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Hepatocellular carcinoma (HCC) is the predominant form of primary liver cancer and
one of the leading causes of cancer-related deaths worldwide. A growing body of
evidence supports the hypothesis that HCC is driven by a population of cells called
liver cancer stem cells (LCSCs). LCSCs have been proposed to contribute to malignant
HCC progression, including promoting tumor occurrence and growth, mediating tumor
metastasis, and treatment resistance, but the regulatory mechanism of LCSCs in
HCC remains unclear. Understanding the signaling pathways responsible for LCSC
maintenance and survival may provide opportunities to improve patient outcomes. Here,
we review the current literature about the origin of LCSCs and the niche composition,
describe the current evidence of signaling pathways that mediate LCSC stemness,
then highlight several mechanisms that modulate LCSC properties in HCC progression,
and finally, summarize the new developments in therapeutic strategies targeting LCSCs
markers and regulatory pathways.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is now the second most common cause of cancer mortality due to
its resistance to chemotherapy, high rates of recurrence and metastasis, and poor prognosis (Bray
et al., 2013; Torre et al., 2015; Sia et al., 2017). Although curative resection and liver transplantation
are potential cures and there are new emerging medicines, the overall therapeutic effects of these
strategies have limited efficacy in patients (El-Khoueiry et al., 2017; Zhu et al., 2018). One of the
major reasons is that HCC has proved to be a heterogeneous disease (Anfuso et al., 2015). The
situation was recently complicated by the discovery of cancer stem cells (CSCs) with highly dynamic
characteristics that underlie cancer development and evolution (Iyer et al., 2019). Indeed, it is
assumed that these contributors affect heterogeneity within tumors, leading to treatment resistance
and tumor progression by affecting the stemness of cancer cells (Kreso and Dick, 2014).

CSCs have “stemness” characteristics similar to normal stem cells, including self-renewal
capacity and differentiation and proliferation potential (Molofsky et al., 2004). CSCs and normal
stem cells also share several important stemness signaling pathways such as Wnt/β-Catenin, Notch,
nuclear factor (NF)-κB, Hedgehog (HH), and Janus kinase/signal transducer and activator of
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transcription proteins (JAK/STAT) (Chen et al., 2013). These
signaling pathways have crucial roles in maintaining the
characteristics of stem cells or regulating their differentiation
during many developmental processes. However, the stemness
properties of CSCs are lost during differentiation and are
controlled by multiple signaling pathways that are highly
dysregulated in CSCs (Lathia and Liu, 2017). Evidence indicates
that aberrant interactions between different signaling pathways
may represent key events involved in CSC pathogenesis (Yang
et al., 2018). Intracellular signaling pathway dysregulation plays
a significant role in enabling CSCs to retain stem cell properties.

The discovery of liver cancer stem cells (LCSCs) greatly
enhanced our understanding of HCC development and
progression. Despite these new developments, the mechanisms
associated with CSC features are not clear, and the link between
how CSCs maintain stemness and contribute to HCC malignancy
is not known. Several studies have demonstrated how LCSCs can
be differentiated from liver cancer cells by targeting the cluster
of differentiation markers CD13 (Haraguchi et al., 2010), CD44
(Zhu et al., 2010), CD90 (Yang Z. F. et al., 2008), CD133 (You
et al., 2010); epithelial cell adhesion molecule (EpCAM) (Jin et al.,
2011); and keratin 19 (Van Haele et al., 2019). Here we review
the latest findings of the LCSC niche and their stemness, further
clarify the signaling pathways that maintain LCSC stemness,
and discuss the relationship between these mechanisms and
HCC progression.

THE CONCEPT AND ORIGIN OF LCSCs

Stem cells are defined a specific cell type with the characteristics of
self-renewal, multi-directional differentiation potential, and high
proliferative potential under certain circumstances (Molofsky
et al., 2004). Stemness refers to the extent to which cells
have these functional features. As stem cells differentiate, they
gradually lose their “stemness.” Studying tumor origins has
always been a topic of great interest, because the results may
provide clues to improve anti-cancer treatments. In the past
few decades, investigations have shown that only a few cancer
cell subsets with tumor-initiating ability are the core source of
tumorigenesis; these subsets were termed CSCs (Pierce, 1967;
Eun et al., 2017). The concept of cancer as an abnormal stem
cell disease was proposed based on the similar self-renewal
abilities of cancer cells and normal stem cells (Wicha et al., 2006;
Kreso and Dick, 2014).

Numerous studies have reported that CSCs exist in the context
of multiple human cancers including HCC (Ma et al., 2007).
Although the existence of LCSCs in HCC has been widely
accepted, their origin remains controversial. One possibility is
that liver cancer cells are the result of abnormal differentiation
of undifferentiated stem cells or oval cells (OVCs) in the liver.
There is evidence that these OVCs can abnormally differentiate
into cancer cells under the actions of carcinogens. Many
researchers believe that intrahepatic OVCs are the initiating cell
of HCC (Baumann et al., 1999; Knight et al., 2000). Another
possible source of LCSCs is adult hepatocytes/cholangiocytes
transformed by mutations and dedifferentiation. He et al.

