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Abstract

Motivation: Tandem mass spectrometry data acquired using data independent acquisition (DIA) is challenging to in-
terpret because the data exhibits complex structure along both the mass-to-charge (m/z) and time axes. The most
common approach to analyzing this type of data makes use of a library of previously observed DIA data patterns (a
‘spectral library’), but this approach is expensive because the libraries do not typically generalize well across
laboratories.

Results: Here, we propose DIAmeter, a search engine that detects peptides in DIA data using only a peptide se-
quence database. Although some existing library-free DIA analysis methods (i) support data generated using both
wide and narrow isolation windows, (ii) detect peptides containing post-translational modifications, (iii) analyze data
from a variety of instrument platforms and (iv) are capable of detecting peptides even in the absence of detectable
signal in the survey (MS1) scan, DIAmeter is the only method that offers all four capabilities in a single tool.

Availability and implementation: The open source, Apache licensed source code is available as part of the Crux
mass spectrometry analysis toolkit (http://crux.ms).

Contact: william-noble@uw.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Data-independent acquisition (DIA) mass spectrometry (MS) is a
powerful technique to study the proteome (Doerr, 2015; Venable
et al., 2004). Relative to data-dependent acquisition (DDA), DIA
offers a broader dynamic range and more reproducible peptide de-
tection. However, to achieve accurate quantification, DIA methods
typically employ wide isolation windows to acquire a full mass
range of fragmentation spectrum (MS2) data. As a result, multiple
peptides are usually co-isolated and co-fragmented in the same MS2
scan. The resulting complex spectra cannot be effectively analyzed
using conventional database search engines (Craig and Beavis, 2004;
Dorfer et al., 2014; Geer et al., 2004; Kim et al., 2010; Perkins
et al., 1999) that follow a ‘one-peptide-per-spectrum’ paradigm.

A common class of methods for analyzing DIA data relies on
spectral libraries that store, for each charged peptide, fragmentation
and retention time information (Bruderer et al., May 2015;
Demichev et al., 2020; MacLean et al., 2010; Röst et al., 2014;
Searle et al., 2018; Wang et al., 2015). However, spectral libraries
are expensive to produce, requiring considerable effort and resour-
ces devoted to sample preparation and data acquisition.
Furthermore, the resulting libraries are typically not reusable across
different laboratories or different instrument platforms (Bruderer
et al., 2017). Some of these challenges can be addressed by generat-
ing spectral libraries in silico (Gessulat et al., 2019; Liu et al., 2020;

Tiwary et al., 2019; Zhou et al., 2017); however, the resulting pre-
dictions depend on the instrument and specific acquisition parame-
ters and are typically less accurate than experiment-specific libraries
(Searl et al., 2020). Furthermore, current state-of-the-art in silico
prediction methods provide limited support for post-translational
modifications (PTMs) (Tiwary et al., 2019).

An alternative class of library-free methods circumvent some of
the challenges associated with generating and using spectral libraries
(Li et al., 2015; Ting et al., 2017; Wang et al., 2015). Library-free
methods detect peptides from DIA data by using a peptide sequence
database, rather than a library. The library-free approach is particu-
larly valuable when production of a spectral library is impractical.
These methods can be subdivided into spectrum-centric and peptide-
centric approaches. Spectrum-centric methods, such as DIA-Umpire
(Tsou et al., 2015), extract coeluting and co-varying precursor and
fragment ion groups into pseudospectra. These pseudospectra are
then fed into a conventional database search engine designed for
DDA-based peptide identification. The extraction of pseudospectra
depends heavily on the quality of the precursor signals in the precur-
sor (MS1) scans; hence, DIA-Umpire by design cannot detect pepti-
des with undetectable precursor signals, which commonly arise due
to limitations of intrascan dynamic range (Ting et al., 2017). Unlike
spectrum-centric methods, peptide-centric methods such as PECAN
(Ting et al., 2017) query the DIA data for the best supporting evi-
dence of detection for each peptide in the database. However,
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empirical evidence suggests that existing library-free methods are
not as sensitive as library-based ones (Searle et al., 2018; Zhang
et al., 2020).

Here, we introduce DIAmeter, which detects peptides directly
from DIA data without dependence on a spectral library (Fig. 1).
The input to DIAmeter includes m/z-centroided DIA data and a
proteome FASTA database. DIAmeter then searches the DIA data
using a standard DDA search engine, allowing multiple peptide-
spectrum matches (PSMs) per DIA spectrum. The PSMs are then
augmented with auxiliary features describing various types of evi-
dence supporting the detection of the associated peptide, including
two different peptide-spectrum match scores, analysis of the precur-
sor (MS1) signal, comparison of observed and predicted chromato-
graphic retention time, and coelution of precursor and peptide
fragment ions. PSMs are filtered using a weighted combination of
these scores, and the PSM feature vectors are then processed by the
Percolator machine learning post-processor (Käll et al., 2007) to in-
duce a ranking on peptides along with statistical confidence esti-
mates, where highly ranked peptides are detected in the DIA data
with stronger confidence.

