
showed a greater preference for some codons including
the ribosomal ORFs. Using the codon bias of ribosomal
ORFs as a reference, a pattern similar to that of the highly
expressed genes in the three different groupings was ob-
served, but this tendency was clearly detected when the
HV and AV grouping was compared (Figure 2B). This
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Table 1 X. dendrorhous ORFs with the highest expression levels and maximum expression fold-changes among the four

conditions

ORF RPKM ORF Fold-change
Cytochrome c oxidase family protein 38,981 (S18) MFS polyamine transporter 273 [572/G72]
Carbohydrate-binding module family 13 protein 34,225 (572) Glycoside hydrolase family 3 protein 236 [G18/572]
Hsp10-like protein 8 (S18) NAD-dependent formate dehydrogenase 1[G18/G72]
Lipid droplet-associated perilipin protein 22,038 (G18) DUF895 domain membrane protein 1 [572/G18]
F-type H -transporting ATPase subunit J 21,800 (572) Carbohydrate-binding module family 13 protein 8 [G18/572]
FK506 binding protein 20,367 (S18) Isocitrate lyase 5 [G18/S72]
Probable GRX1-glutaredoxin 16,503 (S18) Transcriptional regulator 3 [G72/G18]
Eukaryotic ADP ATP carrier 16,209 (G18) Hsp10-like protein 2 [G18/572]
Glucose oxidase 11,505 (572) MFS general substrate transporter 2 [G18/S72]
D-lactate dehydrogenase oxidoreductase protein 9,983 (G72) NADPH2 dehydrogenase 2 [S72/518]

(): condition in which the highest RPKM value was observed. [ ]: condition in which the highest/lowest RPKM values were observed.

finding might reflect the differential expression of the
analyzed ORFs under different conditions, affecting the
number of ORFs in each group (Table 2). The relative
synonymous codon usage (RSCU) for the ribosomal
OREFs, the highly expressed genes defined in the HV
grouping and the ribosomal ORFs are shown in Table 3.

In addition, the ORFs were classified according to se-
quence length and GC% to analyze the CUB. When the
ORFs were grouped according to sequence length, all
groups showed similar codon usage, and only the
shorter sequences, ranging from 300 to 499 bp, showed
some differences with the larger ORFs (Additional file
2 A and B). A direct relation between the CUB and the
GC% was observed, with a greater bias in ORFs with a
higher GC content (Additional file 2 C). Greater differ-
ences in the RSCU ratios between the data for each GC%
group and that for the group with 54% GC were observed,
whereas the differences in GC% in the ORFs increased
(Additional file 2 D).

We also specifically analyzed the codon usage of the
X. dendrorhous viral ORFs from totiviruses XdV-L1A
and XdV-L1B [40]. As shown in Figure 3A, the codon
usage for a majority of the amino acids was quite differ-
ent among the totiviral ORFs. Compared with the host,
only the XdV-L1B totiviral polymerase ORF was similar
to the highly expressed X. dendrorhous ORFs, whereas
the remaining totiviral ORFs did not show similarities
with the lowly or highly expressed ORFs from X. den-
drorhous (Figure 3B).

Codon context bias analysis

The 3" codon context analysis was performed using the
Anaconda software [45] and the HV grouping of ORFs. A
3" codon context bias was observed in all groups, differing
according to the expression level (Figure 4). When the 3’
codon context was compared among the groups, a direct
relationship between the expression level and differences

in the codon context was observed: ORFs with greater dif-
ferences in expression level showed greater differences in
the 3’ codon context, and ORFs with RPKM values of
101-999 and >1,000 showed more similarities (Figure 5).
The top five preferred and non-preferred codon pairs in
each HV group are listed in Table 4. The non-preferred
codon pairs CTT-AAG and CCT-AAG appeared in five
and four groups, respectively, whereas the preferred codon
pairs, TCA-TCC, AAG-AAG and GAA-GAA, appeared in
three groups.