(2013) successfully induced mature hepatocytes to dedifferentiate
into HCC progenitor cells in a mouse liver cancer model by
stimulating damaged liver cells with interleukin (IL-6). Nikolaou
et al. (2015) used a PR-SET7-deleted experimental mouse model
of liver cancer to show that promoting hepatocyte microtubule
expansion can facilitate the transformation of normal liver
cells into liver cancer cells. These results strongly suggest that
it is entirely possible for differentiated cells to regain their
stem cell status.

To better understand LCSCs, distinct markers have been
reported such as CD133, CD90, CD44, CD24, CD13, OV6,
Delta-like 1 homolog, and EpCAM, as well as measuring
Hoechst dye efflux or aldehyde dehydrogenase activities; some of
these may functionally support the LCSC phenotype including
highly aggressive properties and chemoresistance (Yamashita
and Wang, 2013; Xiao et al., 2017). For example, studies have
indicated that EpCAM is involved in the Wnt/β-catenin signaling
pathway, in which activated proto-oncogenic proteins cyclin A/E
and c-Myc lead to tumorigenesis (Maetzel et al., 2009). Yang
et al. (Maetzel et al., 2009; Sukowati et al., 2013) found high
CD90 expression during tumor formation and reported that
CD90 + cells have strong proliferation and drug resistance.
Additionally, CD133 + EpCAM + Huh7 cells have powerful
self-renewal, multi-directional differentiation, and clonal colony-
forming capabilities (Sukowati et al., 2013). OV6 + HCC cells
are more carcinogenic and resistant to chemotherapy than
OV6- cells. Therefore, most LCSC makers can facilitate CSC
functions in the liver and continuously maintain CSC stemness.
LCSCs are highly heterogeneous and may exhibit different
phenotypes in terms of carcinogenic/metastatic characteristics
and chemosensitivity when purified utilizing distinct CSC
markers (Yamashita et al., 2013). LCSCs were shown to be
responsible for HCC metastasis and tumor recurrence, and
they have innate resistance to multiple chemotherapeutic agents
(Wicha et al., 2006; Adorno-Cruz et al., 2015).

THE LCSC NICHE

The tumor niche consists of numerous extracellular matrix
(ECM) components; cytokines; and many cell types including
fibroblasts, endothelial cells, immune cells and cancer cells
that can regulate the CSC fate during tumor development.
Great progress has been made in the identification of potential
LCSCs niches over the past few years. Various components
in the microenvironment can maintain LCSC stemness
through altering signaling pathways or disrupting the master
transcriptional regulation factors that maintain embryonic stem
cell self-renewal, such as Nanog, Oct4, and Sox2 (Shan et al.,
2012; Yamashita and Wang, 2013). The ECM plays a key role
in cancer progression by providing structural and biochemical
support for CSCs and binds with many kinds of growth factors
that interact with CSCs. For instance, one study used hyaluronic
acid-based multilayer film mimic niche to select and enrich
LCSCs, which showed excellent colony forming ability, and the
number of CD133/CD44 double-positive LCSCs was significantly
increased (Lee et al., 2015).
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Many groups have demonstrated that CSCs release a variety
of factors into the niche that stimulate the stemness of
CSCs themselves and also induce cancer angiogenesis and the
recruitment of immune cells (e.g., macrophages, dendritic cells,
and T cells) and other tumor stromal cells that secrete additional
factors to promote tumor progression and chemotherapy
resistance (Cheng et al., 2016). Tumor-associated macrophages
(TAMs) have been reported to accumulate in hypoxic areas and
support angiogenesis by releasing angiogenic factors isolated
from the ECM, or they can promote revascularization by
releasing metalloproteinase (Carmans et al., 2010). TAMs
can also enhance CSC plasticity by inducing NF-κB or
the transforming growth factor (TGF)-β-dependent epithelial-
mesenchymal transition (EMT) process to produce tumor
necrosis factor (TNF)-α or TGF-β. In HCC, TAMs have
been shown to interact with CSCs (Muramatsu et al., 2013).
A subsequent study found that TAMs can secrete TGF-β to
enhance CSC-like characteristics and increase their invasive
capability in Hepa1-6 cells (Fan et al., 2014).

SIGNALING PATHWAYS REGULATING
LCSCs STEMNESS

Many signaling pathways have been demonstrated to control
normal stem cell self-renewal and participated embryonic
development and differentiation, including Wnt/β-catenin,
Notch, and HH; however, persistent abnormal activation of these
highly conserved pathways may underlie the characteristics of
LCSCs. Table 1 presents the signaling pathways related to LCSC
features, which are also described in the following questions.

