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Fleeing lockdown and its impact 
on the size of epidemic outbreaks 
in the source and target regions 
– a COVID‑19 lesson
Maria Vittoria Barbarossa  1,3*, Norbert Bogya2, Attila Dénes  2, Gergely Röst  2, 
Hridya Vinod Varma3 & Zsolt Vizi2

The COVID-19 pandemic forced authorities worldwide to implement moderate to severe restrictions 
in order to slow down or suppress the spread of the disease. It has been observed in several countries 
that a significant number of people fled a city or a region just before strict lockdown measures were 
implemented. This behavior carries the risk of seeding a large number of infections all at once in 
regions with otherwise small number of cases. In this work, we investigate the effect of fleeing on the 
size of an epidemic outbreak in the region under lockdown, and also in the region of destination. We 
propose a mathematical model that is suitable to describe the spread of an infectious disease over 
multiple geographic regions. Our approach is flexible to characterize the transmission of different 
viruses. As an example, we consider the COVID-19 outbreak in Italy. Projection of different scenarios 
shows that (i) timely and stricter intervention could have significantly lowered the number of 
cumulative cases in Italy, and (ii) fleeing at the time of lockdown possibly played a minor role in the 
spread of the disease in the country.

A novel coronavirus (SARS-CoV-2) causing the severe acute respiratory illness COVID-19 appeared in China 
at the end of 2019. The first cases were identified in Wuhan, a city with over 11 million inhabitants, capital and 
largest city of Hubei Province. Wuhan being the political, economic, financial, commercial, cultural and educa-
tional centre of Central China and a major domestic and international transportation hub, it was expected that 
the disease could easily spread to other parts of China and to other countries. On January 23, 2020, in an attempt 
to control the spread of the disease, the Chinese government introduced a lockdown in Wuhan and other cities 
in Hubei. The residents of Wuhan were informed at 2 am that from 10 am of the same day, all public transport 
would be suspended. Wuhan residents would thereafter not be allowed to leave the city without permission. This 
notice was followed by an exodus from Wuhan. It was reported that around 300,000 people left Wuhan by train 
alone before the start of the lockdown1. It is important to note that prior to the lockdown of Hubei on January 
23, almost all detected cases in other major cities were exported from Wuhan2.

Similar events happened in Italy, where the first lockdown measures were introduced on February 21, with ten 
municipalities of the province of Lodi (Lombardy) and one in the province of Padua (Veneto) being quarantined3. 
This measure affected around 50,000 people. Extension of the quarantine zone to a large area of Northern Italy, 
including the whole region of Lombardy and 14 major provinces in Emilia-Romagna, Veneto, Piedmont and 
Marche, was announced on March 8. Travel from and to the affected areas was restricted, though not completely 
banned. A leakage of a draft of the decree on the night of March 7, published by Corriere della Sera, resulted in 
a panic in the affected areas. Major newspapers reported of hundreds of people crowding onto trains and buses 
to leave the extended quarantine area in Milan4. Overall, thousands of people reportedly left the north for the 
southern regions, including Sicily5 and Sardinia6.

A few mathematical studies on the Chinese data have investigated the effects of mobility from quarantined 
regions from different points of view. Chen et al.7 analysed the correlation of case numbers and population 
migration data of Wuhan and Hubei to find that the number of infected cases was highly correlated with the 
emigrated populations from Wuhan. Li et al.8 applied a nonautonomous mechanistic model to study the effects 
of the lockdown and predict the virus transmission in Wuhan and Beijing. Most studies (see, e.g. Zhao et al.2, 
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Lau et al.9, Lai et al.10, Boldog et al.11) investigate the association between the domestic/international travel load 
and the number of cases exported from Wuhan to other regions in China. These studies, however, do not seem 
to consider the large exodus induced by the lockdown measures.

We present here a mathematical framework for studying the effects of a potential lockdown-induced exo-
dus, together with the time and strength of intervention measures, on the outbreak size in different geographic 
regions. We assume that the outbreak starts in one specific area, simply denoted as region A, where lockdown is 
implemented at time T. This induces people from region A to flee the lockdown and move to another geographic 
region B. If region B was disease-free up to time T, the lockdown-induced migration from region A can lead to 
importation of the infection in a previously uninfected area. We formulate and study a compartmental epidemic 
model for the spread of an infectious disease in the two different geographic regions, establishing a new type of 
intervention-dependent final size relation. The latter can be used to estimate the final epidemic size even in the 
case of a change in the population size due to the migration just before the lockdown. This model is calibrated 
on the example of the Italian outbreak. By means of numerical simulations we project different scenarios show-
ing that (i) timely and stricter intervention could have significantly lowered the number of cumulative cases in 
Italy, and (ii) migration of at the time of lockdown possibly played a minor role in the spread of the disease in 
the country. The approach presented in this study can be adapted to describe the spread of an infectious disease 
over multiple geographic regions or to describe the transmission of viruses others than SARS-CoV-2.

Methods
Modeling transmission dynamics.  The mathematical model proposed in this study is based on a system 
of ordinary differential equations (ODEs) that describes interactions between different groups of individuals in 
the population. The proposed approach extends the known S-E-I-R (susceptibles–exposed–infected–recovered) 
model for disease dynamics12, and is suitable to describe the spread of several infectious diseases, though we 
shall specifically talk about COVID-19 later. Before describing the lockdown scenario and other intervention 
measures aimed at mitigating the outbreak, we introduce the core model for the (uncontrolled) spread of the 
virus in a population. The ODE approach that we use assumes that the population is homogeneous and well-
mixed within a region. Individuals are classified according to their status with respect to the virus spread in the 
community.

At the beginning of the epidemic, that is, when first cases are reported, the majority of the population is 
assumed to be susceptible (S), and hence can be infected. The time between exposure to the virus (becoming 
infected) and symptom onset, on average 1/α days, is known as “exposed” or “presymptomatic” period. To better 
understand the role of transmission from infected people with mild or no symptoms, we distinguish between 
transmission from people who are infected, might have very mild symptoms, but remain undetected (U) and 
transmission from people who are infected but still in the presymptomatic period (E). Detected infectives might 
require hospitalization (H) or not (I). Detection of cases is assumed to occur either after the latent phase (with 
probability ρ ) or post mortem (with probability σ ). Duration of infection can be different for the three different 
groups. Undetected infections lead to undetected recoveries, which cannot be reported unless testing for ongo-
ing (virus detection) or previous (antibody detection) infections is performed. Individuals who recovered from 
a detected (R) or an undetected ( RU ) infection, as well as patients who died from the infection (D), are removed 
from the chain of transmission. Separation of the compartments R and RU allows to keep track of how many 
people have recovered from infection without having been detected. At the same time, it is possible to use R(t) 
for model calibration, when time series for recovered infectives are sufficiently reliable. Susceptible individuals 
can be infected via contacts with presymptomatic (transmission rate βE ), undetected cases (transmission rate 
βU ), detected but not hospitalized ( βI ) and hospitalized cases ( βH ). We assume that undetected infectives, due 
to possibly absent or unspecific symptoms, do not restrict their contacts to others, and therefore have higher 
transmission rates than detected infected individuals. Hospitalized cases are properly isolated, and hence their 
transmission rate is assumed to be the lowest. The interpretation of model parameters, all assumed to be non-
negative, is summarized in Table 1. The dynamics of the core model described above and shown in Fig. 1 is given 
by the following system of differential equations:

where

(1)

