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Abstract

Background: Noninvasive detection of early stage cancers with accurate prediction of tumor tissue-of-origin could improve patient
prognosis. Because miRNA profiles differ between organs, circulating miRNomics represent a promising method for early detection
of cancers, but this has not been shown conclusively.

Methods: A serum miRNA profile (miRNomes)–based classifier was evaluated for its ability to discriminate cancer types using
advanced machine learning. The training set comprised 7931 serum samples from patients with 13 types of solid cancers and 5013
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noncancer samples. The validation set consisted of 1990 cancer and 1256 noncancer samples. The contribution of each miRNA to the
cancer-type classification was evaluated, and those with a high contribution were identified.

Results: Cancer type was predicted with an accuracy of 0.88 (95% confidence interval [CI] ¼ 0.87 to 0.90) in all stages and an accuracy
of 0.90 (95% CI ¼ 0.88 to 0.91) in resectable stages (stages 0-II). The F1 score for the discrimination of the 13 cancer types was 0.93.
Optimal classification performance was achieved with at least 100 miRNAs that contributed the strongest to accurate prediction of
cancer type. Assessment of tissue expression patterns of these miRNAs suggested that miRNAs secreted from the tumor environ-
ment could be used to establish cancer type–specific serum miRNomes.

Conclusions: This study demonstrates that large-scale serum miRNomics in combination with machine learning could lead to the
development of a blood-based cancer classification system. Further investigations of the regulating mechanisms of the miRNAs that
contributed strongly to accurate prediction of cancer type could pave the way for the clinical use of circulating miRNA diagnostics.

Improvements in nucleic acid sequencing technologies has led to
an exponential increase in the demand for novel cancer diagnos-
tics based on body fluids (1). Cancer detection systems with high
specificity for the cancer site could help prevent unnecessary
whole-body examinations. Although circulating tumor DNA
(ctDNA) analysis has the potential to achieve this goal (2-4), the
analysis of genomic abnormalities in ctDNA has a relatively low
accuracy (0.61) for predicting cancer type (3), possibly because
regions containing driver genes are commonly mutated in differ-
ent cancer types. Analysis of ctDNA methylation status has a bet-
ter performance for predicting cancer type than genomic
abnormalities, with an accuracy of 0.93, although the sensitivity
in early stage cancers is low (sensitivities ¼ 0.17 in stage I, 0.40 in
stage II) (5-7).

Extracellular microRNAs (ex-miRNAs) have been intensively
studied worldwide as disease indicators. Ex-miRNAs are func-
tional molecules that mediate cell-to-cell communication
through packaging in extracellular vesicles (EVs); therefore, ana-
lyzing ex-miRNA profiles could provide helpful information on
health and disease (8). The ability of serum miRNA profiling to
discriminate between cancer and noncancer with high accuracy
has been demonstrated extensively (9-11). However, although tis-
sue miRNA expression profiles differ between cancer types (12-
15), the idea that circulating miRNA profiles could serve as an
accurate diagnostic tool for determining cancer type has not yet
received the attention it deserves. To test this possibility, we
launched a national project in Japan called Development and
Diagnostic Technology for Detection of miRNA in Body Fluids
(DDDmir-DB) and developed the world’s largest cancer patient
ex-miRNA database. In this study, we provide proof of concept
that automatic extraction of key features of serum miRNA pro-
files (miRNomes) can discriminate between cancer types with
high accuracy.

Methods
Development of machine learning models for
cancer type prediction
We developed an ensemble classifier, called the Hierarchical
Ensemble Algorithm with Deep learning (HEAD) model, which
combines 7 different learners. A 2-stage stacking technique was
used to build the classifiers (see Figure 1, A) (16). The first stage
consists of learners placed in parallel. A combination of the pre-
processed dataset and the output of an unsupervised feature
extractor was fed to the learners, each of which yielded predic-
tion results. Random forest, logistic regression, extra tree classi-
fier (17), support vector classifier, k-NN (nearest neighbor)
classifier, gradient boosting decision tree (GBDT) (18), and multi-
layer perceptron (MLP) (19) were used as the first stage weak

classifiers. In addition to learners, k-NN was used as an unsuper-
vised feature extractor in the first stage. The diversity of constitu-
ent models is a key element of the success of ensemble models
(20). The outputs of learners in the first stage were fed to a
learner (GBDT) in the second stage.