Wnt/β-Catenin Signaling
The activation of signaling pathways is responsible for
embryogenesis, liver specification, and liver regeneration in
a strictly controlled manner. Dysregulation of certain signaling
pathways has been implicated in maintaining LCSC stemness.
With regard to the Wnt/β-catenin pathway, Chen et al. (2016)
found that the rapid generation of tumor spheres and high
invasiveness of side population (SP) cells isolated from HCC
samples depended on this signal transduction. They also showed
that increased β-catenin expression results in a marked activation
of Wnt/β-catenin target genes including AXIN2, DKK1, and
CCND (Chen et al., 2016). Mokkapati et al. (2014) reported
that β-catenin activation in LCSCs caused HCC development
with spontaneous lung metastases. Wnt/β-catenin signaling
is activated following nuclear translocation of the β-catenin
components Shp2 (Xiang et al., 2017), c-Myc (He et al., 1998),
and EpCAM (Yamashita et al., 2007). This also leads to the
enrichment of CD133 + (Ma et al., 2007), EpCAM + (Yamashita
et al., 2009) and OV6 + (Yang W. et al., 2008) LCSCs that
contribute to tumor growth and chemoresistance.

STAT3 Signaling
STAT3 is a transcription factor that is constitutively activated in
many malignancies and plays a key role in cancer growth and
metastasis (Yuan et al., 2015). The STAT3 signaling pathway of

CSCs is involved in the development of HCC. The functional
LCSC marker CD24 was found to drive liver CSC genesis
through STAT3-mediated Nanog regulation (Lee et al., 2011).
The IL-6/STAT3 signaling pathway was proposed to be related
to liver inflammation and liver regeneration (Schneller and
Angel, 2019), and the mechanism is to maintain the liver
CSC population through interaction with the TGF-β signaling
pathway (Tang et al., 2008). A recent study demonstrated that the
IL6/STAT3 signaling cascade mainly causes CD133 + enrichment
in liver cancer (Won et al., 2015). Emerging evidence has
implicated the aberrant expression of long non-coding RNAs
(lncRNAs) in various malignancies including HCC. One lncRNA
downregulated in LCSCs (lnc-DILC) mediates crosstalk between
TNF-α/NF-κB signaling and the autocrine IL-6/STAT3 cascade
and connects hepatic inflammation with LCSC expansion (Wang
X. et al., 2016). Thus, the STAT3 signaling pathway could be
a mechanism regulating LCSC stemness, as well as a possible
therapeutic target.

TGF-β Signaling
TGF-β is a central regulator in chronic liver diseases including
HCC (Dooley and ten Dijke, 2012). In HCC cells, TGF-β induces
EMT by increasing the expression of mesenchymal genes and
CD44, which enhances their stemness potential and migratory
and invasive capacities (Malfettone et al., 2017). TGF-β signals
can activate differentiation programs and inhibit cell cycle
progression during early carcinogenesis through intermediary
Smad proteins (Fausto et al., 1990). TGFβ signaling has also been
related to the malignant transformation of LCSCs. Cyclin D1-
mediated activation of TGF-β/Smad signaling is an important
regulatory mechanism in LCSC self-renewal and stemness. The
downregulation of Socs1 attenuates the effects of TGFβ signaling,
leading to oncogenic STAT3 activation and malignant cell
transformation (Bagnyukova et al., 2008). Recent reports pointed
out that micro (mi)RNA-mediated regulation of LCSCs is related
to TGF-β signaling (Chen et al., 2021). TGF-β/Smad2 signaling
can attenuate CSC-like features because miR-148a inhibits this
signaling pathway in several HCC cell lines including HepG2,
Huh7, and MHCC97H (Jiang et al., 2014).

Notch Signaling
The Notch signaling pathway plays an important role in stem
cell self-renewal and differentiation (Reya et al., 2001). Aberrant
Notch expression may influence CSC regulation and induce
tumorigenesis (Patil et al., 2006). One study demonstrated
that the Notch pathway stimulated the CSC characteristics of
CD90 + cells (Luo et al., 2016). The underlying mechanisms
are facilitation of the G1-S transition of the cell cycle and
inhibition of cell apoptosis, which promote CSC properties
such as self-renewal, invasion, migration, and stem cell-related
gene expression (Luo et al., 2016). Another study reported that
restoring expression of the tumor suppressor gene runt-related
transcription factor 3 can reduce LCSCs in HCC by inhibiting
Jagged1-Notch signaling (Nishina et al., 2011). Collectively,
the evidence supports exploring targeting the Notch signaling
pathway in tumors.
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TABLE 1 | Signaling pathways activated in LCSCs.

Wnt/β-catenin Increased invasiveness Chen et al., 2016

Resulted in HCC with spontaneous lung metastases Mokkapati et al., 2014

Lead to tumor growth and chemoresistance Ma et al., 2007; Yang W. et al., 2008; Yamashita et al., 2009

STAT3 CD24 was found to drive LCSC genesis Lee et al., 2011

Maintain the LCSC population Tang et al., 2008

Causes CD133 + enrichment in HCC Won et al., 2015

Connects hepatic inflammation with LCSC expansion Wang X. et al., 2016

TGF-β Induces EMT to increase stemness potential and migratory and invasive capacities Malfettone et al., 2017

Regulate LCSC self-renewal Bagnyukova et al., 2008

Attenuate CSC-like features Jiang et al., 2014

Hedgehog Increase stemness of self-renewal and tumorigenicity Wang R. et al., 2016

Contributes to hepatocarcinogenesis CD133 + Hepa 1–6 cells Jeng et al., 2013

Notch Inhibited apoptosis to facilitate the stemness characteristics of CD90 + cells Luo et al., 2016

