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The development of rapid and accurate Whole Slide Imaging (WSI) has paved the way for the application of Artificial
Intelligence (AI) to digital pathology. The availability ofWSI in the recent years allowed the rapid development of var-
ious AI technologies to blossom. WSI-based digital pathology combined with neural networks can automate arduous
and time-consuming tasks of slide evaluation. Machine Learning (ML)-based AI has been demonstrated to outperform
pathologists by eliminating inter- and intra-observer subjectivity, obtaining quantitative data from slide images, and
extracting hidden image patterns that are relevant to disease subtype and progression. In this review, we outline the
functionality of different AI technologies such as neural networks and deep learning and discover how aspects of dif-
ferent diseases make them benefit from the implementation of AI. AI has proven to be valuable in many different or-
gans, with this review focusing on the liver, kidney, and lungs. We also discuss how AI and image analysis not only can
grade diseases objectively but also discover aspects of diseases that have prognostic value. In the end, we review the
current status of the integration of AI in pathology and share our vision on the future of digital pathology.
Introduction

While the gold-standard of pathology remains pathologists manually
reading physical slides and extracting morphology data for diagnosis in
both the clinical and non-clinical settings, the interobserver variability
limits the comparison of results across studies and sites.1,2 The discipline
has been centered around the light microscopewhich even into themodern
era has remained relatively unchanged.3 With the acceleration in develop-
ments of different fields, especially oncology, pathology modernization is
urgently needed to be able to keepupwith the increasing demands to create
more robust ways of reading, diagnosing, and stratifying patients in a more
objective and streamlinedmanner.12,13 To this effect, new technologies de-
veloped over the last 2 decades have caused the emergence of digital pa-
thology, paving the way for artificial intelligence (AI)-based slide reading
and analysis.5

One of these technologies is Whole Slide Imaging (WSI), a novel tech-
nology that allows for the scanning of microscope slides using a specialized
whole slide scanner to create high-resolution images and to digitize histol-
ogy slides.1,5 Paired with machine learning (ML) and various types of neu-
ral networks, once trained with data, AI can examine digitized microscope
slide images and make diagnoses.9,11 This process is known as image anal-
ysis or morphometric analysis. ML is one area of AI, recognizes and learns
0583, USA.

m 28 November 2022; Accepted 2

r Inc. on behalf of Association for
).
from a given dataset by algorithms and extrapolates to new dataset for
learning with higher accuracy. Deep learning (DL), a particular type of
ML, learns data through different layers of artificial neural networks, re-
sembling the function of the neural connection in the human brain.14

While conventional ML algorithms require more structured data as an
input, DL algorithms are able to take in raw data inputs and then employ
neural networks in intermediate layers to structure the data and to make
it understandable for the other parts of the algorithm.31–32 DL is particularly
effective in pathology as it requires less preparation of complex imaging
data associated with slide reading in order for the algorithms to effectively
analyze histopathological images.31

Important algorithms to assist inML include various types of neural net-
works. Neural networks are algorithms that are meant to simulate and
mimic the thought processes of a human brain.6 Neural networks function
by taking in different types of data as an input and running them through
many hidden layers specified by an algorithm altering the data and eventu-
ally returning an output.7–8 More specifically, different subtypes of neural
networks such as deep neural networks (DNNs), convolutional neural net-
works (CNNs), and artificial neural networks (ANNs) each have their
unique usages.13 Neural network algorithms can extract patterns and
learn how different biomarkers or cell structures correspond to different di-
agnoses. The knowledge learned from the training set is applied to disease
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diagnosis, patient stratification or prediction of the prognosis based on the
WSI slides. As they function, AI will be able to continuously learn from new
patient data and refine their models.

This review will discuss how WSI along with ML can be applied to
different fields of medicine (Fig. 1). One that we will examine is the
use of AI technologies in precision oncology and personalized medi-
cine. Digital pathology along with deep learning has been applied to
different cancers in various organs such as the lung, liver, kidney,
breast, skin, and whole-body systems to grade diseases objectively
and offer accurate prognoses based on ML data. The scope of this re-
view will focus on 3 major organs, the lungs, the liver, and the kidney,
and how AI was applied to oncology and non-oncology diseases. This
review will highlight different types of cases that benefit the most
from AI technologies. Finally, we will look at the future of digital pa-
thology as well as potential drawbacks or regulatory obstacles that
need to be overcome in order for digital pathology to become a com-
mon practice.13 (See Tables 1–3).