Ethics statements
The study was approved by the National Cancer Center (NCC)
Hospital institutional review board (2015-376, 2016-249), the
Research Ethics Committee of Medical Corporation Shintokai of
the Yokohama Minoru Clinic (6019-18-3772), and the Ethics and
Conflict of Interest Committee of the National Center for
Geriatrics and Gerontology (754). Written informed consent was
obtained from each participant.

Results
Testing the diagnostic potential
We used HEAD to analyze a publicly available serum miRNA
dataset (GSE59856) (21) consisting of 6 different digestive cancers,
nontumor (NT) control samples, and benign disease in the biliary
tract (BT) or the pancreas (Supplementary Figure 1, A, available
online). Principal component analysis showed that sample cate-
gories could not be clearly segregated, suggesting that they share
similar miRNA profiles and that it would be difficult to discrimi-
nate between them by conventional means (Figure 1, B). We ran-
domly divided the data into a training set and validation set at a
ratio of 4:1 and trained the HEAD and GBDT models using the
training set (Supplementary Table 1, available online). In the vali-
dation set, HEAD achieved sensitivities of 0.60-1.00 for cancer dis-
crimination, which was superior to that of GBDT alone (Figure 1,
C). In line with previous results (9-11), NT was almost perfectly
discriminated in cancer samples irrespective of the machine
learning model used.

Concept verification
The performance of machine learning can be improved by train-
ing on large datasets. To evaluate the value of this approach, we
analyzed the serum miRNomes of 16 190 serum samples pre-
served in the NCC Biobank using a microarray platform (3D-Gene
v21, Toray Industries, Tokyo, Japan) and standard operating pro-
cedure (Supplementary Figures 1, B, and 2, A, available online).
For data normalization, we used 3 internal control miRNAs (miR-
149-3p, miR-2861, and miR-4463), which are suitable for 3D-
Gene–derived serum miRNA datasets (10,22,23) (Supplementary
Figure 2, B, available online). The following analyses were con-
ducted after data normalization.

After feeding the whole training set (cancer, n¼ 7931; non-
cancer, n¼ 5013) into HEAD, we accurately distinguished 13 types
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of solid cancer samples in the validation set (cancer, n¼ 1990;
noncancer, n¼ 1256) (Table 1 and Figure 2, A). In the validation
set, the overall accuracy for HEAD was 0.91 (95% confidence
interval [CI] ¼ 0.91 to 0.92), which was statistically significantly
higher than that of the ensemble 4-layer MLP (accuracy ¼ 0.88,
95% CI ¼ 0.88 to 0.89) and the other models (Supplementary
Figure 3, A, Supplementary Table 2, available online). The accu-
racy of discrimination for the 13 cancer types was 0.88 (95% CI ¼
0.87 to 0.90) for HEAD, which was also the best among the eval-
uated models. The overall F1 score for HEAD was 0.89, whereas
the F1 score for the discrimination of the 13 cancer types was
0.93. The superiority of the HEAD model was confirmed by five-
fold cross-validation (Supplementary Figure 3, B, available
online).

Perfect discrimination between NT and the other samples in
DDDmir-DB was observed consistently in the GSE59856 dataset.

Considering that differences in the preservation conditions
between NCC Biobank samples and NT samples collected from
other institutes could affect this perfect discrimination
(Supplementary Figure 1, available online), we mainly focused
on discriminating between NCC Biobank samples after exclud-
ing NT samples from the following analysis. The HEAD model
can output the probability scores for each cancer type in all
samples; the cancer type with the maximum probability score
is treated as the final output. When we conducted the receiver
operating characteristic curve analysis using the probability
score after the exclusion of NT control samples, the area under
the curve value was greater than 0.95 for all cancer types
(Figure 2, B; Supplementary Figure 4, available online), and sen-
sitivities at a threshold of 0.99 specificity were greater than 0.80
for almost all cancer types except for biliary tract cancer (BT)
and hepatocellular carcinoma (HC) (Table 2). The high