Ṡ(t) = −�(t)S(t) susceptibles,

Ė(t) = �(t)S(t)− αE(t) exposed/presymptomatic,

U̇(t) = (1− ρ)αE(t)− γUU(t) undetected infectives,

İ(t) = ραE(t)− (γI + δI + η)I(t) detected, non-hospitalized infectives,

Ḣ(t) = ηI(t)− (γH + δH )H(t) hospitalized infectives,

Ṙ(t) = γI I(t)+ γHH(t) recovered from detected infection,

ṘU (t) = (1− σ)γUU(t) recovered from undetected infection,

Ḋ(t) = δI I(t)+ δHH(t)+ σγUU(t) deceased,

�(t) =
βEE(t)+βI I(t)+ βUU(t)+ βHH(t)

N(t)
,
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and N(t) = N0 − D(t) , N0 being the total initial population at the beginning of the outbreak. That is, 
N(t) = S(t)+ E(t)+ U(t)+ I(t)+H(t)+ R(t)+ RU (t) is the current “effective” population at time t. Demo-
graphic variations other than disease-induced deaths are not considered in this work.

Numerical integration, model calibration and sensitivity analysis.  The functionalities for solv-
ing the epidemic model (1) and fitting the parameters to the data were implemented in Python language: we 
use odeint function from the scipy.integrate package13 for integrating the model equations and the 
non-linear least-squares minimization from the lmfit module14 for estimating the parameters. We selected the 
L-BFGS-B method15 for the optimization procedure, which is a very efficient algorithm for solving large scale 
problems. In case the time series were incomplete, the days corresponding to the missing values were omitted 
in the minimization. For all methods, we used the default values for options such as tolerances and step sizes. 
The confidence intervals of the estimated model parameters were computed based on the standard error of the 
estimated covariance matrix. For the plots in Figs. 2, 3, 4, and 5, integration in MATLAB ® by means of available 
ODE routines (ode45, ode23s) was used. Numerical approximation of the final size formula was verified 
by comparing the numerical solution of the implicit equation (4) (computed using fsolve from the scipy.
optimize package) with the numerical integration of the ODE model (1) over a sufficiently long time interval 
(cf. Supplementary Material). Parameter sensitivity analysis of model quantities of interest, such as the basic 
reproduction number, the number of hospitalized cases at the outbreak peak and the final size, were investigated 
by means of Partial Rank Correlation Coefficients (PRCC) analysis 16. Latin Hypercube Sampling 17 was used 

Figure 1.   Model structure for the transmission dynamics of an infectious disease, on the example of 
COVID-19. Solid arrows indicate transition from one compartment to another, dashed arrows indicate 
virus transmission due to contact with infectives. Upon infection, susceptible (S) individuals enter a latent/
presymptomatic phase (E). After symptoms onset, infections may be detected (I) or remain undetected (U). 
Detected cases might become severe and require hospitalization (H). Infected individuals who recovered from 
a detected (R) or an undetected ( RU ) infection, as well as patients who died (D) upon infections, are removed 
from the chain of transmission.

Table 1.   Interpretation of model parameters.

Parameters Description (unit)

βE Transmission rate from presymptomatics to susceptibles (1/(days × contact))

βU Transmission rate from undetected infectives to susceptibles (1/(days × contact))

βI Transmission rate from non-hospitalized cases to susceptibles (1/(days × contact))

βH Transmission rate from hospitalized cases to susceptibles (1/(days × contact))

1/α Duration of latency period (days)

γU Recovery rate for undetected infectives (1/days)

γI Recovery rate for non-hospitalized cases (1/days)

γH Recovery rate for hospitalized cases (1/days)

ρ Probability of detection on symptoms onset

σ Probability of detection post mortem

η Hospitalization rate (1/days)

δI Disease-induced death rate for non-hospitalized cases (1/days)

δH Disease-induced death rate for hospitalized cases (1/days)

φ Fraction of unconstrained population migrating from region A to region B

T Time of lockdown of region A
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to generate a representative sample set of tuples of parameters from the parameter ranges indicated in the Sup-
plementary Material. Using PRCC, we can rank the effect that each parameter has on the outcome, when other 
parameters are simultaneously varying in the given ranges. Calculation of PRCC allows us to determine the 
strength of statistical relationships that exist between each input parameter and the output variable. Parameters 
with PRCC larger (respectively, smaller) than zero are positively (respectively, negatively) correlated with the 
quantity of interest.

Figure 2.   Detected infected cases and deaths depending on (a) the lockdown time T and (b) the fleeing fraction 
of exposed/undetected individuals at the time of the lockdown. An initial outbreak starts off with 20 cases and 
two deaths in region A (population 25 million), where lockdown is established at time T, immediately followed 
by lockdown-induced migration of a fraction of the unconstrained population from region A to the disease-
free region B (population 50 million). (a) The lockdown time T varies from one to twelve weeks after the initial 
reporting, while the fleeing fraction is fixed to 1% of the unconstrained population in region A; (b) 0.01% to 
50% of the unconstrained population moves from region A to region B at the fixed time T = 21 days after the 
initial reporting. At the time of lockdown, control measures are applied in both regions in order to restrict 
contacts by 60% and reduce transmission.

Figure 3.   Sensitivity of cases in region B depending on the lockdown time T , the fraction φ of population 
leaving region A, the strength of intervention measures in reducing contacts, and the population size of region 
B. An initial outbreak starts off with 20 detected cases and two deaths in region A (population 25 million) which 
is locked at time T (horizontal axes indicate days after the initial reporting) and lockdown-induced migration 
(vertical axes) occurs. At the time of lockdown, control measures are applied to restrict contacts by 5% (first 
row), 30% (second row) or 80% (third row), and maintained for two months. Color codes represent cases/deaths 
projected at the end of the two months following model (1): (a) the number of detected cases (left column) 
and deaths (right column) in region A, (b) detected case numbers in region B depending on the size of the 
population in region B with respect to that of region A (columns).
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Results
Reproduction number.  Possibly among the most interesting quantities to identify in the early phase of an 
outbreak, the basic reproduction number (denoted by R0 ) is used in mathematical epidemiology as an indicator 
for the transmissibility of the disease. This R0 is a metric which indicates the average number of secondary infec-
tions generated in a fully susceptible population by one infected host over the course of the infection. In most 
epidemiological models, R0 > 1 leads to a disease outbreak, whereas for R0 < 1 the disease will not spread in 
the population.