A codon context bias in all groups classified according
to the ORFs GC% was observed (Additional file 3 A).
The comparison analysis revealed that groups having
nearly 50% GC content showed a similar 3" codon bias.
For example, groups having 53 and 54% GC content
were more different than groups with 49 and 50% or 50
and 51% GC content (Additional file 3 B). In the case of
the OREF length, a 3" codon context bias was observed in
all groups (Additional file 4 A), and these findings were
similar among groups of ORFs with 500 or more bases.
Shorter ORFs of 300 to 499 bases showed a different 3’
codon context bias (Additional file 4 B).

The analysis of the 3" codon context of the totiviral
ORFs showed differences between the capsid protein
ORFs of XdV-L1A and XdV-L1B and the viral polymer-
ase ORFs from both totiviruses (Additional file 5). When
the totiviral ORFs were compared with the cellular
ORFs, no similarities were observed between poorly or
highly expressed ORFs (Additional file 5).

Discussion

In the present study, based on genomic and transcrip-
tomic data, 1,695 ORFs were selected from the X. dendror-
hous strain UCD 67-385, represented in two phases of
growth for the yeast cultured using two different carbon
sources, glucose or succinate. Furthermore, these ORFs
encode a polypeptide with conserved domains listed in the
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Figure 2 Codon usage in X. dendrorhous ORFs classified according to their expression level. The ORFs were classified according to the RPKM values,
considering the expression levels of these genes in Fach Condition (EC grouping), the Highest RPKM Value registered among the four conditions (HY
grouping) and the Average RPKM Value for the four conditions (AV grouping). The ribosomal ORFs (R) were grouped independently. The RPKM values
ranged from 1-30, 31-70, 71-100, 101-999 and = 1,000. G18 and S18 represent 18 h of culture using glucose or succinate as the sole carbon source,
whereas G72 and S72 correspond to 72 h of culture using glucose or succinate as the sole carbon source, respectively. A: Codon usage for each amino
acid. The continuous color scale indicates the most common, intermediate and less frequent codons in red, green and black, respectively. B: Codon
usage comparison between ORFs under different classification criteria against the ribosomal codon usage. The figure illustrates the RSCU ratios of each
codon among the different classification criteria and the ones from the ribosomal ORFs. Ratios between 0.9 and 1.1, indicating similar RSCU values, are
represented in blue, whereas ratios outside this range are represented in black.

InterPro database and showed a well-defined exon-intron  succinate, 72 h). Among the four conditions, lower expres-
structure. The expression analysis indicated that a major-  sion levels were observed for the 18-h cultures containing
ity of the analyzed genes were highly expressed under the  succinate as the sole carbon source, and the expression of
four conditions, particularly in older cultures (glucose and  a majority of the genes increased from 18 to 72 h of
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Table 2 ORFs classified according to each condition (G18, G72, S18 and S72), the highest registered (HV) and average

(AV) RPKM values

RPKM (N; X)*

EC HV AV
Group G18 G72 S18 S72
1-30 140; 17 72; 20 185; 17 49; 16 27; 20 65; 19
31-70 256; 51 183; 51 310; 50 118; 53 75; 53 168; 54
71-100 174; 85 157; 84 214; 84 133; 86 94; 86 158; 86
101-999 983; 309 1,086; 336 839; 315 1,257; 314 1,202; 350 1,148; 317
21,000 142; 5879 197; 3,063 147, 7210 138; 3516 297, 5407 156; 4,600

*N: number of ORFs; X: RPKM average value from the ORFs in each group.

culture in both carbon sources. As several factors influ-
ence the CUB, in the present study, we examined the X.
dendrorhous CUB according to the gene expression level,
sequence length and GC% of the ORE. Clearly defined
ORFs were classified according to these parameters, and
the 3" codon context was also analyzed.