Compared to existing DIA analysis methods, DIAmeter offers
four primary advantages (Table 1). First, DIAmeter by design can
incorporate DIA data acquired using wide precursor isolation
windows (e.g. up to 25 Da). In this setting, the MS2 spectra are
more complex because multiple peptides are more frequently co-
fragmented. Second, DIAmeter can readily detect peptides with
PTMs, as long as they are included in the database. Third,
DIAmeter makes no assumptions about instrument-specific frag-
mentation patterns, instrument resolution or patterns of back-
ground noise. Fourth, DIAmeter uses precursor information as a
feature but does not require such evidence to detect a peptide.
The open source, Apache licensed source code is available as part
of the Crux mass spectrometry analysis toolkit (http://crux.ms)
(Park et al., 2008).

2 Approach

The DIAmeter workflow (Fig. 1) consists of the following steps.

1. Construct a bipartite graph between the observed DIA data and

the list of theoretical precursors (i.e. charged peptides) in the

database using a DDA search engine.

2. Compute a set of features for each edge in the graph, and elimin-

ate some edges based upon a composite score aggregated from

these features.

3. Run the remaining edges, with associated features, through a

modified version of the Percolator algorithm.

4. Use target-decoy competition at the peptide level to estimate a q-

value (i.e. the minimal FDR threshold at which a given peptide is

accepted) for each ranked peptide.

These steps are described in more detail in Sections 2.1–2.4.

2.1 Bipartite graph construction
We conceptualize the DIAmeter approach using an undirected bi-
partite spectrum-to-precursor graph G ¼ ðU;V;EÞ that matches
DIA spectra and a precursor database (Fig. 1). Specifically, we de-
fine U to be the set of all MS2 spectra, each of which corresponds in
a one-to-one fashion to a specific acquisition range in a single MS1
scan. For each spectrum u 2 U, we let tu and du denote its corre-
sponding MS scan and acquisition range, respectively. The precursor
database V is an unordered list of charged peptide sequences. For
each precursor v 2 V, we let mv, cv and pv denote its corresponding
precursor m/z value, charge state, and peptide sequence, respective-
ly. Conversely, u 2 U and v 2 V can also be indexed by utu ;du

and
vpv ;cv

, respectively.
The edges E represent potential peptide-spectrum matches.

Thus, for v 2 V and u 2 U, an undirected edge e ¼ ðu; vÞ 2 E con-
nects u and v if and only if the theoretical m/z value of the precursor
v falls within a specified acquisition range du. Because each spectrum
u 2 U may potentially be matched to a large number of precursors
when the DIA isolation window is wide, we only keep the top k
PSMs for each spectrum based upon their primary score. In this
work, we use the SEQUEST XCorr score (Eng et al., 1994) as the
primary score, computed using the Tide search engine (Diament and
Noble, 2011). We specify the parameter - -top-match 1000 and then
keep the top-scoring k PSMs for each charge state c 2 C where
C ¼ f1;2; . . . ; 5g. In this way, for each spectrum u 2 U, at most jCj �
k incident edges are added to the bipartite graph.

2.2 Calculation of edge features
For each edge e ¼ ðu; vÞ 2 E, DIAmeter computes a set of eight fea-
tures. These include three features generated by the Tide search en-
gine—charge, delta_cn, delta_lcn—plus five edge features, described
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Rank            Peptide          Charge     Xcorr
  #1   NSSGNALNK      +1      2.51

  #2     QDSHNAIK      +1      1.93

  #3 AGDAESQSR      +1      1.65

  ...            ...         ...        ...
  #k   GKFIDGVGK      +1      1.39 ...

...
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Raankkka     Peptide         Additional features        Composite score       Retain/Discard
Raankkka     Peptide         Additional features        Composite score       Retain/Discard

...
...

Rank     Peptide         Additional features        Composite score       Retain/Discard
  #1 NSSGNALNK         10.35     

#2 QDSHNAIK         12.51     

#3 AGDAESQSR          8.96     

  ...         ...                       ...            ...                    ...
#k GKFIDGVGK         16.38     

  

  

  

  

Input: DIA data and a peptide database Tide search identifies multiple matches per spectrum

Matches are reduced by using edge features DIA-tailored Percolator ranks peptides by q-valuep p y q

Rank     Peptide           Percolator score      q-value
  #1 LRELHSLNIK           4.81     4.13e-13

#2 AGDAESQSR           4.13     3.82e-11

#3   HYGDQTFSSSTVK           3.76     8.49e-11

  ...         ...                       ...        ...        

#4 GKFIDGVGK           3.52     2.16e-11

#5         DHTLSQMR           3.19     4.88e-11

#6         NAISDNVK           3.05     5.12e-11

Fig. 1. Overview of DIAmeter. The algorithm takes as input DIA data from a single run and a peptide sequence database. The output is a list of peptides, ranked by q-value,

which is defined as the minimal FDR threshold at which that peptide is accepted. The Tide search step reports the top k peptide-spectrum matches (PSMs) per spectrum for

charge states þ1 through þ5. In this work, k¼ 5. The edge features computed during composite scoring are described in Section 2.2
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in detail below, each of which quantifies one type of evidence for or
against the match between the spectrum u and the precursor v.