The basic reproduction number of system (1) can be calculated analytically (cf. Supplementary Material), 
e.g., by means of the next-generation matrix approach18, and is given by

The summands of R0 account for contacts with presymptomatic cases ( RE
0  ), undetected infectives ( RU

0  ), 
detected non-hospitalized ( RI

0 ) and hospitalized ( RH
0  ) cases. The reproduction number evolves in time with 

time-dependent parameters, which might vary e.g. because of intervention measures, and with variations in 
the susceptible portion of the population. As the outbreak evolves, people who go through infection are either 
immunized or die, and the susceptible population decreases (vaccination-induced immunity is not considered 
here but would also contribute to lowering the susceptible population). The effective reproduction number Rt 
at time t can be obtained by the same formula, substituting the values of time-dependent parameters in (2) and 
multiplying this value by the susceptible fraction of the population, S(t)/N(t). The reproduction number can be 
controlled via intervention measures aiming not only at reducing transmission, but also at improving detection, 
or at enhancing isolation and treatment of infectives. Figure S1 in the Supplementary Material shows that the 
reproduction number can be most effectively controlled via regulation of transmission rates.

Modeling the lockdown at time T  and migration from region A.  Inspired by the history of the 
COVID-19 outbreak in China and Italy, we use the previously presented transmission network (1) to describe 
an outbreak spreading from one geographic region A, to the rest of the country (here considered as one single 
region, B). The country itself is assumed to be isolated, that is, migration inward/outward is not considered here. 
The outbreak is assumed to have started in region A, that is, numerous cases were detected in a short time during 
the early phase of the epidemic. The prevalence (cases/population) of COVID-19 in region A being much higher 
than in the rest of the country (region B), the government decides that region A is going to be confined at some 
time T. This motivates many people to move from region A to region B, just before region A is effectively isolated 
from the rest of the country. We adapt the mathematical model (1) to reproduce this situation and understand 
how the lockdown time T, and the migration of a fraction φ ∈ (0, 1) of the unconstrained population (that is, 

(2)
R0 =

βE

α
︸︷︷︸

=:RE
0

+
ρβI

γI + δI + η
︸ ︷︷ ︸

=:RI
0

+
ρβHη

(γI + δI + η)(γH + δH )
︸ ︷︷ ︸

=:RH
0

+
βU (1− ρ)

γU
︸ ︷︷ ︸

=:RU
0

.

Figure 4.   How long should control measures be in place? An initial outbreak starts off with 20 cases and two 
deaths in region A (population 25 million) which is then locked at time T (horizontal axes indicate days after 
the initial reporting) and lockdown-induced migration (vertical axes) occurs. In both regions, at the time of 
lockdown, control measures are applied to restrict contacts by 5% (first row), 30% (second row) or 60% (third 
row), and maintained for 7 days after the peak in the daily incidence in the respective region is reached. Color 
codes represent the duration in days of the control period in region A (first column) and region B (second 
to fourth columns), also depending on the population size in region B (being half, twice or four times the 
population in region A).
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everyone except detected, hospitalized and deceased persons) from region A to region B could affect the evolu-
tion of the epidemic in the two regions. Detected cases, hospitalized cases and deceased individuals, cannot leave 
region A at any time. Transitions between region A and region B, which are assumed to be in balance before the 
lockdown, are stopped after time T. Migration is modeled as an impulse at time T, simplifying a possible contin-
uous transition from A to B in the days immediately ahead the lockdown. This means we impose the conditions

where T− denotes the time just before migration occurred and and T+ denotes the time of migration, respectively.
After the lockdown ( t ≥ T ) the outbreak evolves independently in the two regions. Further, concurrent with 

the lockdown, other non-pharmaceutical intervention measures, such as encouraged social distancing, school 
closure, shut down of many economic activities, increased testing activity, improved hospital capacity etc., might 
be introduced in both regions, possibly in a different manner or with different timing.

Final size.  The final size relation is an analytic formula to predict the total number of individuals in the pop-
ulation who are infected over the course of the epidemic12. By means of analytical methods (cf. Supplementary 
Material), we derived a final size relation taking into account the lockdown time (T) and the induced exodus at 
the time of the lockdown. This formula provides a reliable approximation of the cumulative cases, when the total 
population and the parameters do not vary too much after time T. Assume the status of the system, including 
the numbers of cases, hospitalizations, deaths, recoveries, and active population ( N  ), in one region right after 

(3)

{
ZB(T+) = φZA(T−)+ ZB(T−)

ZA(T+) = (1− φ)ZA(T−)
for Z = S,E,U ,R,RU , and

[0.1cm] Xj(T+) = Xj(T−), where X = I ,H ,D, j = A,B,

Figure 5.   Cumulative detected cases in region B three months after lockdown of region A depending on the 
fraction φ of population leaving region A, the intervention time TB in region B, the effectiveness of intervention 
measures in reducing contacts, and the population size of region B. Region A is isolated 21 days after the 
beginning of the outbreak and migration towards region B occurs. For each panel, the vertical axis denotes the 
variation in the fleeing fraction from A ( φ , between 0.1% and 0.5). On the horizontal axis, the reaction time 
TB indicates how many days passed for control measures in region B to be applied since isolation of region A. 
Control measures are applied in region B to restrict contacts by 5% (first row), 30% (second row) or 50% (third 
row), and maintained until the end of the simulations. Cumulative detected cases are projected also depending 
on the size of population in region B with respect to that in region A (columns). Note the different scaling of the 
color legend in the panels.
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the lockdown time (denoted below by the subscript T+ ) can be obtained from available data or approximated by 
means of the model (1). Then the final size formula

allows us to determine the number of cases occurring over the complete course of the outbreak, without requir-
ing model integration after time T. Observe that the fleeing ( φ ) is included in the relation  (4) into N  and 
the terms with T+−subscript, following the conditions (3). Here S∞ denotes the portion of population which 
remains susceptible at the end of the outbreak. If S0 ≈ N0 is the susceptible (total) population at the beginning 
of the outbreak, then S0 − S∞ corresponds to the cumulative number of cases at the end of the outbreak. The 
coefficients χ , �, ãj , b̃j , j = 1, . . . , 4 in equation (4) are obtained from the parameters of model (1) as detailed 
in the Supplementary Material. Formula (4) is used below to analyze the sensitivity of the total number of cases 
with respect to model parameters.