In the first analyses, the ORFs were classified into
groups according to the expression levels observed
under each of the four conditions, independently exhi-
biting CUB differences among the groups without a
clear relationship between the CUB and the expression
level. The highest or average expression levels among
the four conditions were used to group the ORFs ac-
cording to their expression level. In these cases, a direct
relationship between the CUB and the expression level
was observed, and the highly expressed genes showed a
major bias, with the exception of the Asp, Cys and His
codons. A comparison of the CUB among all groups,

based on the expression levels, revealed that the codon
usage was similar among genes with similar levels of ex-
pression. Although this finding seems rather obvious,
the gene expression varied under different conditions;
therefore, to classify a gene as lowly or highly expressed
based on only one culture condition and state of growth
could lead to errors in gene classification and analysis.
Previously, the CUB for the X. dendrorhous strain CBS
6938 was described using ten ribosomal genes [41].
However, when considering a higher number of highly
expressed genes from another strain (UCD 67-385), im-
portant differences were detected. In the previous study,
the usage of the codons GCG (Ala), CGC (Arg), GGG
(Gly), AUA (Ile), CUA and CUG (Leu), UUU (Phe),
UGA (TER) and UAU (Tyr) in X. dendrorhous was not
observed; however, in the present study, we observed
that although these codons are not the preferred codons
for each amino acid or for a stop codon, these codons

Table 3 Relative synonymous codon usage of ribosomal and highly expressed ORFs of the X. dendrorhous

AA Cod RSCU AA Cod RSCU AA Cod RSCU AA Cod RSCU

Ala GCU 1.22 (1.40) Gln CAA 0.83 (0.90) Leu Ccuc 1.83 (1.53) Ser AGU 040 (0.61)
Ala GCC 191 (1.22) GIn CAG 7 (1.10) Leu CUA 0.22 (049) Ser AGC 0.65 (0.63)
Ala GCA 0.50 (0.74) Glu GAA 0.56 (0.84) Leu CUG 0.95 (0.88) TER UAA 1.38 (1.03)
Ala GCG 0.37 (0.64) Glu GAG 44 (1.16) Lys AAA 042 (0.75) TER UAG 0.50 (0.81)
Arg CGU 030 (0.51) Gly GGU 9(1.12) Lys AAG 1.58 (1.25) TER UGA 2 (1.16)
Arg CGC 0.25 (0.29) Gly GGC 0.70 (0.77) Met AUG 1.00 (1.00) Thr ACU 0.72 (1.03)
Arg CGA 2.83 (2.10) Gly GGA 146 (1.60) Phe uuu 0.55 (0.74) Thr ACC 2.00 (1.28)
Arg CGG 030 (0.72) Gly GGG 046 (0.50) Phe uuc 145 (1.26) Thr ACA 0.50 (0.86)
Arg AGA 1.28 (1.48) His CAU 0.79 (1.06) Pro ccu 1.34 (1.49) Thr ACG 0.78 (0.82)
Arg AGG 1.04 (0.90) His CAC 1.21 (0.94) Pro CCC 1.09 (0.77) Trp UGG 1.00 (1.00)
Asn AAU 041 (0.68) lle AUU 0.60 (0.85) Pro CCA 0.56 (0.87) Tyr UAU 041 (0.80)
Asn AAC 1.59 (1.32) lle AUC 2.16 (1.82) Pro CCG 1.01 (0.87) Tyr UAC 1.59 (1.20)
Asp GAU 0.99 (1.13) lle AUA 0.24 (0.32) Ser ucu 1.08 (1.46) Val GUU 1.04 (1.10)
Asp GAC 1.01 (0.87) Leu UUA 0.19 (042) Ser ucc 1.77 (1.18) Val GUC 1.76 (1.59)
Cys UGU 1.04 (1.03) Leu UuG 091 (1.28) Ser UCA 045 (0.92) Val GUA 0.53 (0.48)
Cys UGC 0.96 (0.97) Leu Ccuu 1.90 (1.40) Ser UcG 1.65 (1.19) Val GUG 067 (0.82)