Figure 1. Cancer types can be classified by serum miRNA profiles using machine learning. A) Schematic view of the HEAD machine learning system.
The system consists of multiple classifiers with the same architecture. Red narrow boxes with broken lines in the middle and right represent copies of
the classifier on the left. Each classifier consists of 3 stages: unsupervised feature extraction in the first stage, various learners in the second stage, and
a single classifier in the third stage. The output of previous stages is fed into the next stage. Learners in the figures can be of different types (eg, random
forest, logistic regression, extra tree classifier, support vector classifier, k-NN, GBDT, and MLP). The results of prediction classifiers are aggregated using
the voting method. For comparison, schematic views of a single classifier and an ensemble learning model are also shown. B) PCA plot showing that
miRNA profiles in the GSE59856 dataset do not exhibit clear separation among cancer types. C) Two machine learning–based prediction models (HEAD
and GBDT), developed using the training set, were applied to the validation set. The diagnostic sensitivities of 6 cancer types with HEAD and GBDT are
shown. BT ¼ biliary tract cancer; CR ¼ colorectal cancer; ES ¼ esophageal squamous cell carcinoma; GA ¼ gastric cancer; GBDT ¼ gradient boosting
decision tree; HC ¼ hepatocellular carcinoma; HEAD ¼ Hierarchical Ensemble Algorithm with Deep learning; k-NN ¼ k-nearest neighbors; miRNA ¼
microRNA; MLP ¼multilayer perceptron; N ¼ benign disease; NT ¼ nontumor; PA ¼ pancreatic cancer; PCA ¼ principal component analysis.
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diagnostic performance was not affected by patient age or sex
(Figure 2, C and D).

We integrated the data of serum miRNomes obtained from
patients with benign diseases (N) in 5 different organs (breast
[BR], brain [GL], ovary [OV], prostate, and bone and soft tissue).
Only a few cancer samples were misdiagnosed as noncancer.
Although we could not obtain a large enough sample size to pre-
dict BR_N, GL_N, and OV_N as noncancer samples
(Supplementary Figure 2, available online), disease location was
almost perfectly predicted (Figure 2, A). This finding suggests
that serum miRNomes are dysregulated in an organ-specific
manner. Although additional collection and training of non-
cancer samples are necessary to improve the diagnostic perform-
ance, such excellent predictive performance regarding disease
location will be helpful in various clinical settings, such as organ-
specific cancer risk stratification and the management of cancers
of unknown primary origin.

High discrimination accuracy was achieved regardless of dis-
ease stage using the HEAD model (Figure 2, E; Supplementary
Figure 3, C, available online), indicating that circulating miRNA
diagnosis could be useful even for the detection of early stage
cancers. The accuracy of discrimination for the 13 cancer types
was 0.90 (95% CI ¼ 0.88 to 0.91), even for tumors in the resectable
stages (stage 0, I, and II), whereas it was 0.86 (95% CI ¼ 0.83 to
0.89) in stage III or IV. Most of the cancer types except BT and HC
were diagnosed with a true prediction rate of more than 0.75,
even when they were in the resectable stage (Figure 2, F). In addi-
tion, we compared the probability scores among disease stages in
each cancer type (Figure 3). The probability scores were not asso-
ciated with disease stage in most cancer types. In BT and pancre-
atic cancer, the probability scores increased with disease
progression.

Transfer learning
In recent years, machine learning has been used for clinical diag-
nosis in various applications, but the integrated analysis of data
collected by different protocols remains challenging. We were
unable to adapt the HEAD model trained by the DDDmir-DB

alone for the prediction of cancer type in the GSE59856 dataset
because of differences in sample preparation methods and
microarray platforms. Thus, we used the domain adversarial
neural network (DANN), a transfer learning framework, to inte-
grate 2 datasets (24). The DANN is designed to extract the com-
mon features of each cancer type regardless of the differences in
data sources (Figure 4, A). The data for DDDmir-DB and GSE59856
were fed to the DANN algorithm, and the predictive performance
of GSE59856 was evaluated. Integrating 2 datasets statistically
significantly improved the true prediction rate of GSE59856 for
pancreatic cancer; the sensitivities for the other cancer types also
improved compared with the model trained by GSE59856 alone
(Figure 4, B). Thus, the accruement of blood miRNome data
obtained even under different conditions can improve the accu-
racy of cancer type prediction.