How lockdown and intervention measures affect the evolution of the outbreak.  The proposed 
model (1) with the lockdown scenario (cf. “Methods”) is used to investigate the sensitivity of case and death 
counts with respect to the intervention parameters, such as the time of lockdown of the source region A, the 
fraction of population fleeing region A due to the lockdown announcement, and the strength and timing of 
intervention measures in both regions. We consider a hypothetical scenario which is suitable to describe various 
infectious diseases and populations, though inspired by COVID-19 spreading in a fully susceptible population. 
Region A, where the outbreak starts, is assumed to have a population of 25 million. Though the population size 
in region B can vary, this region is always assumed to be disease-free until lockdown of region A occurs. Region 
B is parametrized as region A, unless explicitly mentioned. We set the parameter values such that the initial 
reproduction number in region A is R0 ≈ 3.8 , while the beginning of the outbreak is defined to occur with 20 
cumulative detected cases and two deaths. For further details on the parametrization used for this section, we 
refer to the Supplementary Material.

Figure 2a shows how the cumulative number of detected cases and deaths depend on the lockdown time T. 
At the time of lockdown, which varies here between one and twelve weeks after the beginning of the outbreak 
in region A, 1% of the unconstrained population flees from region A to region B. Lockdown is coupled with 
stronger control measures, both in region A and region B, which assume reduction in contact rates by 60% to be 
maintained until the end of the observations (here about two years after beginning of the outbreak). This reduces 
the reproduction number in both regions, but not enough to prevent an outbreak also in region B ( RB

T ≈ 1.5 ). 
The panels in Fig. 2a show that in both regions, the time of the lockdown strongly affects both the number of 
cases and the peak of the epidemic wave. Figure 2b shows the cumulative number of detected cases and deaths, 
depending on the fraction of exposed and undetected infected individuals leaving region A for region B. Here 
the lockdown time T is fixed at three weeks after the beginning of the outbreak, whereas the migrating popu-
lation φ varies (between 0.01% and 50% of the unconstrained population in region A at the lockdown time). 
Increasing the fleeing fraction φ , the peak in cases decreases in region A, whereas in region B, it increases and 
advances in time.

Figure 3a shows the variation in cumulative detected cases and deaths in region A depending on the lockdown 
time T, the fraction φ of population leaving region A and the effectiveness of intervention measures in reducing 
contacts. We project here the number of cases and deaths predicted by the model two months after lockdown, 
while control measures are maintained for the whole period. While migration does not particularly affect the 
evolution of the outbreak in region A in case of early intervention, the later the lockdown and the weaker the 
control measures, the higher will be the number of cases and deaths. In case of late lockdown time (about two 
months after the beginning of the outbreak), a significant fleeing population reduces the number of cases/deaths 
in region A, in agreement with what observed in Fig. 2. Opposite is the effect of migration from region A on 
cumulative cases (and deaths, not shown here) in region B. Fig. 3b shows the importance of applying stronger 
control measures in region B when region A is locked. When contact restrictions are more severe, the size of 
the population of region B does not importantly affect the outcome of the outbreak. If contact restriction is 
minimal in region B, a higher populated target region allows a longer and more dramatic outbreak (with more 
cases and more deaths).

One of the most difficult questions to answer during an ongoing epidemic concerns the duration of restrictive 
control measures. How long should these restrictions be in place? Several criteria could be applied to determine 
the end of the restrictive measures19. Here we assume that a region is released one week after reaching the peak 
in the daily incidence of reported cases. As in the above simulations, we assume that the outbreak spreads from 
region A to region B when the former is isolated. The result is shown in Fig. 4. In both regions, at the time of 
lockdown, control measures are applied to restrict contacts by 5% to 60%, and maintained for 7 days after the 
peak in the daily incidence in the respective region is reached. More restrictive measures postpone (and lower, 
cf. Fig. 3b) the peak of the outbreak, however this prolongs the time that the control measures should be in place. 
On the other hand, migration and late intervention accelerate the speed of the epidemic in region B, and hence 
the peak comes earlier (is much higher, brings more cases and more deaths, cf. Fig. 2) and makes the lockdown 
time shorter.

So far we have assumed that control measures in region B are applied when region A is isolated. Figure 5 
illustrates the damage that could be induced by a delayed reaction in region B combined with the application 

(4)

ln ST+
− ln S∞ = �(N − S∞)+ b̃1(χ − 1)IT+

+ (χ − 1)b̃2HT+

+

(

χ(b̃3 − ã4)+�− b̃3

)

DT+

+ (χ(b̃4 − ã2)− b̃4)RT+
− χ ã1UT+

− χ ã3R
U
T+

,
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of not sufficiently strong control measures. The panels show the number of cases in region B three months after 
lockdown of region A occurred (here T is fixed on day 21 since the beginning of the outbreak), assuming that 
the interventions in region B is delayed by TB days with respect to region A.

COVID‑19 in Italy as an example
In the previous section we used the model (1) to study the spread of a potential outbreak on two hypothetical 
geographic regions, without specific application to real data. Here we consider the recent COVID-19 outbreak in 
Italy and apply model (1) to study the lockdown and the early outbreak dynamics. The COVID-19 outbreak hit 
Italy in early 2020 as the first country in Europe. While preliminary control measures were introduced locally at 
the end of February as first cases were detected, at the beginning of March a large area including Lombardy and 
several provinces in Emilia-Romagna, Veneto, Piedmont and Marche were declared as “red zone” and isolated20. 
Shortly after, even more restrictive control measures were applied on the whole country3.