Whole slide imaging

An essential part of digital pathology is WSI, a novel technology that al-
lows for the scanning and digitization of microscope slides using a special-
ized high-resolution whole slide scanner.16,17,28–30 There are multiple
vendors making advances in resolution, scanning speed/throughput and ro-
botics tominimize human interactionwith the scanner. This generatesmuch
higher image resolution and drastically smaller pixel size. Additionally,
some manufactures are developing internal QC algorithms to check WSI
quality. WSI allows for the automation of previously time-consuming tasks
in a high throughput fashion. At the same time, pathologists will have a
role in training the AI, compiling datasets, and giving initial diagnoses to
train the AI. WSI enables the better organization of microscope slides and
away to both view themdigitally and combine them together to form a com-
plete histological image that can be viewed with ease without sacrificing
image resolution or being inferior to traditional methods.18 With the advent
of this new technology, slides can now be easily shared between colleagues
Fig. 1.A simplifiedworkflow of applying digital pathology andmachine learning in the c
scanned to generate whole slide images (WSIs). WSIs will be segmented for lesions by a
based on the quantitative information of key features present in the WSIs by various a
training WSI set in order to classify the test WSI into certain disease category or gr
algorithms without prior labeling. The outcome of the machine learning of features in
disease diagnosis and classification, which can be used to stratify patients for prognosis
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working at different institutions, something that in the past has been difficult
for the community. This also opens up the possibility for large databases or
repositories with digitized histological slides to be built that would act as a
reference for the pathology community. Furthermore, this technology allows
the user to adjust their field of vision to different magnifications, allowing
the pathologist to analyze the tissue sample as a whole or magnified on spe-
cific cells of interest, similar to that of a traditional light microscope.3 Fi-
nally, while samples on traditional microscope slides degrade over time or
slides could be damaged, these digital slides will always show the same
structures, and digitizing them allows for less physical storage space
necessary.4 WSI has been proven numerous times to be just as accurate if
notmore than the traditional lightmicroscopywith regard to diagnostic per-
formance. A study by Mukhopadhyay et al. took pathological specimens
from 1992 patients and had 16 surgical pathologists analyze them both
under a traditional light microscope and digitally after being scanned by
the WSI technology and found that the performance of pathologists when
analyzing the slides that had been scanned with the WSI technology was
not inferior to that of the traditional light microscopy approach.3 Therefore,
WSI’s by themselves are a very powerful tool, allowing pathologists to much
easier study and share histological images and examine a large patch of tis-
sue or individual cells with the same scan.

When paired with various ML and DL algorithms, AI will be able to an-
alyze the WSI images, extract disease-relevant information and make diag-
noses objectively. For example, Lam et al. employed WSI in the study of
esophageal adenocarcinoma where they assessed tissue microarray slides
and analyzed the level of staining of tissue samples.18 Meanwhile, Yuan de-
veloped AI methods to analyze the spatial distributions of lymphocytes on
triple negative breast cancer WSI scans to help determine the prognosis of
patients as well as reactions to chemotherapy and other treatments.19 Fi-
nally, Steele et al. usedWSI images from9 cancer types andAI to enumerate
and locate CD8+ tumor-infiltrating lymphocytes and to characterize and
organize immunohistochemistry-derived CD8 data in both human and ani-
mal tumor samples.20

The pandemic helped speed up the adoption of WSI bymany pathology
labs. However, the regulatory framework for approving the WSI scanners
linical setting. Histology slides are made from tissue biopsies of diseased organs and
utomated algorithms and go through supervised or unsupervised machine learning
lgorithms. In a supervised learning, algorithms were previously generated using a
ade level. In an unsupervised learning, discriminative features are identified by
the WSIs can provide more accurate information to the doctors and scientists for
and treatment options, achieving precision medicine.



Table 1
A summary of representative studies of the applications of digital pathology in the liver.

Reference Area of focus Sample
size

Analysis method Task Outcome

Jedrzkiewiczl
et al.44

Liver fibrosis 49 WSI, Photon
microscopy

Using AI to standardize fibrosis
evaluation methods, making them more
accurate and quantitative.

Able to detect the total area of fibrosis and distinguish between
collagen fibers and normal tissue.

Masugi
et al.46

NAFLD 289 WSI,
Multivariable
logistic regression
analysis

Correlate the amount of fibers with
fibrosis stage to understand the
progression of NAFLD.

Nonlinear relationship between different levels on the Brunt’s Fibrosis
scale regarding combined collagen and elastin area ratios.

Munsterman
et al.10

NAFLD 79 WSI, Java plug-in,
FIJI

Aimed to quantify steatosis and correlate
with NAFLD by calculating the Steatosis
Proportionate Area.

Use algorithms to detect steatotic hepatocytes and calculated the
Steatosis Proportionate Area. Then correlated this to NAFLD grades.

Native et al.35 Macrovesicular
steatosis

54 ACM, K-means
clustering,
Decision tree

Quantify macrovesicular steatosis using
segmented liver tissue in histological
images.

ACM to amplify important information and extract patterns from the
samples. Using important quantitative data, an effective decision tree
was created to quantify steatosis.

Schwen et al. Steatosis in mice N/A WSI, 3D analysis Aimed to quantify zonation of steatosis in
mice.

Registered serial sections of mice livers and globule patterns were
discerned to determine the different types of lipid vacuoles that were
present.

Homeyer
et al.43

Steatosis N/A Image analysis Fix the unreliability of the current
grading system and methods of steatosis.

Used image analysis to separate background and foreground tissue
and scored steatosis areas by analyzing lipid blobs.

Atupelage
et al.39

HCC 109 Five module
system

Grade HCC. Used a five module system that was able to compute textural
characteristics, segment nuclei, exclude nuclei that did not belong to
hepatocytes and finally grade the HCC.

Kiana et al.40 HCC,
cholangiocarcinoma

70 WSI, DL, CNN Distinguish between HCC and
cholangiocarcinoma.

Trained a DL model with WSI’s and used a CNN in a diagnostic tool to
distinguish between the 2 diseases.

Liao et al.41 HCC 491 CNN, ML Distinguish HCC from normal hepatic
tissue.

They used a CNN to distinguish between HCC and normal tissue and
reused and adapted the CNN to efficiently predict future disease
mutations.
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remains rigorous and complex. In the United States, the FDA classifies WSI
scanners as Class III, indicative of the highest risk.13

Machine learning

ML itself is a broad term that includes many different types of algo-
rithms and methods. However, the general principle of ML is that com-
puters are able to learn and improve algorithms with training data and
minimal human intervention. The methodology for training the AI can be
split into 2 categories, supervised and unsupervised learning.22 Supervised
learning is when the machine learns from labeled data from a training
dataset that specifically has a feature that is the target for the AI. For exam-
ple, histological images may be given to the AI with some slides having spe-
cific slide features annotated, including cancer cells, stroma, blood vessels
etc. while others being normal matching tissue slides.23 The AI thenwill at-
tempt to identify which slides have the cancer and check itself against an
answer key. Meanwhile, unsupervised learning is when the AI is given an
unbiased dataset and is meant to extract features and patterns by itself.
Table 2
A summary of representative studies of the applications of digital pathology in the kidn

Reference Area of focus Sample
size

Analysis
method

Explanation

Simon
et al.48

Glomerular
detection

N/A WSI, SVM,
LBP, Deep
CNN

LBP was adapted for the use of glomerul
trained a SVM and Deep CNN to recogniz

Rosenberg
et al.50

Enumerating
glomeruli

277 WSI,
Annotation
algorithm

Used WSI’s to enumerate glomeruli and c
performance of pathologists using traditi
microscopy.