XCorr with Tailor calibration. The XCorr score is calibrated using
the non-parametric Tailor calibration method (Sulimov and Kertész-
Farkas, 2020), by specifying the parameter –use-tailor-calibration T.
In brief, for each edge e ¼ ðu; vÞ 2 E, the Tailor method calibrates
the score XCorru;v by dividing by the 99th quantile of the observed,
spectrum-specific score distribution. Specifically, say that spectrum
u is scored with respect to N candidate peptides, each with charge
state cv, during the database search. The resulting edge scores are
sorted in decreasing order XCorrð1Þu ; . . . ;XCorrðNÞu , and the 99th
quantile of this score distribution is obtained by identifying the edge
score XCorrð½N=100�Þ

u at position ½N=100�, where ½�� denotes the round
operator. The Tailor calibrated XCorr score is defined as

wT
u;v ¼

XCorru;v

XCorrð½N=100�Þ
u

:

Precursor intensity rank. The observed precursor intensity can pro-
vide important evidence supporting the existence of a particular pep-
tide in the sample, although as noted previously, lack of detectable
signal in the precursor scan does not necessarily imply that the pep-
tide has not been detected in the DIA data. For each edge
e ¼ ðu; vÞ 2 E, we denote IP

u;mv
as the maximum observed precursor

intensity at the precursor m/z value mv in the MS scan tu, within a
user-specified tolerance. Using the raw precursor intensity directly is
potentially problematic because the precursor intensity may exhibit
biases specific to retention time, and because we do not want a pep-
tide with undetectable precursor signal to receive a score of zero.
Therefore, we use the log-rank of precursor intensity instead of the
raw intensity, represented as log jfi 2 IP

u ji � IP
u;mv
gj, where IP

u is the
set of all observed peak intensities in the MS scan tu. In addition to
the monoisotope of the precursor, we also consider Mþ1 and
Mþ2 isotopes. Therefore, the precursor intensity rank score is
defined as

wP
u;v ¼ �log jfi 2 IP

u ji � IP
u;mv
gj

�log jfi 2 IP
u ji � IP

u;mvþ1=cv
gj

�log jfi 2 IP
u ji � IP

u;mvþ2=cv
gj

Fragment matching P-value. The fragment-matching P-value, analo-
gous to the matching score in MS Amanda (Dorfer et al., 2014),
measures how likely the theoretical fragments are to match the
observed MS2 peaks by chance. Specifically, for each edge
e ¼ ðu; vÞ 2 E, by denoting Nu;v and Nv as the number of matched
fragment peaks and all theoretical peaks, respectively, the fragment-
matching P-value score is defined as the negative logarithm of the
probability of matching at least Nu;v peaks using the cumulative bi-
nomial distribution:

wF
u;v ¼ �log

XNv

k¼Nu;v

Nv

k

� �
pu

kð1� puÞNv�k

where pu is the probability to match one peak in u by chance. This
value can be calculated as the fraction of the m/z range that is cov-
ered by the observed peaks. Analogous to the peak-picking in MS

Amanda (Dorfer et al., 2014), the m/z range is divided into 10
equal-length segments, and in each segment, the 10 most intense
peaks are preserved. Let z

ð1Þ
u ; . . . ; z

ðNuÞ
u be the sorted m/z values,

where Nu ¼ 100 is the total number of peaks remaining in the spec-
trum u. Note that this peak-picking procedure is only used when cal-
culating this particular feature. The fragment matching P-value pu is
calculated as

pu ¼
j [

Nu

i¼1
½zðiÞu � s; zðiÞu þ s�j

ðzðNuÞ
u þ sÞ � ðzð1Þu � sÞ

;

where s specifies the matching tolerance.

Difference between observed and predicted retention time. An im-
portant factor to validate a candidate peptide is the difference be-
tween the observed and predicted retention times (RT). We use the
scan number as a proxy for the observed RT, defining the set of
observed RTs for all spectra as RTobv

U ¼ ftuju 2 Ug. In parallel, we
use the machine learning method DeepRT(þ) (Ma et al., 2018), as a
proof of principle, to define the set of predicted RTs for all precur-
sors as RTpred

V ¼ ftvjv 2 Vg, where tv indicates the predicted RT for
the precursor v 2 V. For each edge e ¼ ðu; vÞ 2 E, the normalized
observed and predicted RT can be represented as

NormRTu ¼
jft0 2 RTobv

U jt0 � tugj
jRTobv

U j
;

and similarly for NormRTv. Thus, the RT difference score is defined
as

wR
u;v ¼ �jNormRTu �NormRTvj:

Note that DeepRT can only make RT predictions for unmodified
peptides and peptides with methione oxidation or phosphorylation.
For peptides with other types of modifications, DIAmeter can either
use the default value of wR

u;v ¼ �0:5 or switch to an alternative RT
prediction method tailored for arbitrary PTMs, such as DeepLC
(Bouwmeester et al., 2020).