Data and setting for parametrization.  The publicly available data-set provided by the Italian Ministry 
of Health (Ministero della Salute) and the national Civil Protection Department (Dipartimento della Protezi-
one Civile)21 was used for this study. Time series for hospitalized (totale_ospedalizzati), daily case incidence 
(nuovi_positivi) and cumulative cases (totale_casi), as well as deaths (deceduti) were obtained from the dati-
regioni repository21. Data for region A was prepared accounting for the isolated provinces3,22. As hospitalization 
and death counts are available at regional level, but not at the level of provinces, we define region A as the area 
composed of the whole regions of Lombardy, Emilia-Romagna, Veneto, Piedmont and Marche (about 25 mil-
lion people). In reality, only fourteen largely-neighboring provinces in Emilia-Romagna, Veneto, Piedmont and 
Marche were isolated, together with Lombardy which is the most populous region in Italy and accounts for the 
majority of COVID-19 cases. Region B is defined as the rest of the country (about 35 million people). The model 
is calibrated on daily incidence, deaths and hospitalized time series for the two regions. Based on estimates from 
previous studies, we fix the average duration of the latent phase ( 1/α ≈ 5.5 days23,24), and the duration of the 
infectious periods in undetected (ca. 7 days24,25) and in detected cases (ca. 10 days26,27). For model parameters 
that cannot be obtained from other references nor estimated reliably with the available data, we fix values based 
on plausible assumptions. For example, we fix the ratio between βE (respectively, βI and βH ) and βU and esti-
mate the latter. It is unclear which amount of secondary cases resulted from presymptomatic transmission, with 
estimates ranging from 6.4%28 to 44%29. Here we assume that βE = 0.2βU , accounting for a two days infectious 
period in the presymptomatic phase. As undetected infectives have possibly mild or no symptoms, we assume 
that they do not restrict their contacts to others, and therefore have higher transmission rates than detected 
cases ( βI = 0.25βU ). Hospitalized patients are supposed to have very limited contacts compared to undetected 
cases ( βH = 0.1βU ). The detection ratio ρ is estimated based on Table 1 of the very recent report by the Italian 
National Institute of Statistics and the Ministry of Health on the seroprevalence in Italy30. From the data shown 
in this report, we could compute a seroprevalence 4.53% (weighted average) for region A and 0.96% for region 
B, as of July 20, 2020. As of the same date, the cumulative cases in region A and region B report about 182,000 
cases detected in region A and about 62,000 cases detected in region B21. Rounding the seroprevalence to 5% for 
region A, this leads to 1.25 million estimated COVID-19 cases for region A, out of which we know only 182,000, 
henceforth a detection ratio ρA ≈ 14.5% . Analogously, rounding to 1% seroprevalence for region B, we obtain 
ρB ≈ 17.5% . We assume that the detected cases are hospitalized with a rate η = pH/2 , where the probability 
pH ∈ (0, 1) of being hospitalized two days after symptoms onset is estimated from the data. Once the detected 
cases are hospitalized, they are assumed to either recover with a probability pHR ∈ (0, 1) after 10 days, or die 
with a probability (1− pHR) . This leads to a recovery rate of γH = pHpHR/10 in the hospitals and a death rate 
of δH = pH (1− pHR)/10 . The probability pHR is estimated from the data. Among those detected cases that do 
not get hospitalized, we assume that pIR = 99% of the cases recover after on average 10 days from symptoms 
onset, while the remaining 1% die. This means that we can interpret the recovery rate of the detected cases that 
are not hospitalized as γI = (1− pH )pIR/10 and the death rate as δI = (1− pH )(1− pIR)/10 . We assume that 
σ = 0.1% cases are detected post mortem.

The initial time point for simulations is set to February 24, 2020. Most of the initial conditions for solving the 
ODE system, such as the number of deaths or hospitalized cases could be obtained directly from the data. How-
ever, there is no data available for the exposed and undetected infections. These values are approximated making 
use of the detection ratio ρ and the average latency period 1/α , with ρE(0) roughly corresponding to the case 
incidence six days later, and U(0) corresponding to the undetected fraction (1/ρ − 1)I(0) of cases at the begin-
ning of the observations. The initial conditions used for simulations are specified in the Supplementary Material.

To parametrize model (1) taking into account the numerous intervention measures adopted in the early 
phase of the outbreak we define three time periods: before lockdown (February 24–March 8), under initial 
lockdown measures (March 9–21) and under stricter lockdown measures introduced later (March 22 – May 4). 
At the lockdown time T (March 9), we assume that 0.5% ( φ = 0.005) of the unconstrained population in region 
A (roughly 130,000 people) migrate to region B. Given the available data, the parameter φ cannot otherwise be 
reliably estimated. Nevertheless, the estimated number is plausible, given the reported large migration from the 
north of the country5,6. The model parameters for the two regions were estimated for each time period indepen-
dently. When available, the estimated parameters from the previous time period were given as initial guesses 
for the optimizer in the next time period. The estimated and fixed model parameters for the three time periods 
are summarized in the Supplementary Material. The result of the model fit is given in Figure 6. The parameter 
estimation results highlight a clear reduction in the contact rates ( βU ), lowering the basic reproduction number 
in region A from R0 = 3.7 at the beginning of the outbreak to Rt = 0.76 at the end of March, in agreement with 
estimates obtained by other groups31. The decrease in the hospitalization rate η and increase in the mortality 
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rates δI , δH can be explained with the quickly rising number of hospitalizations and deaths in the second half of 
March and beginning of April. Fitting data for both region A and region B, we clearly see that control measures 
were effectively in place also in region B, in which the reproduction number was also lowered to Rt = 0.7 at the 
end of March. Compared to the abstract scenarios considered in the previous section, we are here in a setting 
where the population in region B is about 1.5 times larger than in region A, however not fully disease-free at the 
time of the outbreak. First cases outside of region A were reported at the end of February, quickly isolated, and 
could be traced back to clusters in Lombardy or Veneto3. While control measures were introduced more severely 
in region A, awareness and other major interventions such as school closure were applied on the whole Italian 
territory even before the lockdown on March 9. After May 4, the lockdown was released and most severe control 
measures were relaxed in more steps. As the focus of this work was concerned with the isolation of a specific 
region and not with the full parametrization of the ongoing outbreak, we do not consider here the relaxations 
of the control measures, nor data after May 4. Starting from the obtained data-fit, we simulate different possible 
scenarios for a hypothetical intervention with stricter and/or earlier measures. We compare (Fig. 7a) the number 

Figure 6.   Model fit for the early dynamics of the COVID-19 outbreak in Italy. Reported data (dots) and model 
results (crosses) for daily incidence (left panel), deaths (middle panel) and hospitalized cases (right panel) in 
region A (Lombardy, Emilia-Romagna, Marche, Piedmont, Veneto; red) and region B (rest of the country; blue). 
Parameter values are estimated as indicated in three different time intervals (separated by vertical lines in the 
figure): pre-lockdown (February 24–March 8), first lockdown measures (March 9–21), and extended lockdown 
measures (March 22–May 4), cf. Supplementary Material.