Furness
et al.55

Acute renal
transplant
rejection

100 Neural
networks

100 biopsies showing different signs of r
more difficult to categorize than others,
neural networks to recognize transplant

Yeh
et al.54

ccRCC 39 WSI, SVM An SVM was utilized to automatically de
sample and to count the amount of nucle
Kernel regression was also used to estima
distribution of nuclei.

Tian
et al.52

ccRCC 395 WSI, ML,
Lasso
regression

From each WSI, 5 ROI’s were graded by
and the lasso regression model to separa
into high and low on an altered Fuhrman

3

Traditional methods of ML such as hierarchical clustering and K-means
clustering are classified as unsupervised learning while algorithms such as
neural networks and decision trees are examples of supervised learning. Re-
gardless, ML is effective at image analysis and automating slow processes.
An initial investment of training the AI and providing data is required for
an efficient method to make slide reading more objective and faster.

Deep learning and neural networks

DL neural networks have been utilized to assist in image analysis of dig-
itized slides. They were first proposed in 1943 by Warren McCulloch and
Walter Pitts as a method for an AI to replicate the functions and capability
of the human brain.14 In 1951, the first official neural network was created
by Dean Edmunds and Minsky Edmunds.15 Neural networks have been
used in various clinical and non-clinical settings to perform tasks that re-
quire some level of cognitive ability.15 Neural networks employ “neurons”,
differentmathematical functions, that take inputs, passed to them frompre-
vious neurons, and put them through specific functions, and then send the
eys.

Outcome

ar detection and
e glomeruli.

The algorithms and ML methods were able to detect glomeruli in
renal tissue with high accuracy (3% false positive) and can be
applied to numerous species such as mice, rats, and humans.

ompared them to the
onal light

It was discovered in some instances that the ratio of the amount
of glomeruli counted by the algorithm to the amount by the
pathologists was 2:1, showing the large inaccuracy of manual
enumeration.

enal rejection, some
were used to train the
rejection.

The neural networks were able to outperform pathologists. In a
set of 21 more difficult to diagnose slides, the neural network
recognized 19/21, 1 more than the best performing pathologist.

tect nuclei in the issue
i within the sample.
te the spatial

They found that the spatial distribution of tumors calculated by
the SVM was able to locate areas of necrosis or large nuclei which
in turn gave prognostic value.

both the pathologists
te the ccRCC cases
grading scale.

The grades assigned by the ML algorithm had prognostic power
while the manual ones did not. The high low grading system was
much simpler and had an accuracy of (83%).



Table 3
A summary of representative studies of the applications of digital pathology in the lungs.

Reference Area of
focus

Sample
size

Analysis method Explanation Outcome

Teramoto
et al.62

LUAD, LUSC,
Small cell
carcinoma

76 Deep CNN Use deep CNN’s to analyze cytological images and classify
between different types of lung cancers

The deep CNN, when analyzing the microscopic images
had an accuracy of 70%, which proves that deep CNN’s are
indeed useful in this type of image classification

Yu
et al.65

LUAD, LUSC 884 WSI, CNN Use a CNN to classify different types of NSCLC’s and
evaluated the performances by measuring AUC.

The CNN was able to outperform the pathologists, with
the CNN having an AUC > 0.935 and the pathologists
having an AUC > 0.877.

Sha
et al.66

NSCLC 130 WSI, DL Predict PD-L1 status of NSCLC samples and find the
correlation between PD-L1 status and tumor patterns.

The model was able to accurately predict PD-L1 status
when given the test cohort (n=82).

Hou
et al.61

LUAD, LUSC 539 WSI, CNN Used a patch-based CNN to classify between different
subtypes of NSCLC, including more difficult ones. The
patch was able to output a cancer type probability which
was turned into a final diagnosis.

Overcame difficulties of tumor heterogeneity by using MIL
to group together different instances that the machine
could then learn from.

Coudray
et al.26

LUAD, LUSC 1634 WSI, CNN Developed 2 CNN’s, 1 to classify between a certain NSCLC
subtype and healthy tissue and another to predict
mutating genes related to LUAD.

Their first CNN had an AUC of 0.97 when distinguishing
between LUAD and normal tissue and 0.99 between LUSC
and normal tissue, higher than previous studies (AUC <
0.9) Their second CNN was able to stratify patients based
on different genetic.

Yu
et al.58

NSCLC 2480 Image segmentation
pipeline, net-Cox
proportional
hazards model

Use ML techniques to analyze samples of NSCLC and
extract features that could in turn predict survival
outcomes.

Found that features such as nuclei decomposition and
texture had significant prognostic value.

Wang
et al.56

LUAD 389 Deep CNN Use a deep CNN model to recognize and diagnose LUAD. Found that important features such as shape, features, and
structures of tumors had prognostic value. Their deep CNN
was successful in recognizing the correct tissue 89.8% of
the time.

Saltz
et al.67

TME, TIL 5202 WSI, CNN Map TILs and the tumor microenvironment using a CNN
that could perform computational staining and analysis for
TILs it the given tissue sample.