Precursor and fragment coelution. Coelution of precursor ions and
corresponding fragment ions is an important piece of evidence sup-
porting detection of a specific peptide (Tsou et al., 2015). In
DIAmeter, this score is calculated as the normalized dot product be-
tween the corresponding elution profiles. Specifically, for each edge
e ¼ ðu; vÞ 2 E, the precursor elution profile spans nearby spectra
within �t scan cycles (�t ¼ 2 in our study), calculated as

EluP
mv
¼ ½IP

utu��t;du ;mv
; . . . ; IP

utuþ�t;du ;mv
�, where IP

u;mv
is the maximum

observed precursor intensity at the precursor m/z value mv in the
MS1 scan tu within some specified tolerance (see Section 3.4 for
details). Similarly, by denoting F v as the set of all fragment m/z val-
ues of the precursor v, for each fragment m/z f 2 F v, the fragment

elution profile is calculated as EluF
f ¼ ½IF

utu��t;du ;f
; . . . ; IF

utuþ�t;du ;f
�, where

IF
u;f is denoted as the maximum observed fragment intensity at the

fragment m/z value f in the MS2 scan u, also within some specified

Table 1. Comparison of library-free peptide detection methods for DIA data

Spectrum-centric Peptide-centric In silico library

DIAmeter DIA-Umpire PECAN PrositþEncyclopeDIA

Supports wide isolation windows � �

Detects PTMs � � �

Instrument independent � �

Detects peptides with undetectable precursor � � �

i436 Y.Y.Lu et al.



tolerance. We then define the set of normalized dot products be-
tween the precursor and its fragments as

Eluu;v ¼ h
EluP

mv

kEluP
mv
k2

;
EluF

f

kEluF
f k2

ijf 2 F v

( )
;

where h�; �i indicates the inner product operator. The final precursor/
fragment coelution score wE

u;v is the average of the top 3 values in
Eluu;v.

All of DIAmeter’s hyperparameters are summarized in
Supplementary Table 1.

2.3 Edge re-scoring and filtering
Using the four scores described above, DIAmeter computes an ag-
gregate score function and uses it to eliminate some edges in the bi-
partite graph. First, each score is linearly rescaled so that the 1st
quantile and the 99th quantile map to the range ½0;1�. Thereafter,
the aggregated score is wu;v ¼ wT

u;v þ aP �wP
u;v þ aF �wF

u;v þ aR �
wR

u;v þ aE �wE
u;v; where the four non-negative hyperparameters

aP; aF ; aR and aE balance the contributions from the corresponding
score components. Subsequently, for each spectrum u 2 U and
charge state c 2 f1; . . . ; 5g, an edge is eliminated if its aggregated
score is less than the aggregated score of the top-scoring edge
according to XCorr. Formally, we denote v

ð1Þ
u;c as the precursor corre-

sponding to the maximum XCorr score in the set
fv 2 Vjðu; vÞ 2 E; cv ¼ cg. The filtering step then discards an edge
(u, v) if wu;v < w

u;v
ð1Þ
u;c

.

2.4 Percolator tailored for DIA
Finally, all of the remaining edges are provided as input to the
Percolator machine learning algorithm. Percolator’s semi-supervised
algorithm learns to re-rank these edges by iteratively training a series
of support vector machine classifiers, where negative examples are
decoy edges and positive examples are high-scoring target edges.

Rather than using the FDR estimates provided by Percolator,
DIAmeter calculates its own peptide-level FDR estimates. This
choice is motivated by Percolator’s use of a spectrum-level target-
decoy competition, in which only the highest-scoring PSM per spec-
trum is retained. In general, spectrum-level results are not useful for
DIA analysis; therefore, we prefer to carry out the competition at
the level of precursors, rather than PSMs. Hence, DIAmeter calls
Percolator using the option - -tdc F, which disables target-decoy
competition. DIAmeter then selects the top-scoring edge per target-
decoy pair; i.e. among all edges associated with a given precursor
and that precursor’s corresponding decoy, only a single score is
retained. The FDR estimate for a given score threshold s is then cal-
culated as usual:

FDR ¼ min 1;
jfp : sðpÞ > s ^ p is a decoygj

maxð1; jfp : sðpÞ > s ^ p is a targetgjÞ

� �
;

where s(p) is the Percolator score associated with precursor p.
One potential challenge associated with this approach to precur-

sor-level FDR estimation is created by Percolator’s cross-validation
procedure. This procedure equally divides the PSMs into three splits,
from which the PSMs in two splits are used for training and the
PSMs in the third split for prediction (Granholm et al., 2012). This
approach leads to a potential for ‘leakage’ of information, in the
case where, say, a decoy appears in the training set but its corre-
sponding target is in the test set. To avoid this problem, we modified
Percolator so that all PSMs related to the same target/decoy pair are
assigned to the same cross-validation split.

3 Materials and methods

3.1 Datasets
We used three different datasets to evaluate the performance of
DIAmeter, in comparison to the three representative state-of-the-art
methods mentioned in Table 1. The datasets were chosen to include

different instrument platforms, wide and narrow isolation window
sizes, fixed-window and variable-window acquisition schemes, and
different dynamic ranges (Supplementary Table 1). Full details
about the three datasets are provided in Supplementary Section
S3.2. For all three datasets, the database search was performed with
the following parameters: fully tryptic digest with up to two missed
cleavages, static modifications of carbamidomethyl for cysteines,
and up to three variable modifications of oxidation of methionine.