Figure 7.   Scenario comparison for (a) the cumulative cases of COVID-19 in Italy as of May 4, 2020, and 
(b) evolution in time of susceptibles, detected and hospitalized cases, and deaths until the release of control 
measures on May 4, 2020. Simulations show the populations in region A and region B for different scenarios: 
(baseline, blue curves) the setting as of fit in Fig. 6; For all other scenarios severe restrictions (parameter set as 
of March 22) are in place from the lockdown time: (SC2) lockdown on March 9 (SC2a, red) with and (SC2b, 
yellow) without fleeing population at lockdown; (SC3) lockdown anticipated to March 2 (SC3a, magenta) with 
and (SC3b, green) without fleeing population at lockdown.
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of cumulative cases in region A and region B as of May 4 for different scenarios, with baseline representing the 
parameter setting as of the fit in Fig. 6. For all other scenarios we assume that most severe restrictions (param-
eter set as of March 22, cf. Supplementary Material) are in place from the lockdown time. In scenario 2 (SC2) 
we keep the lockdown time as for the data fit and assume that strict intervention measures are in place from 
March 9, whereas in scenario 3 (SC3) we advance the lockdown by one week to March 2. In both scenarios we 
consider a fraction (0.5%) of unconstrained individuals (a) to not flee (b) to flee region A immediately before 
the lockdown. Figure 7b reports the evolution in time of different compartments in region A and B. As the flee-
ing rate is assumed homogeneous among compartments (cf.  condition (3)), the migration from region A to 
region B is most evident in the susceptible population, which at the time of the lockdown is yet very large. The 
projected scenarios show that stricter interventions from the beginning of the lockdown could have reduced the 
number of cumulative cases as of May 4 by at least one third, and that importation of cases has far less impact 
than timely intervention. 

Sensitivity analysis.  To quantify the effect that model parameters, in particular those which might be 
affected by control measures, have on critical quantities of the epidemic, we performed a global sensitivity analy-
sis using PRCC on seven model parameters (cf. “Methods” and Supplementary Material). Figure 8 shows the 
result of the sensitivity analysis of the reproduction number R0 , the final size ( S∞ ) as of formula (4), and the 
number of hospitalized cases at the outbreak peak in the target region A (analogous results for region B, not 
shown here). Panels in Fig. 8 show that βU and ρ have the strongest correlation with all the three model outputs. 
Therefore, a small increase in the transmission rate of undetected cases or a small decrease in the detection ratio 
can significantly increase the spread of the disease ( R0 ) and the number of hospitalized cases at the outbreak 
peak eventually leaving much fewer susceptibles in the population at the end of the epidemic ( S∞ ). Recovery, 
hospitalization and death rates are negatively correlated with the reproduction number (positively with S∞ ). 
The number of hospitalized cases at the outbreak peak is also strongly affected by the recovery rate for the H 
compartment ( γH).

Discussion
A major epidemic outbreak might require authorities to introduce various control measures, from encouraging 
social distancing to closing educational and economical activities. The goal is to limit the number of victims 
and to prevent the health care system from collapsing. In the present study, we have established a model for the 
spread of an epidemic outbreak considering the effects of an exodus of large masses of people from infected 
areas before restrictive control measures are introduced. Such a phenomenon was reported in the occasion of the 
COVID-19 outbreak, first in Wuhan, China and then in Northern Italy. The compartmental model introduced 
in our work differentiates infected people based on the severity of their infection, accounting also for presymp-
tomatic transmission, undetected infections and hospitalized cases. We consider two geographic regions, with 
the disease being initially confined in region A, where also strict control measures are applied and from where 
people flee to a previously (ideally) uninfected region B. In contrast to previous studies for the spread of COVID-
19, we consider here the geographic distribution of cases, but relax the classification of the individuals into age 
groups24,32,33. Calculating the basic reproduction number (2), we identified its four components that account 
for transmissions from presymptomatic, undetected infectives, detected but not hospitalized, and hospitalized 
cases. Further we have derived a new type of final size relation (4), a formula serving for the estimation of the 
total number of infectives during the whole duration of the epidemic. A final size formula in nonautonomous 
epidemic models was previously obtained, for example, in a model for Ebola Virus Disease34. The novelty in 
this work is that the final size relation obtained here covers models in which not only the parameters, but also 
the population size varies at some specific time point T (in the considered example due to a fleeing fraction of 
individuals from one region to another). The result presented here is novel and flexible, so that it is suitable to 
study various outbreaks of infectious diseases. Further, the same approach could be used for describing migration 
out of region A and distribution of a fraction φi of individuals moving from region A to a region Bi , i = 1, . . . , n 
for an arbitrary number n ∈ N of destination regions.

Figure 8.   Partial rank correlation coefficients (PRCCs) of seven main model parameters for (a) reproduction 
number, (b) final size ( S∞ ) and (c) the number of hospitalized cases at peak in region A. Parameters with PRCC 
larger than zero are positively correlated with the quantity of interest, whereas parameters with negative PRCC 
are negatively correlated. Parameters were varied within the ranges given in the Supplementary Material.
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By means of numerical simulations, we have assessed the short-term effect of various parameters on the 
number of cases and the number of deaths. Figures 2, 3, 4 and 5 show that the earlier the lockdown happens, the 
slower and less dramatic the epidemic evolves, in agreement with previous studies7–9. A late lockdown impor-
tantly advances the peak in the number of currently infected people and leads to significantly more deaths and 
total cases. The fraction of people moving from region A to region B, however, rather affects the latter region. 
The more individuals moving from region A to region B, the earlier the peak in the infective curve of the target 
region. The strength and timing of intervention measures in region B is crucial to contain the number of cases 
and deaths due to importation of the disease from region A (Fig. 3b). We have first assumed that control meas-
ures are applied at the same time of the lockdown both in region A and in region B, simulating the behavior of 
people fleeing isolation and joining their relatives, rather than avoiding restrictive measures. Delays of up to a 
month in intervention in region B, compared to the lockdown time of region A, can be balanced out with the 
maintenance of stricter control measures also in region B. More restrictive measures postpone (and lower, cf. 
Fig. 3b) the peak of the outbreak, however this prolongs the time intervention measure should be in place, if 
reaching the peak of the infections curve is the criterion for controls to be relaxed.

As an example, we have fitted our model to the Italian COVID-19 data (Fig. 6), the most affected areas in the 
country defining region A, and the rest of the country corresponding to region B. Projection of different scenarios 
(Fig. 7) shows that timely and strict intervention could have importantly lowered the number of cumulative cases 
(in region A by at least 60%) and that migration at the time of lockdown possibly played a minor role for the 
spread of the disease in Italy. A limitation of our work is that in our setting, migration from region A to region 
B is assumed to occur as an impulse at time T. Given the available data, the fleeing fraction ( φ ) could not be 
reliably estimated and it was fixed to obtain a plausible value for the reported large migration from the north of 
the country. While it was initially observed that a large number of people fled the quarantined regions immedi-
ately before these were confined, it is yet debated if the exodus was not rather diluted over the time starting on 
February 2335. A repeated or continuous migration from region A to region B could be included in the model 
simulations, though this would increase uncertainty in the parametrization. Similarly, the assumption that all 
unconstrained compartments move in the same proportion from region A to region B could be relaxed, and 
different fleeing scenarios could be assumed. In all cases, the final size formula (4) would still hold true, as long 
as the parameters before/after intervention are known and the values for detected cases, hospitalized, recovered 
and deceased people at time T can be estimated from the early outbreak data. In this study, we focused on the 
timing and strength of intervention, but did not take into account relaxation of control measures. Our setting is 
realistic for short-term intervention scenarios, such as two to three months, as was the case in many countries 
during the COVID-19 pandemic. For long-term predictions, assuming maintenance of strict control measures 
over several months leads to an unrealistically low estimate for the number of total cases and deaths.