miRNAs that contribute strongly to cancer
classification
We sought to determine which serum miRNAs contribute to diag-
nostic performance by computing the contribution of each
miRNA based on the number of associated nodes in the decision
tree (Figure 5, A; Supplementary Table 3, available online). By cal-
culating the true prediction rate for each cancer type with the 10,
30, 50, 100, 300, and 1000 most strongly contributing miRNAs, we
found that diagnostic performance was optimal with 100
miRNAs (Figure 5, B). Next, we focused on the 179 miRNAs that
contributed the most to cancer classification in the 2 datasets
(contribution >0.01, blue and red dots in Figure 5, C). By calculat-
ing the average serum levels of the 179 miRNAs for each cancer
type, the similarity of serum miRNomes among cancer types was
investigated. Principal component analysis of the average serum
miRNomes revealed that GL was segregated from the other can-
cer types (Figure 5, D). Unsupervised clustering analysis sug-
gested that cancer types whose primary sites shared similar
developmental processes produced similar serum miRNomes
(Figure 5, E). In lung samples, pathological differences (small cell,
squamous cell, or adenocarcinoma) and differences in driver

Table 1. Age and sex distribution of the patients from whom the analyzed samples in the DDDmir-DB were obtained

Cancer type

Training set Validation set

No. Men, % Women, % Mean age (SD), y No. Men, % Women, % Mean age (SD), y

Cancer 7931 60.4 39.6 63.5 (12.0) 1990 61.2 38.8 64.3 (12.0)
Breast cancer 540 0.0 100.0 55.9 (12.2) 135 0.0 100.0 53.7 (12.3)
Bladder cancer 319 70.8 29.2 67.4 (10.7) 80 78.8 21.2 68.3 (11.5)
Biliary tract cancer 321 62.9 37.1 66.0 (9.2) 81 50.6 49.4 66.5 (9.8)
Colorectal cancer 1276 57.5 42.5 63.7 (11.2) 320 57.8 42.2 64.9 (11.6)
Esophageal squamous cell carcinoma 452 82.5 17.5 66.5 (8.6) 114 86.0 14.0 66.7 (8.1)
Gastric cancer 1134 69.8 30.2 65.0 (10.8) 284 74.3 25.7 65.9 (10.3)
Intraparenchymal brain tumora 192 56.8 43.2 55.6 (16.9) 49 57.1 42.9 55.3 (16.9)
Hepatocellular cancer 278 77.0 23.0 67.2 (9.2) 70 80.0 20.0 68.7 (9.1)
Lung cancer 1359 57.6 42.4 65.3 (10.0) 340 56.8 43.2 65.3 (10.1)
Ovarian cancer 320 0.0 100.0 55.6 (12.4) 80 0.0 100.0 59.2 (12.5)
Pancreatic cancer 680 56.5 43.5 64.1 (9.9) 171 60.2 39.8 66.5 (9.9)
Prostate cancer 821 100.0 0.0 67.4 (7.5) 206 100.0 0.0 68.1 (8.0)
Sarcoma 239 62.8 37.2 46.4 (23.6) 60 56.7 43.3 48.8 (20.4)

Noncancer 5013 45.7 54.3 66.1 (16.2) 1256 44.8 55.2 65.3 (16.0)
Nontumor 4514 43.9 56.1 67.5 (15.4) 1129 43.1 56.9 66.6 (15.4)
Benign disease in the breast 24 0.0 100.0 52.8 (12.9) 7 0.0 100.0 47.1 (13.7)
Benign disease in the brain 19 26.3 73.7 60.6 (18.4) 5 43.1 56.9 72.0 (8.6)
Benign disease in the ovary 22 0.0 100.0 56.5 (10.6) 6 0.0 100.0 58.8 (10.3)
Benign disease in the prostate 184 100.0 0.0 65.4 (7.2) 46 100.0 0.0 64.7 (6.5)
Benign disease in the bone and soft tissue 250 49.2 50.8 44.3 (18.8) 63 42.9 57.1 45.4 (17.8)

a Intraparenchymal brain tumor such as glioma. DDDmir-DB ¼ Development and Diagnostic Technology for Detection of miRNA in Body Fluids.
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gene mutations (KRAS wild type or mutant) were reflected in the
serum miRNomes (Figure 5, F).