The RSCU values, including the ribosomal ORFs and the ORFs in the >1,000 group according to the HV grouping, are shown in parenthesis.
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Figure 3 Codon usage of the X. dendrorhous totivirus genomes. L1A-CP and L1B-CP correspond to the ORFs of the capsid protein, and L1A-Pol
and L1B-Pol are the ORFs of the polymerases from XdV-L1A and XdV-L1B, respectively. A: Codon usage of the totiviral ORFs. The continuous color
scale indicates the most common, intermediate and less frequent codons in red, green and black, respectively. B: Graphical representation of the
RSCU ratios from each totiviral ORF and from each expression level group in the HV- and ribosomal- (R) groupings. Ratios between 0.9 and 1.1
are represented in blue, indicating similarity, whereas ratios outside this range are represented in black.

are indeed used in X. dendrorhous. In addition, there are
more than ten-fold differences in the RSCU values de-
termined for codons GCA (Ala), AGA (Arg), CAA
(GIn), GAA (Glu), CAU (His), AGC (Ser) and GUA
(Val) between the previous and present studies.

The results obtained from transcriptomic analyses are
consistent with the results of previous expression studies.
For example, the expression of the genes encoding astax-
anthin synthase and phytoene-beta carotene synthase was
quantified using RT-qPCR in X. dendrorhous cultured in
glucose and succinate as the sole carbon sources [46], and
similar results were observed. The direct relation between
the gene expression levels and codon usage biases ob-
served in X. dendrorhous was also consistent with that of
other organisms in which highly expressed genes generally
show a higher synonymous codon usage bias attributed to
selection for efficient translation [24,25,27,47]. Other fac-
tors, including gene length [25] and GC% [48,49], might

also influence codon bias. Therefore, we analyzed the
codon bias according to these parameters, but no relation
was observed for gene length, and although a direct rela-
tion regarding the GC% was observed, this association was
not as evident as for the gene expression level.
Information regarding the CUB is important in the field
of heterologous gene expression to achieve the efficient
production of recombinant proteins, for example, enzymes
relevant in the biotechnology industry [50]. In recent
years, it has been suggested that the codon context or
codon pairs might influence translational accuracy and
speed, as preferences for specific codon pairs are observed
in the three domains of life, referred to as codon context
bias [34,35]. Actually, the codon context bias, particularly
the 3" codon context, has been proposed to have as much
or even more influence on heterologous gene expression
than the CUB [36,51,52]. We observed variations in the 3’
codon context among the groups of genes with different
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Figure 4 3' codon context in X. dendrorhous ORFs. The ORFs were classified in six groups (1-30, 31-70, 71-100, 101-999, 21000 and R) according
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Figure 5 Differential display maps of codon context comparison among ORFs with different expression levels. Comparison of the 3" codon
context between groups of ORFs with different expression levels (RPKM: 1-30, 31-70, 71-100, 101-999 and 21,000) according to the HV
grouping and the Ribosomal (R) ORFs. The upper bar indicates the amino acid codons in the 3’ position, and the left bar indicates the reference
amino acid codons for each analysis. The color coding scale is indicated in the figure, where codons with similar residual values are indicated in
black and differences are indicated in blue.

Table 4 Codon pairs with minimum and maximum codon context bias values

Groups of ORFs with different expression level

R¥** 1-30%* 31-70%* 71-100%* 101-990** >1,000%*
Avoided codon pairs

TCG-CGA; —46 CTT-AAG; -34 CCT-AAG; -34 CCT-AAG; -35 TCT-AAG; -37 GCT-AAC; —37
GAT-AAG,; =53 GAG-TCC, —34 TCT-AAG; -33 TCT-AAG; -31 GAT-AAG; -32 GCT-AAG; -37
GAG-CGA; —44 ACT-AAG; -33 CTT-AAG; -33 CCT-GAG; -31 CTT-AAG; -32 CTT-AAG; -36
AAC-CGA; —43 GCT-AAA; -33 GCT-AAG; —31 GAG-TCC, -31 CCT-AAG; -32 GGA-CTG; -35
CCT-AAG; -45 TCT-GAG; —32 GAG-TCT; -31 CTT-AAG; -30 GGT-AAG; —31 TCG-CGA; -34
Preferred codon pairs