Received: 14 September 2020; Accepted: 8 April 2021

References
	 1.	 BBC News. China coronavirus: Lockdown measures rise across Hubei province 23 January 2020. https://​www.​bbc.​com/​news/​world-​

asia-​china-​51217​455. Last accessed 7 August 2020
	 2.	 Zhao, S. et al. Quantifying the association between domestic travel and the exportation of novel coronavirus (2019-nCoV) cases 

from Wuhan, China in 2020: a correlational analysis. J. Travel Med. 27(2), taaa022 (2020).
	 3.	 Wikipedia. COVID-19 pandemic lockdown in Italy. https://​en.​wikip​edia.​org/​wiki/​COVID-​19_​pande​mic_​lockd​own_​in_​Italy. Last 

accessed 29 July 2020.
	 4.	 della Sera, C. Coronavirus, la grande fuga da Milano prima del decreto che isola la Lombardia 8 March 2020. https://​www.​corri​ere.​

it/​crona​che/​20_​marzo_​08/​coron​avirus-​grande-​fuga-​milano-​prima-​decre​to-​che-​isola-​lomba​rdia-​9b87a​15a-​60df-​11ea-​8d61-​438e0​
a276f​c4.​shtml. Last accessed 11 August 2020.

	 5.	 Stampa, L. Fuga dal Nord: ventimila persone rientrate in Sicilia nel weekend 11 March 2020. https://​www.​lasta​mpa.​it/​topne​ws/​
primo-​piano/​2020/​03/​11/​news/​fuga-​dal-​nord-​venti​mila-​perso​ne-​rient​rate-​in-​sicil​ia-​nel-​weeke​nd-1.​38580​593. Last accessed 11 
August 2020.

	 6.	 Stampa, L. In fuga dal Nord Italia, 11 mila individuati in Sardegna: per tutti scattata la quarantena obbligatoria 11 March 2020. 
https://​www.​lasta​mpa.​it/​crona​ca/​2020/​03/​11/​news/​in-​fuga-​dal-​nord-​italia-​11-​mila-​indiv​iduati-​in-​sarde​gna-​per-​tutti-​scatt​ata-​
la-​quara​ntena-​obbli​gator​ia-1.​38580​219. Last accessed 11 August 2020.

	 7.	 Chen, Z.-L. et al. Distribution of the COVID-19 epidemic and correlation with population emigration from Wuhan. China. Chin. 
Med. J. (Engl.) 133(9), 1044–1050 (2020).

	 8.	 Li, X., Zhao, X. & Sun, Y. The lockdown of Hubei Province causing different transmission dynamics of the novel coronavirus 
(2019-nCoV) in Wuhan and Beijing. medRxiv, https://​www.​medrx​iv.​org/​conte​nt/​10.​1101/​2020.​02.​09.​20021​477v2 (2020)

	 9.	 Lau, H. et al. The positive impact of lockdown in Wuhan on containing the COVID-19 outbreak in China. J. Travel Med 27(3), 
taaa037 (2020).

	10.	 Lai, S. et al. Assessing spread risk of Wuhan novel coronavirus within and beyond China, January–April 2020: a travel network-
based modelling study. medRxiv, https://​www.​medrx​iv.​org/​conte​nt/​10.​1101/​2020.​02.​04.​20020​479v2 (2020).

	11.	 Boldog, P. et al. Risk assessment of novel coronavirus COVID-19 outbreaks outside China. J. Clin. Med. 9(2), 571 (2020).
	12.	 Brauer, F., Castillo-Chavez, C. & Feng, Z. Mathematical Models in Epidemiology (Springer, Berlin, 2019).
	13.	 Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17.3, 261–272 (2020).
	14.	 Newville, M. et al. lmfit/lmfit-py 1.0.1. Zenodo, https://​zenodo.​org/​record/​38147​09. May 2020.
	15.	 Zhu, C., Byrd, R. H., Lu, P. & Nocedal, J. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained opti-

mization. ACM T. Math. Software 23(4), 550–560 (1997).
	16.	 Blower, S. M. & Dowlatabadi, H. Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, 

as an example. Int. Stat. Rev./Revue Internationale de Statistique 62, 229–243 (1994).
	17.	 Mckay, M. D., Beckman, R. J. & Conover, W. J. A comparison of three methods for selecting values of input variables in the analysis 

of output from a computer code. Technometrics 42(1), 55–61 (2000).

https://www.bbc.com/news/world-asia-china-51217455
https://www.bbc.com/news/world-asia-china-51217455
https://en.wikipedia.org/wiki/COVID-19_pandemic_lockdown_in_Italy
https://www.corriere.it/cronache/20_marzo_08/coronavirus-grande-fuga-milano-prima-decreto-che-isola-lombardia-9b87a15a-60df-11ea-8d61-438e0a276fc4.shtml
https://www.corriere.it/cronache/20_marzo_08/coronavirus-grande-fuga-milano-prima-decreto-che-isola-lombardia-9b87a15a-60df-11ea-8d61-438e0a276fc4.shtml
https://www.corriere.it/cronache/20_marzo_08/coronavirus-grande-fuga-milano-prima-decreto-che-isola-lombardia-9b87a15a-60df-11ea-8d61-438e0a276fc4.shtml
https://www.lastampa.it/topnews/primo-piano/2020/03/11/news/fuga-dal-nord-ventimila-persone-rientrate-in-sicilia-nel-weekend-1.38580593
https://www.lastampa.it/topnews/primo-piano/2020/03/11/news/fuga-dal-nord-ventimila-persone-rientrate-in-sicilia-nel-weekend-1.38580593
https://www.lastampa.it/cronaca/2020/03/11/news/in-fuga-dal-nord-italia-11-mila-individuati-in-sardegna-per-tutti-scattata-la-quarantena-obbligatoria-1.38580219
https://www.lastampa.it/cronaca/2020/03/11/news/in-fuga-dal-nord-italia-11-mila-individuati-in-sardegna-per-tutti-scattata-la-quarantena-obbligatoria-1.38580219
https://www.medrxiv.org/content/10.1101/2020.02.09.20021477v2
https://www.medrxiv.org/content/10.1101/2020.02.04.20020479v2
https://zenodo.org/record/3814709


12

Vol:.(1234567890)

Scientific Reports |         (2021) 11:9233  | https://doi.org/10.1038/s41598-021-88204-9

www.nature.com/scientificreports/

	18.	 Diekmann, O., Heesterbeek, J. A. P. & Roberts, M. G. The construction of next-generation matrices for compartmental epidemic 
models. J. R. Soc. Interface 7, 873–885 (2010).