3.2 Data
LFQBench. This is a widely used DIA benchmark for peptide identi-
fication and quantification (Navarro et al., 2016), which consists of
lysate mixtures from human, yeast and E. coli mixed in predefined
proportions. We carried out the evaluation by using LFQBench sam-
ples acquired on two mass spectrometers (TripleTOF 5600 and
TripleTOF 6600) with two acquisition schemes (32 fixed windows
of 25 m/z effective precursor isolation and 64 variable windows
optimized for roughly equal precursor partition) over a 120-min gra-
dient. The data as.wiff files, as well as the FASTA database combin-
ing human, yeast and E.coli proteins, were downloaded from the
ftp://ftp.pride.ebi.ac.uk/pride/data/archive/2016/09/PXD002952.

Plasma. This dataset is derived from a large cohort designed to as-
sess the heritability and environmental effects on blood plasma pro-
tein abundance (Liu et al., 2015). The data was acquired on a
TripleTOF 5600 mass spectrometer with 32 fixed windows of 25 m/
z effective precursor isolation over a 120-min gradient. The data
as.wiff files were downloaded from ftp://ftp.pride.ebi.ac.uk/pride/
data/archive/2015/01/PXD001064.

OxMetYeast. This dataset consists of three mass spectrometry
experiments where different isolation window sizes were explored in
combination with gas phase fractionation, using a yeast lysate with
selective oxidation of methionine. The resulting DIA data, as.raw
files, include (i) one run covering the 400–1200 m/z mass range
acquired using 20 m/z isolation windows; (ii) two runs acquired
using 10 m/z isolation windows to cover 400–800 and 800–1200 m/
z mass ranges; (iii) four runs acquired using 5 m/z isolation windows
covering 400–600, 600–800, 800–1000 and 1000–1200 m/z ranges,
respectively. The dataset has been deposited to the PRIDE repository
(Vizcaı́no et al., 2016) under dataset identifier ProteomeXchange
with accession PXD025385 (Submitted 23 Jan 2021, awaiting
PRIDE ID.).

To prepare the yeast sample, 25 lg of tryptic yeast peptides, pre-
pared as described by Studer et al. (2016), were resuspended in 30 ll
of oxidizing solution containing 100 mM DMSO, 5% acetonitrile
and 1 M HCl and reacted at room temperature for 20 min. Peptides
were then diluted twofold with 0.1% TFA and desalted over a 2-
layer C18 Stage tip (Empore, 3 M) (Rappsilber et al., 2007), that
had been previously conditioned with 20 ll methanol, followed by
20 ll 50% acetonitrile 0.5% acetic acid, and 20 ll 0.1% TFA.
Peptides on the Stage tip were washed 3 times with 20 ll of 0.1%
TFA and eluted with 50% acetonitrile 0.5% acetic acid. Eluted pep-
tides were then lyophilized.

Lyophilized peptides were resuspended in 50 ll of 5% ACN, 5%
formic acid and subjected to liquid chromatography coupled to tan-
dem MS. A total of 1.5 ll of sample was loaded onto a 100 lm �
35 cm fused silica capillary tubing packed with 1.9 lm ReproSil-Pur
C18 (Dr. Maisch) reversed-phase material and separated using a
gradient of 5–36% acetonitrile in 0.125% formic acid delivered at
300 nl/min over 73 min on an EASY-nLC 1200 nano-flow UHPLC
system (Thermo Scientific). Peptides were online analyzed on an
Orbitrap Eclipse Tribrid MS (Thermo Scientific) with a total 90-min
acquisition time. All methods consisted of an MS1 scan at 60 K reso-
lution every 3 s with 100% normalized AGC target and a maximum
injection time of 50 ms followed by DIA MS2 scans events acquired
at 30 K resolution with a maximum injection time of 54 ms and 4e5
target AGC.
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File conversion. The.raw files generated by Orbitrap Eclipse Tribrid
were converted to.mzXML (used in DIAmeter and DIA-Umpire)
and.mzML (used in EncyclopeDIA) files by using the msconvert pro-
vided with ProteoWizard (Kessner et al., 2008). The.wiff files gener-
ated by TripleTOF instruments were converted to.mzXML
and.mzML files by using the qtofpeakpicker provided with
ProteoWizard (Kessner et al., 2008), with the default options: –reso-
lution 20 000 –area 1 –threshold 10 –numberofpeaks 0.

Noise reduction. DIAmeter applies a noise reduction strategy (Hu
et al., 2019) to TripleTOF 5600 data by following the assumption
that peaks occurring in a single scan, without any corresponding
peaks in preceding or succeeding scans, are noise. Specifically, the
MS2 peak is eliminated if neither of the adjacent scans contains the
same peak within a specified tolerance. For the Orbitrap and
TripleTOF 6600 instruments, noise reduction is not applied due to
their high signal-to-noise ratio.