They were able to use the gathered information to
calculate a spatial fraction of TILs. They also found that
different TIL patterns and structures correlated to different
survival outcomes.

Yi et al. Microvessel
counting

350 FCN Use and FCN to predict microvessels in lung images. Used the information to calculate the area of the
microvessels and the amount of cells in proximity to them.
They showed that there was a positive relationship
between the density of microvessels and positive survival
outcomes.

Wang
et al.71

LUAD 1914 CNN They used a CNN to identify tumor, stromal, and
lymphocytes in images of LUAD and then created a spatial
map out of these features.

The spatial maps were used to create a prognostic model.
They were able to conclude that a higher abundance of
stromal cells correlated to a better prognosis, though this
model does not take into account different subtypes of
lymphocytes
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output to other neurons in different layers of the neural networks. Neural
networks are extremely effective as they do not require engineered features
to translate the primary data into something meaningful but rather can
learn directly from it.21 In order for neural networks to be effective, they
must first be trained with a dataset. The datasets are typically image-
based so that algorithms can be created to diagnose patients based on the
morphology and structure in the tissue images.

There are various types of neural networks and each has its specific uses.
The most popular and widely used neural network is the convolutional neu-
ral network (CNN).13 A CNN is a model that excels at processing data that
has a grid pattern, such as digitized slides, and can learn spatial hierarchies
of features and independently extract patterns.24 A CNN usually is split into
3 types of layers: convolution, pooling, and a fully connected layer. Convolu-
tion and pooling are able to extract features and patterns from the input.
Then the fully connected layer translates the extracted features into the
form of an output. CNN’s are independent and do not require the separate
extraction of hand-crafted features within the image. The layers of a CNN
are not fully connected to each other. This means that the neurons in one
layer are only connected to other layers at specific points and with limited
neurons. The goal of a CNN is to analyze a complex image and break it
down into the core components such as different shapes, curves, lines, and
planes (if the scan is 3-dimensional) and identify useful features for
diagnosis.13 CNN’s have been used inmany different areas, especially oncol-
ogy, to provide diagnoses and gradings that are on par with board-certified
pathologists. They also help to automate arduous tasks and unlock new and
more efficientways for diagnosing patients or analyzing tumors. Chang et al.
used residual CNN’s to predict the isocitrate dehydrogenase status of gliomas
in different patients to help in prognosis and to help guide the course of
4

medical treatment.25 Meanwhile, Bejnordi et al. employed Stacked CNN’s
(feeding one CNN’s output into another as an input) to examine histopathol-
ogical tissue scans of breast lesions and aimed to use the CNN’s to categorize
breast WSI scans into benign or malignant, namely whether the scans
showed ductal carcinoma in-situ or invasive ductal carcinoma.

Liver

WSI technologies andmachine learning have seen effective applications
in histological analysis of hepatic tissue to help evaluate and treat various
diseases such as Non-Alcoholic Fatty Liver Disease (NAFLD), steatosis,
and hepatocellular carcinoma. There has also been an interest in how AI
can assist in liver transplants.29

Non-oncology

Quantification of fibrosis and steatosis
AI-based imaging analysis of WSI holds the promise to deliver objective

and quantitative histopathology evaluation and thereby increase precision.
It helps move away from inter-observer variability ensuring that appropri-
ate and uniform diagnoses are given. Fibrosis grading is crucial in under-
standing the disease stage and creating treatment plans. AI has helped
standardize evaluation methods for fibrosis, making it more quantitative
and accurate.44–47,81–83 Jedrzkiewiczl et al. quantified liver fibrosis from
liver biopsies of various liver diseases using both WSI’s and photon
microscopy.44 They used photon microscopy combined with second har-
monic generation analysis (the method by which 2 photons can combine
to double their frequency and half their wavelength) to distinguish the
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collagenfibers fromnormal tissue. They demonstrated the utility of theWSI
and AI in the objective quantification of fibrosis in the clinical liver disease
samples and further proposed that these technologies have the resolution to
analyze the spatial distribution of the collagen fibers. In another study
aiming to determine the relationship of the quantity of fiber and thefibrosis
stage, an automated computational method was applied to quantify colla-
gen and elastin fibers in WSIs of Elastica van Gieson-stained liver biopsy
specimens from 289 NAFLD patients across multiple hospitals.46 This
study revealed a nonlinear relationship between the combined collagen
and elastin area ratios, with stage 4 fibrosis graded on Brunt’s fibrosis
scale containing a far greater number of fibers compared to stages 0–3.

Accurate evaluation of steatosis is essential to the grading of liver dis-
eases and WSI-based digital analysis has been applied for quantitative as-
sessment of steatosis in H&E slides. Munsterman et al. aimed to quantify
steatosis using WSI and digital image analysis to grade disease progression
of NAFLD.10 They used an automated algorithm implemented in Fiji, an
open-source biological image analysis platform33 to grade individual
patches of the slide.10 The algorithm detected the areas of steatosis on the
WSI of the H&E slide by a size and roundness-based classifier and then cal-
culated the steatosis proportionate area (SPA) per WSI. There was a strong
correlation between SPA and the traditional steatosis grade, demonstrating
that AI can be used to objectively quantify steatosis in an automated fash-
ion, a clear unmet need by manual reading. Similarly, Nativ et al. applied
automated digital image analysis to segmented liver tissue structures to
quantify large droplet macrovesicular steatosis in order to determine liver
transplantability.35 An Active Contour Model (ACM) was used to improve
the differentiation of large droplets from small droplets by examining cell
nuclei displacement and droplet size information. The results showed an ac-
curate separation of the large lipid droplets and small lipid droplets with a
93.7% specificity and 99.3% sensitivity and a good correlation (R2=0.97)
with the manual assessment by pathologist.