CCG-ATA; 211 CGT-CAA; 74 TCA-TCG; 57 AAG-AAG; 61 GAA-GAA; 59 CCG-ATA; 58
CGT-CGT; 175 GTT-CCG 59 AAG-AAG; 50 TCA-TCC; 50 AAG-AAG; 56 AGA-AGA; 57
AAT-TTA; 159 GTIG-TTG; 56 GAA-GAA; 49 GAA-GAA; 49 TCA-TCC; 45 TGT-GGA; 53
TTA-ACA; 153 AGG-AAA; 56 TCT-TCT; 45 TCG-ACG; 47 CTT-CGA; 43 CGC-TTA; 52
ATA-TCA; 145 ACT-CCT; 55 GAA-GAG; 45 GCG-CTC; 47 TCT-TCG 41 GTA-AGG; 50

Codon pairs shared by two groups are in italics, and those shared by three or more groups are in bold. The residual value is given after the semicolon; positive

values indicate good context, and negative values indicate bad context. *Ribosomal ORFs; **: RPKM value ranges according to HV grouping.



Baeza et al. BMC Genomics (2015) 16:293

expression levels, and we detected major differences
between genes with different expression levels. When
we analyzed the genes based on the GC% or sequence
length, a codon context bias was observed in which
genes with nearly 50% CG content had similar biases.
In the case of the gene length, genes of 500 or more bp
showed a similar codon context bias. In the three do-
mains of life, the codon pairs with nnUAnn, nnGGnn,
nnGnnC, nnCGCn, GUCCnn, CUCCnn, nnCnnA or
UUCGnn patterns are most frequently avoided, and
codon pairs with nnGCnn, nnCAnn or nnUnCn patterns
are most frequently preferred [35]. In the present study,
the most avoided codon pairs in X. dendrorhous were
consistent with the described patterns, i.e., CCUAAG,
GAGUCC and AACCGA, and the most preferred
codon pairs were GCGCTC, GUUCCC, ACUCCU,
UCUUCU and UCUUCC (the most conserved nucleotides
in each pattern are in italics).

In general, viruses do not encode tRNAs, and the syn-
thesis of viral proteins is dependent on the host transla-
tional machinery. Thus, several virus sequences have
adapted to the host codon usage, including viruses that
infect humans and other mammals, particularly for
highly expressed genes [19,53]. Two totivirus genomes
are present in X. dendrorhous strain UCD 67-385 [40];
thus, we analyzed the codon usage and the 3’ codon
context bias of four totiviral genes with observed varia-
tions in both types of bias in all the analyzed genes.
Compared with the cellular genes, no similarities with
any group classified according to expression level were
observed.

Conclusions

In general, the identified X. dendrorhous ORFs are highly
expressed, particularly during the stationary phase of
growth using succinate or glucose as the sole carbon
source, and the majority of the ORFs showed consider-
able variations in expression under the conditions stud-
ied. The codon usage bias and the 3’ codon context bias
showed a clear direct relation with the expression levels
and GC% of the ORFs, but not the sequence length.
However, no similarities among the totiviral and host
ORFs were observed for either codon usage or 3" codon
context biases.

Methods

X. dendrorhous cultivation conditions and nucleic acid
purification

The wild-type X. dendrorhous strain UCD 67-385 (ATCC
24230) was used for next-generation whole genome and
transcriptome sequencing and analysis. The strain was
cultured at 22°C with constant agitation in YM medium
(1% glucose, 0.3% yeast extract, 0.3% malt extract and
0.5% peptone) for DNA extraction or in Vogel minimal
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medium (MM,,) supplemented with 2% glucose or 2% suc-
cinate for RNA extraction.