3.3 Consistent FDR estimation across methods
One significant challenge when comparing different peptide detec-
tion methods is that each method chooses to estimate FDR in its
own fashion. Therefore, an improvement in statistical power for
method A over method B may arise either because A outperforms B
or because B makes more conservative FDR estimates than A.

To address this challenge, we use a consistent ‘pseudo-target’
scheme to evaluate all methods. The approach, similar to previously
described ‘entrapment’ strategies (Granholm et al., 2011), is as fol-
lows. First, given a target peptide database, a decoy peptide data-
base is generated of the same size. Both sets of sequences are
provided to the peptide detection method, but both are labeled as
targets. The method then uses its own internal procedure to generate
a decoy database, search the concatenated target-decoy database,
and induces a ranking on the peptide as output. We discard the
reported FDR and instead use the pseudo-targets to estimate FDR,
as in Section 2.4. The inclusion of pseudo-targets leads to a slight
loss of statistical power but is only done for evaluation purposes.

3.4 Benchmark settings
DIAmeter. The first step of DIAmeter involves a database search
that considers, for each spectrum, all possible precursors whose cor-
responding m/z value falls within the DIA isolation window. To do
so, the precursor mass for each DIA spectrum is calculated based on
the center m/z value of its corresponding isolation window, and
searched using the Tide search engine (Diament and Noble, 2011)
with the parameter –precursor-window-type mz –precursor-window
<isolation window radius>. Afterwards, the bipartite spectrum-to-
precursor graph is constructed based on the top k¼5 PSMs for each
spectrum and for each charge state. In the subsequent feature calcu-
lation step, a precursor and fragment mass tolerance of 10 ppm is
used for all Orbitrap datasets, and 30 ppm for all TripleTOF
datasets.

The DIAmeter hyperparameters are selected via cross-validation
over the eight experiments involved in the evaluation. For each ex-
periment regarded as the test set, we treated the remaining seven
experiments as the training set and select the best-performing hyper-
parameters from a grid in which each of the a values (aP; aF; aR; aE)
can take any value in the set f0; 0:05; 0:1; 0:2; 0:4; 0:8; 1:6;
3:2; 6:4; 12:8g. The performance of the chosen hyperparameters is
evaluated by the number of accepted peptides at a 1% peptide-level
FDR.

DIA-Umpire. For DIA-Umpire, the preprocessed.mzXML files were
analyzed by the signal extraction module of DIA-Umpire (version
2.0) to generate pseudo pectra in MGF format, at all quality tiers,
which were subsequently searched using the Tide search engine
(Diament and Noble, 2011). We kept the search settings as close as
possible to the DIAmeter settings to facilitate a fair comparison. The
complete list of DIA-Umpire parameter settings is provided in
Supplementary Table 1.

PECAN. We compared against Walnut, a re-implementation of
PECAN provided by EncyclopeDIA (version 0.9.0) (Searle et al.,
2018), with similar setting as DIAmeter settings. Full parameters are
in Section 3.2.

PrositþEncyclopeDIA. For EncyclopeDIA (Searle et al., 2018), we
used an in silico library generated by Prosit (Gessulat et al., 2019).
The fragmentation prediction in Prosit is adjusted based on the opti-
mal normalized collision energy setting to account for DIA-specific
fragmentation, as suggested previously (Searl et al., 2020). For the
Prosit-generated spectral library, by design peptides with length in
the range of ½7; 30� and charge state C ¼ f2;3g are considered.

4 Results

4.1 Diameter confidently detects more peptides
We systematically evaluated the performance of DIAmeter relative
to DIA-Umpire, PECAN and PrositþEncyclopeDIA by counting the
number of distinct peptides detected in various datasets at a 1%
FDR threshold (Fig. 2). For this analysis, FDR is estimated using the
pseudo-targets described in Section 3.3.

We first focused on the LFQBench dataset, which allows us to
consider how different instrument platforms impact the sensitivity
of peptide detection. This dataset is comprised of four mass spec-
trometry experiments acquired on two different types of mass spec-
trometer with two different acquisition schemes. At every setting,
DIAmeter consistently detects more peptides than the three compet-
ing methods, with an average increase of 14.6% relative to DIA-
Umpire, 77.7% relative to PECAN and 48.5% relative to
PrositþEncyclopeDIA. The relatively large performance improve-
ment relative to PECAN and PrositþEncyclopedia may arise be-
cause these methods are tailored for Orbitrap instruments. For
example, the Prosit prediction model was trained exclusively on
Orbitrap data (Gessulat et al., 2019).

Not surprisingly, the TripleTOF 6600 provides improved pep-
tide detection over its predecessor, the 5600, consistently across the
four analysis methods. For example, for DIAmeter switching from
the TripleTOF 5600 to the 6600 yields an average increase of
46.2% in the number of detected peptides. The only notable excep-
tion to this trend is PECAN, where no peptide is confidently
detected within 1% FDR threshold on the TripleTOF 6600. We
hypothesized that this failure might be due to the large size of the
peptide database. This hypothesis is supported by the observation
that, when we randomly discarded 70% of the targets and their cor-
responding decoys from the database, the number of detections
increased from 0 to 844.