In a non-clinical setting, novel methods that incorporate image analysis
into new and objective ways of scoring steatosis in mice livers have proven
useful.42,43 The liver is a highly structured organ and hepatic physiological
and metabolic processes, as well as pathological conditions, display spatial
heterogeneity. Liver biopsies represent only a small part of the liver rather
than the whole organ. In order to understand the interaction of pathological
conditions withmetabolic processes in different zones of the liver and detect
steatosis in thewhole organ, Schwen et al. registered serial sections ofWSI of
the entire mouse liver.42 The registered images were combined by AI to ob-
tain 3D analyses for the purpose of quantifying zonation of steatosis. The
globule patterns were discerned using different stainings and the types of
lipid vacuoles that were present were determined. The results reiterated
that quantitative zonated assessment by AI complements the visual descrip-
tion by pathologists. Meanwhile, Homeyer et al. attempted to overcome the
spatial heterogeneity of steatosis and reliably detect the steatosis in the liver
histological images.43 Focused score was developed using tile-based hotspot
analysis to objectively calculate statistics. Using focused score analysis, they
were able to discriminate steatosis of different sizes with good accuracy.

Prior and post liver transplant assessment
Liver transplant has also seen the effective use of WSI and AI.36,84,85 Fre-

quent biopsies and examinations of histological slides are required for trans-
plants, including confirmation of the diagnosis and the health of the donor
liver.36,84 Post-transplant, the allograft must be closely monitored to ensure
the success and acceptance of the donor liver. These tasks would benefit
greatly from digital image analysis as it would speed up slow processes and
create more inter-observer concordance.36,85 Furthermore, digital pathology
promises to offer the advantages of improved diagnostic reproducibility,
identification, and quantification in this highly specific field.36,85

Oncology

HCC diagnosis and grading
Hepatocellular carcinoma (HCC) is generally graded on the Edmonson-

Steiner system, which has 4 different grades, G1 being the most
5

differentiated and G4 the least. The grades are important as they are the
basis for treatment steps and prognosis.38 This has motivated many re-
searchers to experiment with using digital analysis to grade liver biopsies.39

Atupelage et al. used a 5-module method to identify liver cells and grade
digitized slides of HCC.39 The module steps compute pixel-wise textural
characteristics, segment the nuclei of all of the cells in the image, exclude
the non-hepatocyte nuclei belonging to the lymphocytes, histiocytes, andfi-
broblasts, and finally grade HCC according to a defined HCC grading
framework.39 This algorithmwas able to classify HCC into 5 grades (normal
liver, G1–G4HCC) with a high correct classification rate (95.97%). Hepato-
cyte nuclear texture was identified as the major feature for grading HCC
and the accuracy increased with additional features.

Liao et al. aimed to use AI to diagnose HCC and predict the underlying
mutations based on exhibited pathology phenotypes.41 First, a classifica-
tion CNNwas trained usingWSIs of HCC andmatching normal adjacent tis-
sue samples from The Cancer Genome Atlas (TCGA) and HCC tissue
microarrays from The Biobank of West China Hospital (WCH). The algo-
rithmwas able to distinguishHCC from normal tissue in an automated fash-
ionwith high accuracy. Next, a layer of the classification CNNwasmodified
to extract predictive pathology features from a training set of WSIs from the
TCGA to predict single gene mutation. Themodel was able to predict muta-
tion status for CTNNB1, p53, CSMD3, and ALB with high predictive values.
However, the predictive values changed drastically for different genes
when using the test set from the TCGA or the external validation set from
the WCH, suggesting differences or bias exist between samples in the 2 da-
tabases. This example highlights the importance of building robust data-
bases using a standardized sample collection, selection, and digitization
procedure in order to maximize and generalize the power of AI models.
Nevertheless, this study demonstrates the potential utility of AI-based digi-
tal pathology, combined with the genomic data in the diagnosis and
subtyping of HCC for precision medicine.

Kiana et al. focused on creating a DLmethod to help pathologists distin-
guish between types of similar hepatic cancers, specifically between HCC
and cholangiocarcinoma.40 They employed a cloud-deployed DL model
and trained it using a dataset of WSIs of HCC and cholangiocarcinoma.
They also used a CNN in a diagnostic tool where WSI scans could be
uploaded and the AI would then give its diagnosis and recommendations.

In another study, Feature Aligned Multi-Scale Convolutional Network
was employed to improve the detection performance of HCC based on
WSI.86 The algorithm references neighboring information in the whole
slide and outperforms the performance of the Single-Scale Convolutional
Network.86

Kidney

Non-oncology

To streamline the pathology review for disease classification in clinical
trials and minimize inter- and intra-observer subjectivity, the Nephrotic
Syndrome Study Network (NEPTUNE),50,51 the first multicenter consor-
tium was created to provide a central digital pathology repository of WSI
digitized kidney biopsies. Glass slides were scanned and uploaded at local
or central scanning sites to a central database and annotated and graded.
NEPTUNE has developed its own methods for scoring and grading to pro-
mote inter-observer reproducibility. The creation of NEPTUNE has stan-
dardized methods of grading slides and promotes the cooperation of
pathologists. NEPTUNE has also served as a comprehensive database for
training AI as the pre-scored and annotated slides allow for its application
in supervised learning.