The yeast RNA was purified from the early exponential
(18 h) and initial stationary (72 h) phases of growth from
cultures grown in MMv medium supplemented with 2%
glucose or 2% succinate. After 18 h of culture in MMv
medium supplemented with 2% glucose, 1% glucose
remained in the medium (confirmed using the DNS
method [54]).

Purification of genomic DNA

X. dendrorhous DNA was isolated from protoplasts as
previously described [55], resulting in a high yield of
chromosomal DNA fragments larger than 50 kb. The
DNA was purified using phenolic extraction (pH 8.0),
including three washes with saturated phenol, three
washes with phenol: chloroform: isoamyl alcohol (25: 24: 1)
and one wash with chloroform: isoamyl alcohol (24: 1).
Subsequently, the DNA was precipitated with 98% ethanol
and washed with 70% ethanol. The dried DNA was sus-
pended in Tris: EDTA (10: 1; pH 8.0) with 40 pg/ml of
RNase A and incubated for 30 min at 37°C. The DNA was
diluted five times with sterile water, and the described phe-
nol extraction protocol was repeated. DNA samples at a
260/280 ratio of 1.7 to 1.9 and a 260/230 ratio >2, mea-
sured using a V-630 UV-vis Spectrophotometer (JASCO),
were used for next-generation sequencing.

Purification of total RNA

Total RNA was extracted from the cell pellets via mechan-
ical rupture with 0.5 mm glass beads (BioSpec) by vortex-
ing for 10 min, followed by the addition of Tri-Reagent
(Ambion). The lysate was incubated for 10 min at room
temperature, and subsequently 200 pl of chloroform per
ml of Tri-Reagent was added, mixed, and centrifuged for
5 min at 4,000 x g. The aqueous phase was recovered, and
two consecutive extractions with acidic phenol: chloro-
form (1: 1) were performed. The RNA was precipitated
with two volumes of isopropanol for 10 min at room
temperature, and the RNA was washed with 75% ethanol
and suspended in RNase-free water. RNA samples at a
260/280 ratio >1.9, measured using a V-630 UV-vis Spec-
trophotometer, were used for next-generation sequencing.

Next-generation Sequencing (NGS)

The genome of X. dendrorhous strain UCD 67— 385 was
sequenced using the Illumina GAII Sequencing System at
Amplicon Express Inc. (http://ampliconexpress.com/,
Pullman, Washington, USA) and the Illumina HiSeq2000
System at Macrogen Inc. (http://dna.macrogen.com/eng/
index.jsp, Seoul, Republic of Korea). Read assembly and
genome and transcriptome analyses were performed using
the CLC Genomics Workbench 5. We estimated that the
current collection of genomic scaffolds and contigs should
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cover approximately 95% of the haploid genome of the
yeast. For Illumina GAII genome sequencing, a 250-350-bp
paired-end library and a 2,500-3,500-bp mate pair library
were constructed and sequenced. In addition, 48 primer
pairs across 48 gaps were designed for bulk gap closure by
sequencing the PCR products with 96 primers. For Illumina
HiSeq2000 genome sequencing, a 100-bp paired-end library
was constructed and sequenced. The RNA samples from
the 72-h culture were sequenced using a Illumina GAII,
including a 250-350-bp paired-end library, and the RNA
samples from the 18-h culture were sequenced using Illu-
mina HiSeq2000, including a 100-bp paired-end library.