BMI1 Self-renewal Luo et al., 2016

Proliferation of LCSCs Chiba et al., 2010; Zhang et al., 2013

Hedgehog Signaling
The HH pathway has a central role in embryonic development
and adult tissue homeostasis, but mutations and/or aberrant
activation of the pathway involved in malignancies (McMahon
et al., 2003; Bai et al., 2008). Recent evidence has indicated
that HH signaling significantly facilitates liver development and
regeneration, and activation of the pathway may contribute to
HCC growth (Eichenmuller et al., 2009). One group proposed
that HH signaling facilitates hepatocarcinogenesis, primarily
in CD133 + Hepa 1–6 cells that have significantly higher
colony proliferation and clonogenicity (Jeng et al., 2013). Others
suggested that HH signal transduction is related to tumor
chemoresistance and aggressiveness. Chen et al. (2011) found
that compared with well-differentiated CD133(+)/ALDH (high)
or CD133(+)/EpCAM (+) cells, enhanced HH signaling activity
in poorly differentiated HCC cells may be responsible for their
chemical resistance and invasiveness.

BMI1 Signaling
B cell-specific Moloney murine leukemia virus integration site
1 (BMI1) acts as an epigenetic chromatin modifier (Park
et al., 2003) and plays a central role in the self-renewal of
somatic stem cells including CSCs. Aberrant BMI1 expression
is associated with malignant transformation and acquisition
of the malignant phenotype in HCC (Sasaki et al., 2008).
SP cell analysis and sorting have been successfully applied to
HCC cell lines to identify a minor cell population with CSC
properties and isolate stem cells (Shimano et al., 2003). BMI1
contributes to the maintenance of tumor-initiating SP cells in
HCC (Chiba et al., 2008). BMI1 repression inhibits HCC growth
both in vitro and in vivo and reduces LCSC proliferation (Chiba
et al., 2010; Zhang et al., 2013), suggesting that it could be a novel
therapeutic target for LCSC eradication.

The Hippo pathway, along with its downstream
transcriptional co-activator Yes-associated protein and
transcriptional co-activator with PDZ-binding motif, has a
decisive role in the pathogenesis of primary liver cancer (Van
Haele et al., 2019; Nguyen-Lefebvre et al., 2021). Other signaling

pathways involved in liver CSC include the Ras/Raf/mitogen-
activated protein kinase (MAPK), phosphoinositide 3-kinase
(PI3K)/protein kinase B (Akt)/mammalian target of rapamycin
(mTOR), and NF-κB signaling pathways. Deregulation of
these cascades has been shown to enrich CSCs. Notably,
each individual cell line usually exhibits unique activation of
oncogenic pathways, and HCC is known to be associated with
aberrant stemness regulation mechanisms in LCSCs. Therefore,
the mechanism of regulating the dryness of LCSCs still needs to
be further studied.

MECHANISMS MODULATING LCSC
FUNCTION IN HCC

The difference between CSCs and normal stem cells lies in
their ability to change their pluripotency and lineage-dependent
differentiation. CSCs that are resistant to radiotherapy and
chemotherapy can regenerate tumors after treatment ends. The
current CSC theory that heterogeneous populations of HCC
cells are dictated and maintained at least partially by LCSCs
may help explain the process of HCC formation (Andersen
et al., 2010; Lu et al., 2010). LCSCs have important roles in the
initiation, maintenance, recurrence, metastasis, and resistance of
HCC. Here we describe the complex mechanisms that maintain
the malignant functions of LCSCs, including the ECM, EMT,
exosomes, autophagy, reactive oxygen species (ROS), hypoxia,
and epigenetic alterations (Figure 1).

Extracellular Matrix-Mediated Regulation
of LCSCs Properties
Accumulating evidence indicates that stem cells lose the
possibility for continued self-renewal when removed from their
niche, which implies an essential microenvironmental role in
directing stem cell fate (Lathia and Liu, 2017). The highly
dynamic ECM is a major structural component of the tumor
microenvironment, and increasing evidence suggests that ECM
proteins establish a physical and biochemical niche for CSCs
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FIGURE 1 | Mechanisms involved in modulating LCSCs function in HCC progression. This illustration encompasses the key mechanisms involved in regulating
LCSCs properties in HCC progression: ECM alteration, EMT program induction, oxidative stress resistance, epigenetic control, autophagy modulation, secretion of
extracellular vesicles or exosomes.

(Nallanthighal et al., 2019). In HCC, hepatic stellate cells (HSCs)
are the main source of ECM proteins in tumor stroma and
greatly influence biological behaviors. For instance, HSCs may
decrease hepatoma cell sensitization to chemotherapeutic agents
by promoting EMT and CSC-like features via hepatocyte growth
factor/Met signaling (Yu et al., 2013). In addition, NEDD9
is one of four members of a family of protein scaffolds that
is crucial for HCC metastasis; it has been confirmed that
NEDD9 downregulates Smad7 to activate Smad signaling and
bind the FAK-Src-Crk complex to promote EMT and LCSC
stemness (Wang et al., 2017). Furthermore, the pericellular
matrix formed by hyaluronic acid and its interaction with
tumor cell receptors can exacerbate malignancy and treatment
resistance and aggravate the CSC phenotype by enhancing
stem-cell marker genes and facilitating invasion and migration
(Avnet and Cortini, 2016).