Segmentation and enumeration of glomeruli for diagnosis and prognosis
In nephropathology, glomeruli localization and quantitative enumera-

tion are fundamental to the accurate diagnosis of renal diseases and
treatment.50 To this aspect, AI-based automated high throughput methods
usingWSIs have demonstrated prominent advantages over traditionalman-
ual reads.48,50,62 Rosenberg et al. used the biopsy WSIs from the NEPTUNE
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repository to count the glomeruli and determine the percent of globally
sclerotic glomeruli (GS) by manual enumerating annotated serial digitized
tissue sections.50 They found that the ratio of the number of glomeruli
counted by pathologists annotated WSI’s to the number counted when
using the traditional microscope could be asmuch as 2:1. There were limits
to conventional light microscopy methods when pathologists had to enu-
merate glomeruli across multiple slides and tissue sections. The percent of
GS was also significantly underestimated by conventional enumeration
using light microscopy when the percent GS was over 40%. These results
suggest that the glomeruli assessment using a computer-aided combination
of multiple WSI sections will generate more accurate data for disease clas-
sification and subsequent effective treatment and the identification of prog-
nostic markers. This study also demonstrated that even when simply
changing observation methods from a light microscope to WSI digitized
slides (without image analysis algorithms), accuracywas greatly improved.

In a study conducted by Simon et al.,48 Local Binary Pattern (LBP), a tex-
tural and image analysis method, was adapted for glomeruli detection in
WSI digitized slides. The LBP was used to train a Support Vector Machine
(SVM)Model andwas pairedwith a Deep CNN trained to recognize glomer-
uli. The algorithms were able to detect glomeruli in surrounding renal tis-
sue of the biopsy with high precision (false-positive percentages below
3%), offering robust adaptability to a variety of staining methods in multi-
ple species including rats, mice, and humans.

Kidney allograft
The application of AI to detect features such as inflammation, fibrosis,

and tubular atrophy in renal allograft is reviewed by Farris et al.78,79 Her-
man et al. used CNNs to detect and quantitate inflammatory infiltrates in
the biopsies of kidney transplant and demonstrated correlation with inter-
stitial fibrosis and tubular atrophy.80

It is often difficult for conventional methods to diagnose early stages of
allograft rejection, a stage that is critical in preventing further damage. Fur-
ness et al. employed neural networks to analyze biopsies and predict acute
renal transplant rejection.55 They trained their neural network using data
and graft biopsies that had been graded by numerous pathologists within
the United Kingdom to simplify the supervised learning process. The train-
ing set included 100 standard slides and a group of 25 slides that were dif-
ficult to classify, being borderline between showing signs of rejection and a
healthy transplant. Their neutral network demonstrated high performance
for both regular and difficult cases, correctly diagnosed all 20 standard
cases and 19 out of 21 difficult ones, 1 more than the best performance
by any pathologist in this study. By employing the more difficult training
set, they were able to achieve their goal of having the neural network out-
perform the pathologists in areas where there were traditionally struggles.

Oncology

Grading and prognosis of clear cell renal cell carcinoma
Histologic subtype of kidney tumors correlates with prognosis and pa-

tient survival.63 Clear cell renal cell carcinoma (ccRCC) represents the
most common type of malignant tumor in the kidneywith a 5-year survival
of 76%.63 Although the traditional 4-tiered Fuhrman nuclear grading sys-
tem is still the gold-standard for ccRCC, there is an innate level of moderate
inter- and intra-observer variability due to the complicated nature of the
4 tiers.53

WSI’s and image analysis methods were first explored by Yeh et al. to
automatically grade ccRCC.54 Thirty-nine digitized H&E stained ccRCC
slides of varying grades were analyzed by automatic stain recognition algo-
rithms. An SVM classifier was trained to automatically isolate and detect
nuclei in the tissue sample. First, different slides were taken and segmented
into smaller sizes. In the next step, SVM counted the number of nuclei in
each of the smaller pieces of the grid. Finally, the sizes of the nuclei were
estimated and kernel regression was used to estimate the spatial distribu-
tion of the nuclei to determine the grade of the ccRCC. They found that
on the Furhman nuclear grading scale, grades 1 and 2 were nearly indistin-
guishable as with 3 and 4. As a result, they decided to simplify the grading
6

into high or low. The spatial distribution of the nuclei can also be used to
locate regions of the tumor with larger nuclei or with necrosis which are
very important in helping to determine a prognosis for patients.

In a recent study, Tian et al. used a large sample set to demonstrate the
power ofWSI andML in improving ccRCC grading systems with prognostic
significance. The WSI images of 395 ccRCC cases along with the clinical
data were used for automated analysis to develop a 2-tiered Fuhrman’s
grading system.52 Five regions of interest (ROIs) from each WSI were
picked and graded manually by pathologists according to the Fuhrman’s
grading system as well as by an automated computer-based imaging analy-
sis and a Lasso regression trainedMLmodel. The Lassomodel split the grad-
ing into 2 tiers: high and low, which simplified the system while providing
high accuracy (83%). There was a significant association between pre-
dicted grade and overall survival thereby providing prognostic value.
High-grade cases predicted by the Lasso model were associated with poorer
prognosis and lower overall survival rates compared to the low-grade cases.
In contrast, the grades assigned by manual reading do not have prognostic
power.