Next, we tested how the performance of each of the four meth-
ods changes as we vary the size of the precursor isolation window.
In general, employing a wide isolation window drastically increases
the complexity of the resulting spectra and in turn decreases detec-
tion sensitivity (Ting et al., 2017). To test how isolation window
size impacts detection performance, we used the OxMetYeast data-
set, which consists of three mass spectrometry experiments acquired
using isolation windows of 20 m/z, 10 m/z and 5 m/z. As expected,
all four methods detect more peptides as the window size decreases.
For example, DIAmeter detects 8903, 14017 and 19 622 peptides,
respectively. On average across the four methods, the number of
detected peptides increases by 23.5% when we switch from 20 m/z
to 10 m/z and by 32.6% when we switch from 10 m/z to 5 m/z.
Among the four methods, DIAmeter performs best overall for nar-
rower windows, and second best (behind PrositþEncyclopeDIA) for
20 m/z windows.

Finally, to investigate the robustness of the four analysis methods
to samples showing a large dynamic range of peptide abundance, we
used a human plasma dataset acquired on a TripleTOF 5600.
DIAmeter detected 1811 unique peptides in this dataset, outper-
forming DIA-Umpire, PECAN and PrositþEncyclopeDIA, which
reported 1551, 941 and 1038 unique peptides, respectively. Thus,
overall, DIAmeter shows robust peptide detection performance
across a variety of datasets, in comparison with three
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methodologically distinct methods for DIA analysis. On the other
hand, investigation of detection rates at other FDR thresholds
(Fig. 3) suggests that, in some cases, the relative performance among
methods depends on the selected FDR threshold. In particular, in
most tripleTOF experiments, DIAmeter consistently performs well
across a range of q-value thresholds, whereas in Orbitrap experi-
ments, DIAmeter performs best for q-values � 0.01.

4.2 Diameter can detect peptides with undetectable

MS1 signal
A central challenge in the analysis of any protein tandem mass spec-
trometry dataset is the huge dynamic range of protein abundances in
many complex biological samples. In DIA analysis, this variability
in protein abundance means that some peptides without detectable
precursor signals may still be identifiable on the basis of their frag-
mentation scans (Ting et al., 2017). We hypothesized that these low
abundance peptides may be particularly problematic for a method
like DIA-Umpire, which is designed to construct pseudo-spectra on
the basis of precursor signals.

To test this hypothesis, we compared the peptides detected by
DIA-Umpire and DIAmeter in three representative datasets acquired
on Orbitrap, TripleTOF 5600 and TripleTOF 6600 mass spectrome-
ters. We reasoned that if a peptide exhibits low precursor signal,
then DIA-Umpire is unlikely to construct a pseudo-spectrum that

corresponds to that peptide. Therefore, for each dataset, we
searched for peptides that are detected with high confidence (<1%
FDR) by DIAmeter but for which DIA-Umpire produces no corre-
sponding pseudo-spectrum. In this analysis, we say a peptide corre-
sponds to a pseudo-spectrum if the two m/z values are within the
user-specified tolerance (in units of ppm) and if the retention time
associated with the pseudo-spectrum is within 615 s of the peak
peptide detection. We further classified the detected precursors with
no corresponding pseudo-spectra into two types: those for which no
m/z match is available at any retention time (Type 1), and those for
which a match exists, but only outside of the 615 s RT window
(Type 2).

Our analysis shows that DIAmeter detects many Type 1 and
Type 2 precursors, regardless of the mass spectrometer type. In the
data acquired on an Orbitrap (OxMetYeast with 20 m/z isolation
window), among 11 355 precursors detected by DIAmeter with high
confidence, 1064 (9.4%, 526 Type 1 and 538 Type 2) do not coin-
cide with any pseudo-spectra extracted by DIA-Umpire at any qual-
ity tier. Among the 538 Type 2 precursors, 477 are identified by
DIA-Umpire as different precursors with low confidence (average q-
value 47.4%). Analogously, in the experiments acquired by the
TripleTOF 5600 and TripleTOF 6600 (LFQBench with fixed win-
dow scheme), among 9968 and 14 476 confidently detected precur-
sors reported by DIAmeter, 117 (1.2%, 29 Type 1 and 88 Type 2)
out of 9968 and 205 (1.4%, 32 Type 1 and 173 Type 2) out of
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14 476 do not coincide with any pseudo-spectra extracted by DIA-
Umpire at any quality tier, respectively. Furthermore, 87 out of 88
and 164 out of 173 detected Type 2 precursors are identified by
DIA-Umpire as different precursors with low confidence (average q-
value 62.3% and 58.5%) in two settings, respectively.

Finally, we showcase confidently identified peptides detected in
different instrument platforms (Fig. 4). These peptides exhibited the
lowest q-value among all peptides that lacked any corresponding
pseudo-spectra. It is worth mentioning that DIAmeter can confi-
dently detect precursors with both Mþ1 and Mþ2 isotope signals
but without any monoisotopic signal (Fig. 4b), which might be
caused by glutamine deamidation. Thus, we demonstrated the cred-
ibility of peptides without detectable precursor signals, in terms of
the observed fragment ions in the matched MS2 spectrum as well as
the coeluting ion chromatograms.