LCSC Acquisition of Malignant Function
by EMT
The EMT plays crucial roles in developmental processes
and tumor invasion and metastasis (Thiery et al., 2009).
E-cadherin loss and upregulation of mesenchymal markers are

hallmarks of the EMT process that have been associated with
invasiveness, metastatic potential, and poor clinical outcomes
in several cancers including HCC (Thiery and Sleeman, 2006;
van Zijl et al., 2009). Initial work showed that EMT program
activation in epithelial cells induces the acquisition of stem cell
characteristics that may be conducive to CSC emergence in
the context of cancer (Fabregat et al., 2016). For example, an
in vitro study demonstrated that EMT activation could induce
CSC characteristics, which is mediated by hypoxia-inducible
factor 1 alpha (HIF-1α)-upregulated Notch intracellular domain
expression (Jing et al., 2019). Notably, tumor cells that express
EMT-related proteins also express stemness-related proteins in
HCC (Kim et al., 2011). According to a study by Yamanaka
et al. (2018), enrichment of the functional LCSC marker CD13
was correlated with early recurrence and shorter survival in
patients with HCC. In the process of EMT, the switch from
CD44v to CD44s expression is very important for the regulation
of CSC stemness in cancer progression (Skandalis et al., 2019).
Specifically, CSC expression of epithelial splicing regulatory
protein 1, a key transcription factor required to control the
transition from CD44v to CD44s in EMT, can be inhibited by
Zinc finger E-box binding homeobox 1 (ZEB1) (Preca et al.,
2015); CD44s in turn induces ZEB1 expression to form a
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self-sustaining loop that further facilitates the EMT process,
enabling cancer cells to acquire stemness without external
stimuli (Park et al., 2016). In addition, EMT caused by the
synergistic effect of CD44 and TGF-β1 is more likely show
enhanced migration and lead to aggressive HCC progression
(Park et al., 2016). CD44 has emerged as an LCSC marker
that strongly induces EMT together with TGF-β1. Park et al.
(2016) recently reported synergistic interactions between CD44
and TGF-β1 in EMT induction and CSC properties through
the AKT/GSK-3β/β-catenin pathway in HCC cells. Moreover,
Hu et al. (2017) found that overexpression of mammalian-
enabled protein in HCC cells facilitated stem cell markers, EMT
markers, and tumorigenicity through the extracellular signal-
regulated kinase (ERK) and β-catenin signaling pathways. In
addition, it was confirmed that Aurora Kinase A (AURKA),
an oncogene involved in tumor development, can induce the
EMT process and CSC properties through the PI3K/Akt pathway;
silencing AURKA inhibits radiation-enhanced cell invasiveness
of HCC (Chen et al., 2017). Therefore, EMT programs may be
involved in the acquisition of malignant LCSC function during
cancer progression.

Effect of Oxidative Stress and Hypoxia
on the Role of LCSCs in HCC
Progression
One of the striking characteristics of CSCs is their ability to form
a specialized niche to adapt to changing microenvironmental
conditions and exploit the characteristics of self-renewal
and differentiation to drive tumor growth and progression
(Baumann et al., 2008). Due to their heterogeneity, CSCs
exhibit distinct metabolic phenotypes in different tumor
types in terms of stemness features (Baumann et al., 2008).
In particular, ROS levels are intimately tied to cellular
metabolic phenotype (Yeo et al., 2013). Continuous ROS
accumulation can induce apoptosis of both normal cells
and cancer cells (Wiseman and Halliwell, 1996; Yamamori
et al., 2012). Interestingly, CSCs can limit ROS production
to maintain stem cell characteristics, inducing dormancy and
enhancing drug resistance (Carnero et al., 2016; Clark and
Palle, 2016). Several studies suggest that CSCs preferentially
depend on glycolytic pathways, which have low or absent
rates of oxidative phosphorylation and high lactate production
(Wong et al., 2017; Chang et al., 2018). CSCs can also increase
ATP production rates and reduce ROS production due to
the Warburg effect in response to stressful environmental
conditions characterized by low oxygen (hypoxia) (Wong et al.,
2017; Chang et al., 2018). Interestingly, Chang et al. (2018)
found that ROS-independent endoplasmic reticulum stress
mediates nuclear factor erythroid 2-related factor 2 (NRF2)
activation to promotes the Warburg effect and maintain CSC
stemness-associated properties. Another study suggested that
the hyaluronan-CD44 axis can upregulate p62 to deactivate
KEAP1, which promotes NRF2 activation and the subsequent
transcription of antioxidant response genes to inhibit ROS
accumulation and induce drug resistance in cancer cells. In
addition, CD44v9 has been reported to be associated with

NRF2 activation and poor overall survival of HCC patients
(Kakehashi et al., 2016).