Lung

The applications of digital pathology and AI in the lung have been al-
most exclusively limited to the clinical oncology setting. Despite the success
in oncology, there has been limited application of AI towards the
non-oncology lung diseases. One non-oncology paper published recently
described combining human expertise and deep learning algorithm to de-
veloped models to extract features to diagnose interstitial pneumonia
with high accuracy.87

Diagnosis and classifications of lung cancers

The diagnosis of lung cancer subtypes and stages relies on the examina-
tion of the morphological phenotype of lung biopsies, a challenging and
labor-intensive task for even highly experienced pulmonary pathologists.
The accurate classification of lung cancer subtypes and stages is crucial in
determining the appropriate therapy out of the many treatment options
(chemotherapy, targeted therapy, or immunotherapy) as well as predicting
a patient's prognostic outcome. However, the current gold-standard for di-
agnosing and grading lung cancers is highly subjective and qualitative
and not able to capture the tumor heterogeneity and existence of multiple
different subtypes in the same patient. Conceptually, WSI of lung biopsies
coupled with AI offers potential advantages in the diagnosis by leveraging
the rich collection of tumor samples of diverse subtypes and stages and
matched normal samples in a centralized lung cancer repository. The
power of DL can also be harnessed to identify key features and train the
model to recognize these features in a fully automated fashion. To this as-
pect, AI and specifically CNN’s have been used extensively to help diagnose
and classify different subtypes of lung cancer, especially for the 2most prev-
alent subtypes, adenocarcinoma (LUAD) and squamous cell carcinoma
(LUSC).26,61,62,65,66 Hou et al. used a patch-based CNN to classify subtypes
of NSCLCs including mixed-subtypes which are particularly difficult to
handle.61 They extracted pathological features and trained classifiers to
output a cancer type probability at a patch level and then aggregate the
patch-level classification into a final decision of the entire image. They
also utilized an expectationmaximizationmodel to identify distinct and im-
portant patches within the WSI and feed them to the CNN as training data
so that the cancer types would be recognized solely by important and dis-
tinct areas. To overcome traditional CNN’s difficulty in dealing with
tumor heterogeneity, they used Multiple Instance Learning (MIL) to allow
a more efficient supervised learning that is able to group together different
instances that the machine can then learn from.

In a comprehensive study, Coudray et al. similarly developed deep CNN
algorithms using 1634 WSIs from TCGA to classify LUAD, LUSC, and nor-
mal lung tissues independently collected at their own institution.26 They
also trained and tested their models using pixel tiles and aggregated the
tile-level classification by averaging the prediction probability into a
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slide-level classification. The accuracy (AUCs of 0.97 and 0.99 for LUAD
and LUSC classification and tumor versus normal tissues, respectively)
was significantly higher than previous studies (AUC < 0.9) and on par
with the accuracy of pathologists. Furthermore, using WSIs taken from
the Genomic Data Commons Database, they trained another CNN model
to predict frequently mutated genes pertaining to LUAD and demonstrated
that mutations of 6 genes (STK11, EGFR, FAT1, SETBP1, KRAS, and TP53)
can be predicted by their model using pathology images alone with reason-
able accuracy. These promising results suggest that the deep CNN can not
only assist pathologists to diagnose and classify LUAD, but also can stratify
patients based on their genetic mutation. As the treatment therapies for
LUAD and LUSC differ significantly, gene mutation can further affect the
choice of therapies. This information is crucial in determining the most ap-
propriate treatment and subsequently achieving precision medicine.

Cancer prognosis

The current gold-standard for diagnosing and grading is not able to de-
termine disease progression and predict survival outcomes.59 Another
promising application of AI in lung oncology is to explore the relationship
between pathological features, patient prognosis, and survival outcomes.
Both Yu et al. and Wang et al. aimed to use ML to analyze NSCLC tumor
samples to extract key features and link them to the survival outcomes.56,58

Yu et al. built fully automatedMLmodels based on 2186WSIs of LUAD and
LUSC from TCGA and successfully distinguished shorter- and longer-term
survivors of Stage I LUAD and LUSC.58 First, they used an image segmenta-
tion pipeline, where a series of connected algorithms are used to segment
images and extract quantitative tumor features. The top classifier features
were selected to train the models to distinguish the survival outcomes.
Models were then validated with 294 images from the Stanford Tissue Mi-
croarray Database. After testing the effectiveness through a net-Cox propor-
tional hazards model, they found that features such as nuclei
decomposition and texture had significant prognostic value and helped pre-
dict survival outcomes.58,60 Meanwhile, Wang et al. used a deep CNN
model to recognize tumors and diagnose LUAD. They found that tumor
structure, features, and shapes could have prognostic value.56 They trained
an automated deep CNNmodel to detect tumor regions, recognizing correct
types of tissue 89.8% of the time. They then developed the prognostic
model that could determine survival rate using tumor regional shape. A
model was built using the National Lung Screening Trial (NLST) cohort
and validated independently by a TCGA LUAD cohort. Their model, based
on 15 well-defined tumor features such as area, perimeter, filled area, and
convex area, was able to categorize people into low- and high risk. After
adjusting for affecting patient demographics such as age and gender, the
risk model independently predicted survival outcomes with high statistical
significance. These novel modeling approaches by Yu andWang have dem-
onstrated that quantitative pathological features can be utilized to success-
fully predict the disease prognosis and survival outcomes of LUAD and
LUSC patients and their accuracy is superior to the prognostic prediction
based on the tumor grade and stage calls made by the conventional manual
pathology reading. One can expect that similar approaches can be ex-
panded to prognosis prediction for other tumor types.

In a recent study, Qaiser et al. used a weakly supervised survival
convolutional neural network (WSS-CNN) with a visual attention mecha-
nism to predict the overall survival of the lung and bladder urothelial
carcinoma.88 They demonstrated that the features identified is predictive
of clinical outcomes of both tumors and could be used to stratify patient
for precision medicine.