ORFs and gene prediction, annotation and expression
level analysis

Using the transcriptome data obtained under each condi-
tion, the open reading frames (ORFs) of at least 300 bp in
length were predicted using the standard genetic code and
the software Geneious®” 8.0.2. ORFs that were present in
yeast cultured under the four conditions were selected and
mapped to five genomic scaffolds of 1,116,253; 1,334,503;
1,461,881; 1,770,274; and 2,396,803 bp. The mapped ORF
sequences showing 100% identity with genome sequences,
including a correct exon-intron structure, were selected,
compared with the database and annotated using the Blas-
t2GO [42] server: i) the sequences were compared against
the National Center for Bioinformatics (NCBI) using the
Blastx tool, with an E-value cut off of 1073 i) the blast hits
of each sequence were mapped using the Gene Ontology
Consortium (functional information of known gene prod-
ucts); iii) the GO functional annotation was completed
using a cutoff value of 107% and iv) functional annotation
was performed using InterPro annotations. The expression
level of each ORF was calculated under each condition as
reads per kilobase per million mapped reads (RPKM), as
previously described [44]. The results in which the percent-
age of coverage of each sequence was at least 90% were
used.

Availability of supporting data

The X. dendrorhous ORF names, sequences, RPKM values
and the viral ORF sequences used in this work are in-
cluded in the Additional file 1. The Genbank accession
numbers of the XdV-L1A and XdV-L1B viral genomes are
[NC_020903 and JN997473], respectively.

Additional files

Additional file 1: Sequences and RPKM values of ORFs used in this
work.

Additional file 2: Codon usage in X. dendrorhous ORFs grouped
according to their length and GC%. ORFs were grouped according to
sequence length (A and B) and GC% (C and D); parameter ranges are
indicated at the top of the figure. A and C: Codon usage for each amino
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acid in which the most common, intermediary and less preferred codons
are represented in red, green and black, respectively, in the continuous
color scale. B and D: Graphical representation of the RSCU ratios between
data from each parameter ranging from 2,000 — 9,000 bp ORFs (B) or 54%
GC (D). Ratios between 0.9 and 1.1 are represented in blue and indicate
similarity, whereas ratios out of this range are represented in black.

Additional file 3: 3' codon context in X. dendrorhous ORFs classified
according to their GC content. ORFs were classified into nine groups
(44-46, 47, 48, 49, 50, 51, 52, 53 and 54) according to their GC%. The
upper bar indicates the amino acid codons in the 3" position, and the left
bar indicates the reference amino acid codons for each analysis. A: 3"
codon context in ORFs classified according to their GC%. The color
coding scale is indicated at the bottom of the figure, where red
represents the avoided codons (negative values: bad context), and green
indicates the preferred codons (positive values: good context). B:
Relationship between the 3" codon context among X. dendrorhous ORFs
according to the GC%. The color coding scale is indicated in the figure,
where black denotes similarities, and blue indicates differences.

Additional file 4: 3' codon context in X. dendrorhous ORFs classified
according to their length. ORFs were classified into five groups (300-499,
500-999, 1,000-1,499, 1,500-1,999 and 2,000-9,000) according to their
length in bases. A: 3" codon context in ORFs classified according to
length. The upper bar indicates the amino acid codons in the 3" position,
and the left bar indicates the reference amino acid codons. The color
coding scale is indicated at the bottom of the figure, where red
represent the avoided codons (negative values: bad context), and green
indicates the preferred codons (positive values: good context). B:
Relationship between the 3" codon context among X. dendrorhous ORFs
according to length. The color coding scale is indicated in the figure,
where black denotes similarities, and blue indicates differences.

Additional file 5: Relationships of the 3' codon context of X.
dendrorhous totiviruses. The ORFs L1A-CP and L1B-CP encode the
capsid protein, and L1A-Pol and L1B-Pol encode the polymerases from
the XdV-L1A and XdV-L1B totiviruses, respectively. The upper bar indicates
the amino acid codons in the 3’ position, and the left bar indicates the
reference amino acid codons for each analysis. Upper panels: relationship
between the 3' codon context among four the totiviral ORFs. Middle and
lower panels: relationship between the 3' codon context with the totiviral
ORFs and the ORFs with the lowest (1-30) and highest (=1,000) expression
levels in X. dendrorhous. The color coding scale is indicated in the figure,
where black denotes similarity, and blue indicates differences.
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