Under hypoxic conditions, cells suppress energy-intensive
mRNA translation by modulating the mTOR and pancreatic
eIF2alpha kinase (PERK) pathways. Skandalis et al. (2019) found
that hypoxic ROS regulate mTOR and PERK to control mRNA
translation and cell survival. A recent study demonstrated that
hypoxic CSCs impede CD8 + T cell proliferation and activation
and inhibit immunosurveillance (Wei et al., 2011). Hypoxia also
protects CSCs from chemo- and radiotherapy, and oxidative
stress plays a central role in maintaining CSC stemness under
hypoxia. Remarkably, hypoxia can promote CSC survival and
EMT through ROS-activated stress response pathways (Liu et al.,
2008) and ROS-induced TGF-β and TNF-α signaling pathways
(Pavlides et al., 2010).

Epigenetic Alterations Provide LCSCs
With a Survival Advantage
Epigenetic mechanisms including DNA methylation, post-
translational histone modifications, chromatin conformation
changes, and miRNA expression are the keys to normal stem
cell differentiation. Similar processes have been shown to
enable cancer cells to restore stem cell-specific characteristics
(Baumann et al., 2008). Dysregulation of epigenetic mechanisms
such as DNA methylation leads to abnormal epigenetic
alterations that can contribute to CSC progression (Lathia
and Liu, 2017). Specifically, DDX3 reduction can inhibit
tumor-suppressive miRNA expression, promote up-regulation
of DNA methyltransferase 3A (DNMT3A), enrich DNMT3A
binding on promoters of tumor-suppressive miRNAs, and cause
hypermethylation (Lathia and Liu, 2017). In addition, arsenic
trioxide can enhance sensitivity to chemotherapy via the NF-
κB pathway, which modulates de-methylation of miR-148a
and inhibits LCSC properties (Wang et al., 2020). Assessing
DNA methylation patterns also could provide a new approach
to determining the origin of recurrent HCC (Zhang et al.,
2015). Histone acetylation is another epigenetic mechanism
that plays an important role in CSC regulation. NF-κB-
mediated inhibition of histone deacetylases (HDACs), which are
chromatin-remodeling enzymes, can facilitate an effective IKK
inhibitor that targets a selected subgroup of CSCs in human
HCC cell lines (Marquardt et al., 2015). HDAC inhibitors are
useful for eradicating Spalt-like transcription factor 4 (SALL4)-
positive HCC cells through their inhibitory effects on histone
deacetylation via the nucleosome remodeling and deacetylation
complex (Marquardt and Thorgeirsson, 2013). Encouragingly, a
recent study demonstrated that SALL4 plays a role in controlling
HDAC activity and contributing to the maintenance of HCC
with stem cell features (Zeng et al., 2014). Moreover, BORIS,
a testes-specific CTCF paralog (CCCTC-binding factor-like),
up-regulates Oct4 via histone methylation to facilitate CSC-
like characteristics in HCC cells (Zeng et al., 2014). miRNAs
are another epigenetic mechanism responsible for regulating
CSCs. For example, DDX3, a member of the DEAD-box
RNA helicase family (Schroder, 2010), represses stemness in
HCC by epigenetically modulating tumor-suppressive miRNAs
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(including miR-200b, miR-200c, miR-122, and miR-145) (Li H. K.
et al., 2016). Jiang et al. discovered that miR-500a-3p promotes
LCSC characteristics including enhanced spheroid formation,
increased SP fraction (purified from HCC cells harbors CSC-like
properties), and upregulated expression of CSC factors (Zhang
et al., 2017). Whole transcriptomic analyses of SP cells can
generate common SP-gene expression profiles for predicting the
clinical outcome (survival and recurrence) of in-patients with
HCC (Marquardt et al., 2010). Epigenetic modification of miR-
429 can manipulate LCSCs by targeting the RBBP4/E2F1/Oct4
axis, suggesting that targeting miR-429 might inactivate LCSCs,
thus providing a novel strategy for HCC prevention and
treatment (Li et al., 2015).

HCC Tumorigenesis and Progression
Regulated by LCSC-Derived
Extracellular Vesicles
Extracellular vectors (EVs) derived from CSCs (including
exosomes, microvesicles, and apoptotic bodies) are important
mediators that modulate communication between CSCs and
their niches. EVs are rich in enzymes, miRNAs, transcription
factors, heat shock proteins, major histocompatibility complexes,
cytoskeleton components, signal transducers, and ECM effectors
(Milane et al., 2015) that mediate the exchange of intracellular
components and affect tumor aggressiveness. Emerging evidence
indicates that CSCs and TAMs promote HCC tumorigenesis
and progression. A functional study revealed that treating HCC
cells with TAM exosomes or transfecting them with miR-
125a/b suppressed cell proliferation and stem cell properties
by targeting CD90, a marker of HCC stem cells (Wang
et al., 2019a). Tumor angiogenesis has also been associated
with exosomal export of specific RNA species in CSCs. For
example, CD90 + liver CSC-released exosomes stimulated
angiogenesis via the lncRNA H19, which mediated increased
expression of vascular endothelial growth factor (VEGF)
receptor 1 in endothelial cells (Conigliaro et al., 2015).
Mechanically, Cheng et al. (2019a) showed that p120ctn in
exosomes secreted from liver cancer cells suppresses HCC
cell proliferation and metastasis and LCSC expansion via the
STAT3 pathway. Another publication described the impact
of CSC-derived exosomes on HCC progression in vivo.
Specifically, CSC-exosomes can reduce apoptosis (marked by
downregulation of Bax and p53, upregulation of Bcl2, and
increased proliferating cell nuclear antigen immunostaining),
increase angiogenic activity (shown by up-regulation of VEGF),
enhance metastasis and invasiveness (indicated by upregulation
of PI3K and ERK proteins and their downstream target matrix
metalloproteinase 9 and downregulation of tissue inhibitor of
metalloproteinase-1), and induce EMT (marked by increased
serum and hepatic levels of TGFβ1 mRNA and protein)
(Alzahrani et al., 2018).