Evaluation of the major sources of serum miRNAs
Changes in serum miRNomes in cancer patients are thought to
be derived from aberrant miRNA expression in cancer cells. First,
we checked the cancer tissue miRNAs that were reported previ-
ously to contribute strongly to cancer type discrimination (25).
However, of the 100 most prominent of these miRNAs, the major-
ity (80%) was not among the 179 miRNAs identified in this study
as strong signatures for cancer classification (Supplementary

Figure 5, available online). This suggests that different serum
miRNomes among cancer types cannot be explained by the dif-
ference of cancer tissue miRNA expressions. Therefore, we inves-
tigated the major cell type sources of the miRNAs that contribute
to the prediction of cancer tissue-of-origin by combining several
online RNA sequence databases. In the following analysis, we
focused on 18 miRNAs showing the highest contribution to can-
cer type discrimination (contribution >0.05, red dots in Figure 5,
C). Unsupervised clustering analysis of the contributions of the
18 miRNAs showed that 7 miRNAs (miR-6717-5p, miR-3131, miR-
122-5p, miR-422a, miR-551b-5p, miR-125a-3p, and miR-1343-3p)

Figure 2. The HEAD model enables accurate discrimination of 13 cancer types in the validation set. A) The true prediction rate for each of 13 kinds of
solid cancer was greater than 0.8 except for BT, HC, and SA in HEAD. NT samples and PR_N were perfectly discriminated as nontumor. BR_N, GL_N,
and OV_N samples were mainly diagnosed as cancer samples in the corresponding organs. B) ROC curve analysis of the HEAD model for discrimination
of each cancer type. The discrimination performance for each cancer type among all cancer samples and noncancer samples is indicated after the
exclusion of NT control samples. The AUC for detecting each cancer type was greater than 0.95. Numbers inside parentheses indicate 95% confidence
interval of AUC. C) The proportion of each sex did not differ between patients diagnosed correctly and incorrectly by HEAD. P, Fisher exact test. D) Age
distribution did not differ between correctly and incorrectly diagnosed patients in HEAD. P, student t test. E) The diagnostic sensitivities calculated by
HEAD were not associated with the disease stage of cancer samples, indicating that serum miRNA-based tests are feasible for early detection of cancer.
P, one-way analysis of variance. F) The diagnostic performance for earlier stage cancers (stages 0, I, and II) and later stage cancers (stages III and IV).
The true prediction rate was greater than 0.75 except for BT and HC even in the earlier stage. AUC ¼ area under the ROC curve; BL ¼ bladder cancer; BR
¼ breast cancer; BT ¼ biliary tract cancer; CR ¼ colorectal cancer; ES ¼ esophageal squamous cell carcinoma; GA ¼ gastric cancer; GL ¼
intraparenchymal brain tumor such as glioma; HC ¼ hepatocellular carcinoma; HEAD ¼ Hierarchical Ensemble Algorithm with Deep learning; LU ¼
lung cancer; miRNA ¼microRNA; N ¼ benign disease; NT ¼ nontumor; OV ¼ ovarian cancer; PA ¼ pancreatic cancer; PR ¼ prostate cancer; ROC ¼
receiver operating characteristic; SA ¼ sarcoma.
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Table 2. Sensitivity of each cancer type at a specificity threshold of 0.95 or 0.99 in DDDmir-DB

Cancer type

With nontumor samples Without nontumor samples

0.95 specificity 0.99 specificity 0.95 specificity 0.99 specificity
Sensitivity (95% CI) Sensitivity (95% CI) Sensitivity (95% CI) Sensitivity (95% CI)