	19.	 Rawson, T., Brewer, T., Veltcheva, D., Huntingford, C. & Bonsall, M. B. How and when to end the COVID-19 lockdown: an opti-
mization approach. Front. Public Health 8, 262 (2020).

	20.	 Davidson, H., Tondo, L. & Yu, V. Coronavirus: quarter of Italy’s population put in quarantine as virus reaches Washington DC. The 
Guardian, 8 March 2020. https://​www.​thegu​ardian.​com/​world/​2020/​mar/​08/​coron​avirus-​italy-​quara​ntine-​virus-​reach​es-​washi​
ngton-​dc. Last accessed 13 August 2020.

	21.	 Dipartimento della Protezione Civile. Dati COVID-19 Italia. https://​github.​com/​pcm-​dpc/​COVID-​19. Last accessed 4 August 2020.
	22.	 La Repubblica. Stretta del governo, Lombardia e 14 province in isolamento. Conte: “Cambiare lo stile di vita”. Speranza: “Pugno duro 

contro gli irresponsabili” 8 March 2020. https://​www.​repub​blica.​it/​crona​ca/​2020/​03/​07/​news/​coron​avirus_​chiusa_​la_​lomba​rdia_e_​
11_​provi​nce_-​25057​0150/?​ref=​RHPPTP-​BH-​I2505​71072-​C12-​P2-​S1.​12-​T1. Accessed 29 July 2020.

	23.	 an der Heiden, M. & Hamouda, O. Schätzung der aktuellen Entwicklung der SARS-CoV-2-Epidemie in Deutschland – Nowcasting. 
Epi. Bull.  17 (2020).

	24.	 Barbarossa, M. V. et al. Modeling the spread of COVID-19 in Germany: early assessment and possible scenarios. PLoS ONE 15(9), 
e0238559 (2020).

	25.	 Prem, K. et al. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: 
a modelling study. Lancet Public Health 5(5), e261–e270 (2020).

	26.	 Wöfel, R. et al. Virological assessment of hospitalized patients with COVID-2019. Nature 581(7809), 465–469 (2020).
	27.	 RKI. SARS-CoV-2 Steckbrief zur Coronavirus-Krankheit-2019 (COVID-19) Robert Koch-Institute, Berlin, Germany 2020. https://​www.​

rki.​de/​DE/​Conte​nt/​InfAZ/N/​Neuar​tiges_​Coron​avirus/​Steck​brief.​html#​doc13​77679​2body​Text11. Last accessed 11 August 2020.
	28.	 Wei, W. E. et al. Presymptomatic Transmission of SARS-CoV-2–Singapore, January 23–March 16, 2020. MMWR 69(14), 411 

(2020).
	29.	 He, X. et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med. 26(5), 672–675 (2020).
	30.	 Istat – Ministero della Salute. Indagine di sieroprevalenza sul SARS-CoV-2, Anno 2020 (dati provvisori) available online, Aug 3, 

2020. https://​www.​istat.​it/​it/​files//​2020/​08/​Repor​tPrim​iRisu​ltati​Indag​ineSi​ero.​pdf
	31.	 Guzzetta, G. et al. The impact of a nation-wide lockdown on COVID-19 transmissibility in Italy. arXiv, 2004.​12338 (2020).
	32.	 Weitz, J. S. et al. Modeling shield immunity to reduce COVID-19 epidemic spread. Nat. Med. 26, 849–854 (2020).
	33.	 Röst, G. et al. Early phase of the COVID-19 outbreak in Hungary and post-lockdown scenarios. Viruses 12(7), 708. https://​doi.​

org/​10.​3390/​v1207​0708 (2020).
	34.	 Barbarossa, M. V. et al. Transmission dynamics and final epidemic size of Ebola virus disease outbreaks with varying interventions. 

PLOS ONE 10(7), e0131398 (2015).
	35.	 D’Alessandro, J. Coronavirus, l’illusione della grande fuga da Milano. Ecco i veri numeri degli spostamenti verso sud. La Repub-

blica, 23 April 2020. Last accessed 8 July 2020.

Acknowledgements
The work of MVB was supported by the LOEWE focus CMMS. AD was supported by the grant NKFIH PD 
128363 and the János Bolyai Research Scholarship of HAS. NB was supported by the grant EFOP-3.6.2-16-2017-
00015 and ZsV by the grant NKFIH KKP 129877. The work of GR was supported by NKFIH FK 124016 and 
TUDFO/47138-1/2019-ITM.

Author contributions
Conceptualization: MVB, GR; Modeling: MVB, GR; Mathematical analysis: MVB, AD; Data curation and analy-
sis: NB, HVV; Literature research: AD, MVB, HVV; Software development: ZV, NB, HVV; Calibration: HVV. 
Numerical simulations: HVV, ZV, MVB. Writing (original draft): MVB, AD.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://​doi.​org/​10.​1038/​s41598-​021-​88204-9.

Correspondence and requests for materials should be addressed to M.V.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

https://www.theguardian.com/world/2020/mar/08/coronavirus-italy-quarantine-virus-reaches-washington-dc
https://www.theguardian.com/world/2020/mar/08/coronavirus-italy-quarantine-virus-reaches-washington-dc
https://github.com/pcm-dpc/COVID-19
https://www.repubblica.it/cronaca/2020/03/07/news/coronavirus_chiusa_la_lombardia_e_11_province_-250570150/?ref=RHPPTP-BH-I250571072-C12-P2-S1.12-T1
https://www.repubblica.it/cronaca/2020/03/07/news/coronavirus_chiusa_la_lombardia_e_11_province_-250570150/?ref=RHPPTP-BH-I250571072-C12-P2-S1.12-T1
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Steckbrief.html#doc13776792bodyText11
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Steckbrief.html#doc13776792bodyText11
https://www.istat.it/it/files//2020/08/ReportPrimiRisultatiIndagineSiero.pdf
https://arxiv.org/abs/2004.12338
https://doi.org/10.3390/v12070708
https://doi.org/10.3390/v12070708
https://doi.org/10.1038/s41598-021-88204-9
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Fleeing lockdown and its impact on the size of epidemic outbreaks in the source and target regions – a COVID-19 lesson
	Methods
	Modeling transmission dynamics. 
	Numerical integration, model calibration and sensitivity analysis. 

	Results
	Reproduction number. 
	Modeling the lockdown at time  and migration from region A. 
	Final size. 
	How lockdown and intervention measures affect the evolution of the outbreak. 

	COVID-19 in Italy as an example
	Data and setting for parametrization. 
	Sensitivity analysis. 

	Discussion
	References
	Acknowledgements