Autophagy in LCSCs Maintenance
Following the establishment of the CSC theory and the
discovery of LCSCs in HCC, autophagy was proposed as
a vital mechanism driving cell fate (Nazio et al., 2019).

Remarkably, in addition to maintaining cellular homeostasis,
autophagy also affects cellular processes such as EMT and
migration, both of which drive tumor progression and metastasis
(Kiyono et al., 2009; Qiang et al., 2014; Sharifi et al., 2016).
Indeed, the accelerated carcinogenesis observed in autophagy-
deficient murine models strongly supports the hypothesis
that autophagy prevents malignant transformation (Cianfanelli
et al., 2015; Mainz and Rosenfeldt, 2018). Hypoxia-induced
autophagy has been shown to be essential for survival of hepatic
CD133 + CSCs, which is mediated by HIF-1α (Nazio et al.,
2019). Notably, Li et al. found that CD133 + LCSCs could
resist interferon-γ-induced autophagy, which might also be a
mechanism through which CSCs resist immune eradication
(Li J. et al., 2016). Lai et al. discovered that homeobox-
containing protein 1 expression in hepatocytes could protect
against HCC progression, and the underlying mechanisms
may include promoting autophagy, inhibiting CSC phenotype,
and increasing the sensitivity of tumor cells to natural
killer cell cytolysis (Zhao et al., 2018). Autophagy can also
regulate CSC resistance to chemotherapy drugs. For example,
transactivation response element RNA-binding protein 2 is
destabilized through autophagic-lysosomal proteolysis, thereby
stabilizing the protein expression of the CSC marker Nanog to
facilitate multikinase inhibitor sorafenib resistance in HCC cells
(Lai et al., 2019).

Hepatitis Virus and LCSCs
Chronic infection with hepatitis B virus (HBV) has long been
linked to HCC development. Studies have found that the
C-terminally truncated HBx (HBx-1C) plays an important
hepatocarcinogenesis by conferring enhanced invasiveness and
reducing the apoptotic response in HCC cells (Ma et al., 2008;
Yip et al., 2011; Zhu et al., 2015). Ng et al. (2016) recently
found that HBx-1C—in particular at the 140 aa and 119 aa
breakpoints—enhances stemness properties in vitro and induces
a CD133 + LCSC subpopulation in HCC by modulating an
altered genomic profile involving the FXR pathway and possibly
drug metabolism. It was also previously reported that hepatitis
C virus (HCV) infection of primary human hepatocytes (PHH)
can induce an EMT state and extend cell lifespan (Bose et al.,
2012). Compelling evidence has suggested that HCV infection
of PHH induced a significant increase in the number of spheres
on ultralow binding plates, and it enhanced EMT and CSC
markers and tumor growth in immunodeficient mice (Kwon
et al., 2015). These data support the hypothesis that hepatitis virus
infection plays a crucial role in conferring stemness properties
that contribute to HCC initiation and growth.

Non-coding RNA and LCSCs
A variety of non-coding RNAs play an important role in
LCSC self-renewal and promote tumor propagation. For
example, a recent study showed that lncHDAC2 drives
the self-renewal of LCSCs via activation of HH signaling
(Wu et al., 2019). Another lncRNA termed HAND2-AS1
promotes LCSC self-renewal and drives liver oncogenesis
(Wang et al., 2019b). The novel lncRNA THOR (testis-
associated highly conserved oncogenic lncRNA) was also
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TABLE 2 | Summary of various agents in research development to target LCSCs pathways.

Target Agent Population Results References

Wnt/β-catenin Salinomycin Human HCC cell lines Reduces the tumorigenicity of LCSCs Liu et al., 2020

Wnt IC-2 Human HCC cell lines Suppresses liver CSC properties Seto et al., 2017

Hedgehog GDC-0449 Mouse hepatoma ML-1 cells Mitigate the mice HCC growth Jeng et al., 2015

Hedgehog LDE225 Human HCC cell lines Suppress EMT and migration of metastatic
cells

Ding et al., 2017

Notch RO4929097 Miouse liver progenitor cell Reduces Tumor Growth, Tumor Malignancy
and Liver Fibrosis in vivo

Jung et al., 2016

Notch DAPT Human HCC cell lines Significantly reduced CD133/epcam
positivity

Kahraman et al., 2019

TGF-β LY2157299 (Galunisertib) Human HCC cell lines Suppresses the staminal phenotype in
hepatocellular carcinoma by modulating
CD44 expression