Breast cancer 1.00 (1.00 to 1.00) 0.98 (0.94 to 1.00) 1.00 (1.00 to 1.00) 0.98 (0.94 to 1.00)
Bladder cancer 0.99 (0.96 to 1.00) 0.94 (0.85 to 0.99) 0.99 (0.95 to 1.00) 0.88 (0.70 to 0.96)
Biliary tract cancer 0.84 (0.74 to 0.91) 0.64 (0.52 to 0.77) 0.79 (0.70 to 0.89) 0.60 (0.49 to 0.72)
Colorectal cancer 0.96 (0.94 to 0.98) 0.84 (0.78 to 0.88) 0.94 (0.91 to 0.97) 0.81 (0.71 to 0.87)
Esophageal squamous cell carcinoma 0.97 (0.93 to 1.00) 0.92 (0.86 to 0.96) 0.96 (0.90 to 0.99) 0.89 (0.81 to 0.95)
Gastric cancer 1.00 (1.00 to 1.00) 0.87 (0.82 to 0.97) 1.00 (0.99 to 1.00) 0.82 (0.68 to 0.88)
Intraparenchymal brain tumora 1.00 (1.00 to 1.00) 1.00 (1.00 to 1.00) 1.00 (1.00 to 1.00) 1.00 (1.00 to 1.00)
Hepatocellular carcinoma 0.94 (0.89 to 0.99) 0.81 (0.71 to 0.90) 0.93 (0.86 to 0.99) 0.77 (0.67 to 0.87)
Lung cancer 0.99 (0.98 to 1.00) 0.94 (0.91 to 0.97) 0.99 (0.97 to 1.00) 0.91 (0.87 to 0.95)
Ovarian cancer 0.96 (0.91 to 1.00) 0.90 (0.81 to 0.96) 0.96 (0.93 to 1.00) 0.88 (0.78 to 0.95)
Pancreatic cancer 0.99 (0.97 to 1.00) 0.92 (0.87 to 0.97) 0.98 (0.95 to 1.00) 0.88 (0.80 to 0.94)
Prostate cancer 1.00 (1.00 to 1.00) 0.96 (0.92 to 0.98) 1.00 (0.99 to 1.00) 0.93 (0.88 to 0.97)
Sarcoma 0.97 (0.92 to 1.00) 0.88 (0.78 to 0.97) 0.95 (0.88 to 1.00) 0.90 (0.80 to 0.97)

a Intraparenchymal brain tumor such as glioma. CI ¼ confidence interval; DDDmir-DB ¼ Development and Diagnostic Technology for Detection of miRNA in
Body Fluids.

Figure 3. Correlations between the probability scores and disease stages. Violin plots indicating the distribution of the probability scores in each disease
stage in each cancer type. For GL, a violin plot indicating the distribution of the probability scores in each histological subgroup. In BT and PA, the
scores were lower in the early stage than in the late stage. Correlation coefficient (R) and P values were calculated by Pearson correlation analysis.
Statistically significant R and P values are shown in red. P, one-way analysis of variance. BL ¼ bladder cancer; BR ¼ breast cancer; BT ¼ biliary tract
cancer; CR ¼ colorectal cancer; ES ¼ esophageal squamous cell carcinoma; GA ¼ gastric cancer; GL ¼ intraparenchymal brain tumor such as glioma;
HC ¼ hepatocellular carcinoma; LU ¼ lung cancer; Meta ¼metastatic brain tumor; OV ¼ ovarian cancer; PA ¼ pancreatic cancer; PCNSL ¼ primary
central nervous system lymphoma; PR ¼ prostate cancer; SA ¼ sarcoma; WHO ¼World Health Organization.
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commonly contributed to discrimination of cancer type in
GSE59856 and DDDmir-DB (ie, their serum levels varied the most
among cancer types) (Figure 6, A). To estimate the cell sources of
these miRNAs, tissue miRNA expression profiles of 6141 cancer
tissue samples and 399 surrounding noncancer tissue samples
from The Cancer Genome Atlas (TCGA) were used. We analyzed
the correlation of the average levels of 18 miRNAs for each cancer
type between sera (DDDmir-DB) and tissue (TCGA) (Figure 6, B).
The analysis included 10 cancer types with available TCGA data
for cancer and noncancer tissues. A positive correlation between
serum and tissue, especially in cancer tissues, would suggest that
cancer-specific aberrant miRNA expression influences serum
miRNomes. However, the correlation coefficients for serum and
tissue were higher in noncancer than in cancer tissues (HC, lung,
GL, and BT) or similar between the two (esophageal squamous
cell and bladder). For BR and pancreatic cancers, serum and tis-
sue miRNA levels were negatively correlated in cancer and non-
cancer tissues. Colorectal and gastric cancers were the only
samples in which cancer tissue–specific miRNA expression may
affect the serum miRNomes. These results suggest that cancer
cells are not the major source of serum miRNAs involved in the
discrimination between cancer types.