4.3 Necessity of each DIAmeter component
A key component of DIAmeter is its use of a variety of sources of
evidence to support detection of a single peptide, including the qual-
ity of the match between the observed and theoretical spectra, prop-
erties of the precursor isotope distribution, the difference between
observed and predicted retention time, and properties of the peptide
chromatogram. To evaluate the extent to which each of these fea-
tures contributes to the peptide detection, we ran an ablation study,
in which we modified DIAmeter to include various subsets of the
full collection of score features. In particular, we considered 10

variants of DIAmeter: five in which we eliminate a single feature
(the XCorr score, the fragment matching P-value, the precursor in-
tensity, the RT difference score and the chromatographic score), and
five in which we retain only a single feature. In each case, we run
DIAmeter using the reduced features for edge re-scoring, edge filter-
ing and Percolator post-processing. We carried out this analysis on
the OxMetYeast (20 m/z window) and LFQBench experiments, rep-
resenting three different instrument platforms.

The results of this analysis (Fig. 5) suggest that all five features
contribute positively to DIAmeter’s performance. In particular, the
Tailor calibrated XCorr score appears to be the most informative
feature, from both the inclusion and exclusion perspective, suggest-
ing that peak matching provides the most important evidence in
DIA data. Conversely, the fragment matching P-value appears to be
the least informative feature on its own. Nonetheless, in combin-
ation with other features, inclusion of the fragment matching P-
value facilitates better peptide detection, particularly on TripleTOF
6600 instruments.

It is worth mentioning that the utility of some features appears
to vary by instrument. For example, exclusion of the precursor/frag-
ment coelution score or the RT difference score makes a negligible
contribution to peptide detection for data generated on the
Orbitrap, but removing this feature from DIAmeter compromises
performance on the TripleTOF instruments. Finally, the inclusion of
five features in DIAmeter does not fully capture the sample/instru-
ment/acquisition variations. It would be an interesting pursuit in the
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future to extend DIAmeter to incorporate richer information such as
sample complexity, dynamic range, mass accuracy and m/z
windows.

4.4 Comparison of FDR control methods
We implemented the pseudo-targets FDR estimation strategy
described in Section 3.3 in order to ensure a fair comparison of dif-
ferent DIA analysis methods; however, this approach also allows us
to compare the different FDR estimation procedures employed by
these methods. To do so, we plot the nominal q-values reported by
each method against the q-values estimated using the hidden
pseudo-targets. The results on three different instrument platforms
(Fig. 6) suggest that, in general, three of the DIA analysis methods
tend to be conservative, in the sense that the nominal q-values are
larger than the pseudo-target q-values. The exception is
PrositþEncyclopeDIA, which yields the reverse direction for two
out of three datasets. Note that these results cannot conclusively
demonstrate either the validity or invalidity of the nominal q-values
because the FDR is defined as the expectation (roughly, the average
over all possible datasets) of the proportion of false discoveries at a
given score threshold. Nonetheless, the results are suggestive that
some of these methods (in particular, DIAmeter, DIA-Umpire and
PECAN) could potentially gain statistical power simply by improv-
ing their methodology for FDR estimation.

5 Discussion

In this work, we introduced a novel and versatile method,
DIAmeter, to detect peptides directly from DIA data without de-
pendence on a spectral library. Compared to existing DIA analysis
methods, DIAmeter offers several advantages. First, DIAmeter by
design can incorporate DIA data acquired using wide precursor iso-
lation windows. Second, DIAmeter is based upon a conventional
DDA database search engine, which is readily able to detect peptides
with PTMs. Third, DIAmeter works well on a variety of instrument
platforms, because the method makes no assumptions about instru-
ment-specific fragmentation patterns, instrument resolution or pat-
terns of background noise. Forth, DIAmeter by design can detect
peptides with weak or even undetectable precursor signals. Note
that despite focusing solely on peptide detection, DIAmeter can re-
port the peptide detection results in the pepXML format, which can
be readily used as input to existing quantification tool such as
Skyline (MacLean et al., 2010).

This work points to several promising directions for future re-
search. One possible extension is to accelerate DIAmeter by convert-
ing the matching paradigm from our current spectrum-to-peptide
matching approach to the spectrum-to-peptides matching approach
employed by MSFragger (Kong et al., 2017), with the aid of a frag-
ment index. Another promising direction could be customizing the

spectrum matching score function to incorporate prior knowledge
about peptide fragmentation (Bai et al., 2016). This prior knowledge
may include encouraging repeated identifications of the same pep-
tide in consecutive RT scans, the complementarity of fragment ions
matched to the same spectrum, and discouraging a single peak
matching to multiple peptides.

Finally, for instruments with poor MS1 signals, a possible alter-
native approach to the precursor/fragment coelution score wE

u;v

would involve measuring the fragment/fragment coelution score
instead.
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