Rani et al., 2018

BMI1 RU-A1 Human HCC cell lines Impair Self-Renewal and Tumorigenic
Capability in HCC

Bartucci et al., 2017

NF-κB Curcumin Primary HCC cell line Restrains stemness features in liver cancer Marquardt et al., 2015

CD13 BC-02 Human HCC cell lines Targeting CD13 and up-regulating
intracellular ROS and DNA damage induced
by ROS

Dou et al., 2017

upregulated in liver CSCs and could promote HCC cell
dedifferentiation and liver CSC expansion by targeting β-catenin
signaling (Cheng et al., 2019b). Ling Qi and colleagues
demonstrated that lncCAMTA1 physically associates with
the calmodulin-binding transcription activator 1 (CAMTA1)
promoter, induces a repressive chromatin structure, and
inhibits CAMTA1 transcription, thereby promoting HCC
cell proliferation, CSC-like properties, and tumorigenesis.
Furthermore, deregulation of miRNA expression in cancer
cells (including HCC cells) is well documented, and the
involvement of miRNAs in orchestrating tumor genesis
and cancer progression has been recognized. miR-26b-5p
imparts metastatic properties, helps maintain Ep + CSCs via
HSC71/HSPA8, and augments malignant features in HCC
(Khosla et al., 2019). Overexpression of miR-589-5p suppressed
CD90 + CSC characteristics such as Oct4, Sox2, and Nanog
expression; a high likelihood of forming cell spheres; high
invasiveness; and high tumorigenicity (Zhang et al., 2016).
MiR-491 attenuates CSC-like properties of HCC by inhibition
of GIT-1/NF-κB-mediated EMT (Yang et al., 2016). MiR-452
directly acts on Sox7 that physically binds to β-catenin and
TCF4 in the nucleus, then inhibits Wnt/β-catenin signaling and
promotes the stem-like characteristics of HCC (Zheng et al.,
2016). Given the significant contribution of non-coding RNA
to LCSC properties, targeting specific non-coding RNA clusters
might be an effective HCC treatment.

THERAPEUTIC STRATEGIES TO TARGET
LCSCs PATHWAYS

Currently, targeting LCSCs and/or eradicating LCSCs brings
hope of curing HCC. We have known that a variety of
signaling pathways including STAT3, TGF-β, Hedgehog (Hh),
Notch, Wnt and BMI1 are involved in the renewal of
normal stem cells and the maintenance of tissue homeostasis.

Dysregulation of these pathways is believed to be involved
in driving CSC activity in a variety of cancers (including
HCC) through different mechanisms (Gu et al., 2020; Huang
et al., 2020; Babaei et al., 2021). More specific inhibitors
of signaling pathways are currently under development and
investigation, which may be potential therapeutic agent for
eradicating liver CSCs and overcoming chemotherapy resistance
of HCC. For example, A study demonstrated that Salinomycin
significantly reduces the tumorigenicity of LCSCs in vivo by
suppressing the Wnt/β-catenin signaling pathway 31971116.
A novel small-molecule Wnt inhibitor, IC-2, has the potential
to suppress LCSCs that may via inhibition of the CBP–
β-catenin complex formation (Huang et al., 2020). Reportedly,
aminopeptidase N (APN, also known as CD13) is a marker
of semi-quiescent CSC. Hedgehog pathway molecules was
altered, including upregulated S Hedgehog expression and
downregulated smoothened expression in tumor fractions
after GDC-0449 treatment, which effectively reduced tumor
size and cell infiltration of the HCC in mice (Jeng et al.,
2015). The CD13 inhibitor BC-02, a compound obtained
by combining the CD13 inhibitor Battatin and Fluorouracil
(5-FU), damages the properties of liver CSCs by targeting
CD13 and up-regulating intracellular ROS and DNA damage
induced by ROS (Dou et al., 2017). The treatment strategies
for signaling pathways or mechanisms are summarized in
Table 2.

CONCLUSION

There is a growing body of evidence indicating that CSCs are
the root cause of cancers and are responsible for metastasis,
resistance to conventional treatments, and tumor recurrence;
however, the molecular mechanisms underlying the potential
roles of LCSCs in HCC origin and progression have not been
fully elucidated. LCSC status and survival are controlled by
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multiple signaling pathways, and there are several mechanisms
to maintain their malignant function. This overview presented
findings suggesting that LCSCs drive HCC occurrence and
development. In theory, if the LCSC subpopulation can be
eliminated or have reduced stemness, it would be a way to
control or even cure HCC. Although a great deal of effort is
being made to reduce cancer stemness by targeting stemness
signaling pathways, there are still many challenges given the
complex biologic properties of CSCs. Perhaps the current focus
should be on clarifying maintenance mechanisms involved in the
malignant function of LCSCs. Since LCSCs must be eradicated
to prevent HCC progression, recurrence, or metastasis, targeting
the vital CSC signaling pathways is an attractive cancer treatment
strategy. A comprehensive understanding of LCSC stemness
and the mechanisms involved in cancer progression may
help identify potential therapeutic targets and develop more
effective therapies.
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