To further estimate the sources of highly contributing serum
miRNAs, the tissue levels of the 18 miRNAs were assessed in each
organ using TCGA data (Figure 6, C). Notably, most of the 18
miRNAs were dominantly expressed in the brain (GL_N) or the
liver (HC_N, BT_N). Among the 7 commonly contributing miRNAs,
miR-1343 and miR-125A were brain-dominant miRNAs, whereas
miR-122 was among liver-dominant miRNAs, consistent with the
fact that the miR-125 family and miR-122-5p are expressed abun-
dantly in the brain and in hepatocytes, respectively (26, 27). This
result led us to speculate that extracellular miRNAs released from
the brain (and/or the neuronal systems) and the liver, the largest
organs derived from the ectoderm and the endoderm, respec-
tively, may be more important than miRNAs derived from other
organs to estimate the tissue-of-origin using serum miRNAs.

Nonparenchymal cell types, such as blood cells, should be
considered as a potential source of serum miRNAs (28). We used
the Database of Small Human Noncoding RNAs (v2.0) to obtain

miRNA expression data in various nonparenchymal cells as well
as in liver and brain tissues (Figure 6, D). This analysis showed
that some miRNAs highly contributing to the prediction of cancer
tissue-of-origin were abundantly expressed in CD4þ T cells.

Finally, we focused on the well-known liver-dominant
miRNA—miR-122-5p. Serum levels of miR-122-5p were highest in
patients with BT or HC (Figure 6, E). Serum miR-122-5p levels did
not differ between early and progressive stages in BT and HC
(Figure 6, F). Considering that miR-122-5p acts as a tumor-
suppressor miRNA and is downregulated in HC and cholangiocar-
cinoma cells (29, 30), the increase in serum miR-122-5p in
patients with BT or HC is likely due to the release of this miRNA
from hepatocytes damaged by the presence of a tumor.

Discussion
The present large-scale serum miRNome analysis demonstrated
that the serum miRNA profile retains data on cancer tissue-of-
origin, a concept that was confirmed using 2 independent data-
sets. High prediction performance was achieved for most cancer
types, even in early stage cancers, showing a superior perform-
ance to that of ctDNA and conventional tumor markers such as
cancer antigens 19-9 and 125 (5-7, 31). The circulating miRNome
may be altered by changes in the secretion of miRNAs from
tumor environmental cells and blood cells that sense the emer-
gence of cancer, which would enable highly sensitive cancer diag-
noses irrespective of disease stage. Despite the unsuccessful
diagnosis of benign or cancer disease for BR, GL, and OV, serum
miRNomes accurately predicted the disease location. This sug-
gests that serum miRNomes are a useful tool for the determina-
tion of cancer tissue-of-origin.