Tumor microenvironment (TME) characterization

The TME is a complex and heterogeneous system consisting of an extra-
cellular matrix, stromal cells, and immune cells and it plays an important
role in supporting tumor growth and tumor invasion from immune
surveillance.73 Characterization of TME can inform treatment decisions
and predict patient responses. Tumor-infiltrating lymphocytes (TIL) are
7

generally a positive prognostic factor and their spatial organization in the
TME may be a key factor in the potential response to immunotherapies.74

Characterization of TME, specifically the study of TILs, has also seen the ap-
plication of neural networks to the analysis for prognostic value.57,68,69 The
approach of these studies is to map the TILs within the lung tissue using
neural networks and then correlate to survival. Saltz et al. accomplished
this by using a CNN that was able to perform computational staining and
analysis for the presence of TILs in patches of WSI images from 13 tumor
types available in TCGA.67 A spatial fraction of TILs was then calculated
and local spatial structures of TILs were assessed. Statistics analyses showed
that different TIL patch patterns and structures correlated to the survival
outcomes.

Other microenvironment aspects also hold prognostic potential.
Microvessels and angiogenesis is an important target in the treatment of a
malignancy.70 Traditional microvessel counting is labor-intensive and diffi-
cult to perform manually, however this information is crucial and has not
been used to its potential due to feasibility issues holding it back. Yi et al.
used fully convolutional networks (a type of neural network) to predict
microvessels in H&E-stained lung images.70 They then calculated both
the amount of area that the microvessels occupied and the percentage of
cells in proximity to the microvessels that were tumor cells. There was a
strong correlation between the density of microvessels and a positive sur-
vival outcome. Similarly, Rączkowski et al. applied deep learning to seg-
ment TME of NSCLC and demonstrated predictive power of tumor
mutations and patient survival.89

Mapping different types of cells in the TME is impractical by manual
reading and would benefit greatly from automation. Wang et al. used a
CNN to accurately identify stromal cells, tumor cells, and lymphocytes in
the pathological images of LUAD, and essentially create a “spatial map”
of 3 cell types of tumor, stromal, and lymphocyte cells out of the pathology
image.71 Image features extracted from these “spatial maps” were used to
develop and predict a prognostic model. The statistical analysis showed
that high abundance of stromal cells correlated with a better prognosis.
This result has to be taken with the consideration that their algorithm
only recognizes 3 cell types and is incapable of discerning lymphocyte sub-
types without the immunostaining. Despite these limitations, the study
serves as a starting point in the application of AI in TME characterization,
highlights the challenges in quantitative characterization of the complex
TME, and calls for further advances in this important area of research.

Overcoming hurdles

AI has the potential to revolutionize pathology and there is a growing
interest in applying WSI and AI to pathology evaluation in both the clinical
and non-clinical research. Though it has seen success, it currently has not
reached the state of being a standard part of the discipline. The use of AI re-
quires both extensive monetary and time investment. In order for WSIs to
be effective, they often must be paired with algorithms that are able to per-
form image analysis. It takes a considerable amount of expertise and exper-
imentation to develop and validate the AI algorithms before they can be
used to analyze datasets and extract meaningful information. Pathologists
would also have to be trained towork with the AI. Furthermore, AI technol-
ogies are not simple tomarket. In fact, the United States FDA rates AI-based
software as Risk level II or III: the high-risk gradeswhich requires aminimal
510(k) approval pathway to market. In other countries too, such as ones in
the European Union, there are strict laws on the use of AI technologies and
producers face similar restricting regulations in those countries as in the
United States.76,77 This has caused significant hurdles to market and prolif-
erate WSI scanners and other AI devices.

Despite these challenges, this field of research is rapidly evolving and
there is growing interest for doctors, pathologists, engineers, and computer
scientists to collaborate.6 One successful example of such collaboration is
the creation of the aforementioned kidney database NEPTUNE.51

NEPTUNE has developed intricate methods so that digitized slides can be
uploaded locally or at centralized locations and has even developed their
own scoring systems for various diseases to promote inter- and intra-
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observer concordance and uniformity. Meanwhile, the Digital Pathology
Association has also compiledWSIs of various tissues into a comprehensive
repository that can be accessed through their website. Still other organiza-
tions, which do not specifically specialize inWSI, have their own sizable re-
positories, with their data being frequently used in different studies and
clinical trials.26 The largest of these being TCGA. The Innovative Medicines
Initiative (IMI), a consortium between the European Union is building
BIGPICTURE, a central repository of digital pathology slides to support
the development of AI tools.75 The Pharmaceutical Industry Consortium
plans to contribute 3 million high quality digital pathology slides from
non-clinical safety studies and clinical studies. Digital slides from clinical
trials will also be contributed. Additionally, the consortium member com-
panies will provide data harmonization expertise and guidance on interac-
tions with health authorities. This initiative is expected to bring
tremendous advancement in the integration of digital pathology and AI in
non-clinical and clinical settings. Groups such as Pantanowitz et al. are
working towards testing the capabilities of AI and WSI and validating
their usage as diagnostic tools so that they can be incorporated seamlessly
into pathology workflows.72

Conclusions

Digital pathology paired with ML has demonstrated substantial advan-
tages over the conventional labor-intensive, low-throughput, qualitative,
and descriptive manual slide reading by pathologists in the diagnosis, clas-
sification, and prognosis of various diseases. The advent of WSI technolo-
gies has brought opportunities to build centralized image repositories and
collaborate between institutions around the world. In the meantime, it
has also brought challenges of how to process the vast amount of the digital
image data and extract meaningful information from it. Deep ML-based AI
has the power of processing large datasets, extracting features and patterns
that are not visible to the human eye, and making more informed decisions
regarding disease treatment and patient management. As the technologies
develop and the regulatory pathways clear, an extensive integration of AI
in pathology evaluation in clinical and non-clinical settings is expected to
occur in the next decade. Collectively, these events will transform the cur-
rent practice by providing objective and deeper knowledge of digital im-
ages, helping pathologists and doctors make informed decisions, thereby
achieving precision medicine and ultimately improving patient’s health.
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