Several key serum miRNAs for discriminating among cancer
types that were identified in the present study could provide use-
ful information regarding the major origins of ex-miRNAs.
Among the identified key miRNAs, brain- or liver-predominant
miRNAs, such as miR-125a-3p and miR-122-5p, were consoli-
dated, suggesting that the brain (or neuronal system) and the
liver could act as control towers for circulating miRNomes.
Because recent studies pointed out that a liver–brain–gut neural
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Figure 4. Schematic view of the domain adversarial neural network (DANN). A) The DANN consists of a common feature extraction network (stage 1)
and a combination of a classifier for cancer diagnosis prediction and a domain classifier for predicting the source of the dataset (stage 2). A gradient
reversal layer reverses the sign of the error back to propagation from the domain prediction bifurcation thus reducing the accuracy of the domain
prediction as much as possible. This enables extracting the characteristics of the cancer regardless of the influence of the domain. B) Differences in the
true prediction rate for each cancer type between before and after DANN analysis in the GSE59856 dataset. Transfer learning of the DDDmir-DB
improved the diagnostic performance in the GSE59856 dataset. Statistically significant P values are shown in red. P, student t test. BT ¼ biliary tract
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Figure 5. Extraction of highly contributing serum miRNAs for cancer classification. A) The contribution of each miRNA to multiclass discrimination
was calculated based on the information obtained by splits in nodes in decision trees. The mean contributions in fivefold cross-validation were plotted.
B) Diagnostic sensitivities computed by the HEAD model using the indicated number of strongly contributing miRNAs in DDDmir-DB. Sensitivities
reached the optimal levels when 100 miRNAs were used. Statistically significant P values are shown in red. P, paired t test with Bonferroni correction. C)
The correlation of the contribution to multiclass discrimination between 2 datasets. miRNAs with a contribution greater than 0.05 or 0.01 for both
datasets were plotted as red dots or blue dots, respectively. D) PCA plot of the average serum miRNA levels in 13 cancer types. E) Heatmap with
unsupervised clustering of the average serum miRNA levels in 12 cancer types after excluding GL. F) PCA plot of the average serum miRNA levels in
histological subtypes of LU (with KRAS- and EGFR-mutation status). BL ¼ bladder cancer; BR ¼ breast cancer; BT ¼ biliary tract cancer; CR ¼ colorectal
cancer; DDDmir-B ¼ Development and Diagnostic Technology for Detection of miRNA in Body Fluids; KRAS ¼ V-Ki-Ras2 Kirsten Rat Sarcoma Viral
Oncogene Homolog; EGFR ¼ Epidermal Growth Factor Receptor; ES ¼ esophageal squamous cell carcinoma; GA ¼ gastric cancer; HC ¼ hepatocellular
carcinoma; HEAD ¼ Hierarchical Ensemble Algorithm with Deep learning; LU ¼ lung cancer; LUad ¼ lung adenocarcinoma; LUsc ¼ lung small cell
carcinoma; LUsq ¼ lung squamous cell carcinoma; miRNA ¼microRNA; mut ¼mutation; N ¼ benign disease; OV ¼ ovarian cancer; PA ¼ pancreatic
cancer; PCA ¼ principal component analysis; PR ¼ prostate cancer; SA ¼ sarcoma; WT ¼ wild type.
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arc plays an important role in cancer progression and inflamma-
tion (32, 33), the liver and brain might supervise the malignant
status of all organs in the body. Although brain-derived miRNAs
have been studied as biomarkers for neurological disorders, alter-
ations in the circulating levels of these miRNAs in cancer patients
have not been investigated in detail. Neuron-derived EVs are
thought to regulate neurogenesis and angiogenesis (34, 35), sug-
gesting that cancer could hijack these systems by ectopically

expressing miRNAs or somehow interacting with distant organs
to release EVs (36, 37). T cell–derived EVs and miRNAs have also
been studied as biomarkers for inflammatory disorders, such as
hepatitis and myocarditis (38, 39). Further examination of miRNA
networks between cancer cells and T cells is warranted consider-
ing the companion diagnostics tests for immune checkpoint
inhibitors and the optimized EV therapy using genetically engi-
neered T cells expressing a chimeric antigen receptor (40, 41).
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Figure 6. Comparison of miRNomes between serum and tissue. A) Unsupervised hierarchical clustering analysis of the contributions of the highly
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(among cancer samples) in DDDmir-DB. B) Clustering analysis of the correlation coefficient between tissue and serum miRNA levels for each cancer
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Clustering analysis of TCGA miRNA data. Red-letter miRNAs are the serum miRNAs that contributed the most to cancer discrimination. D) Clustering
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intraparenchymal brain tumor such as glioma; HC ¼ hepatocellular carcinoma; HEAD ¼ Hierarchical Ensemble Algorithm with Deep learning; LU ¼
lung cancer; LUad ¼ lung adenocarcinoma; LUsq ¼ lung squamous cell carcinoma; miR ¼mature miRNA; miRNA ¼microRNA; N ¼ benign disease; NT
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The present study has the following limitations. First, this
study is a case-control study using preserved samples, thus, we
cannot exclude the possibility that differences in sample storage
durations affected the analysis. Second, we were only able to col-
lect 5 benign disease control samples, which are not enough to
evaluate the cancer detection accuracy of serum miRNomes.
Therefore, we focused on the prediction accuracy of cancer
tissue-of-origin in this study. Third, the comprehensive miRNA
analytical method used in our study is not the latest method,
such as small RNA sequencing. Thus, further validations using
optimal samples and methods are warranted. We have already
begun prospective validation studies in Japan (2017-044,
approved by the NCC Hospital institutional review board) and in
the United States (NCT04671498).

In conclusion, this study demonstrates that serum miRNA
analysis is a feasible strategy for predicting cancer tissue-of-
origin even for early stage cancers. This concept should pave the
way for further clinical and biological validation. Improving our
understanding of the molecular mechanisms underlying the reg-
ulation of circulating miRNA profiles in the body could help pro-
pel the use of ex-miRNA diagnostics into clinical practice.
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