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ABSTRACT

Background: Microsporum canis is a zoonotic disease that can cause dermatophytosis in 
animals and humans.
Objectives: In clinical practice, ketoconazole (KTZ) and other imidazole drugs are commonly 
used to treat M. canis infection, but its molecular mechanism is not completely understood. 
The antifungal mechanism of KTZ needs to be studied in detail.
Methods: In this study, one strain of fungi was isolated from a canine suffering with clinical 
dermatosis and confirmed as M. canis by morphological observation and sequencing analysis. 
The clinically isolated M. canis was treated with KTZ and transcriptome sequencing was 
performed to identify differentially expressed genes in M. canis exposed to KTZ compared 
with those unexposed thereto.
Results: At half-inhibitory concentration (½MIC), compared with the control group, 453 
genes were significantly up-regulated and 326 genes were significantly down-regulated (p 
< 0.05). Quantitative reverse transcription polymerase chain reaction analysis verified the 
transcriptome results of RNA sequencing. Gene ontology enrichment analysis and Kyoto 
Encyclopedia of Genes and Genomes enrichment analysis revealed that the 3 pathways of 
RNA polymerase, steroid biosynthesis, and ribosome biogenesis in eukaryotes are closely 
related to the antifungal mechanism of KTZ.
Conclusions: The results indicated that KTZ may change cell membrane permeability, destroy 
the cell wall, and inhibit mitosis and transcriptional regulation through CYP51, SQL, ERG6, 
ATM, ABCB1, SC, KER33, RPA1, and RNP genes in the 3 pathways. This study provides a new 
theoretical basis for the effective control of M. canis infection and the effect of KTZ on fungi.
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INTRODUCTION

Microsporum canis is a ubiquitous protozoan pathogenic fungus [1,2]. M. canis mainly infects 
dogs, cats, and other animals, and then the animal infects humans [3]. Children and 
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immunocompromised individuals are more readily infected [4]. The main symptoms are hair 
loss, tinea capitis, tinea pedis, and onychomycosis [1,5]. Currently, various oral and topical 
antifungal drugs such as griseofulvin, terbinafine, itraconazole (IT), fluconazole (FLZ), 
and imidazole drugs are commonly used to control M. canis infection [6], among which 
ketoconazole (KTZ), as an imidazole drug, is the most frequently used [7]. Imidazoles are 
synthetic antifungal drugs that can selectively inhibit fungal cytochrome P-450-dependent 
14-α-demethylase, change the permeability of cell membranes, causing the loss of important 
intracellular substances, leadingto fungal death [8]. Imidazole exhibits selective toxicity to 
fungi and this is mainly related to the inhibition of ergosterol biosynthesis and interference 
with other membrane lipids [9,10]. Although the antifungal mechanism of KTZ is similar to 
other imidazole drugs, its potential antifungal mechanism warrants further elucidation.

Through transcriptome sequencing technology, it is possible to obtain almost all transcript 
sequence information of a species in a certain state [11,12]. Transcriptome research allows 
the study of gene function and gene structure at a holistic level, revealing specific biological 
processes, and has been widely used in basic research, clinical diagnosis, and drug research 
and development [11-13]. In this study, we utilised transcriptome sequencing to explore 
differentially expressed genes (DEGs) and the pathways regulated by DEGs of M. canis after 
KTZ exposure, which clarified the underlying molecular mechanisms, signalling pathways 
of inhibition of KTZ on M. canis. Our study provides a new theoretical basis for the effective 
control of M. canis infection and the mechanism of KTZ inhibition on fungi.

MATERIALS AND METHODS

Cultivation and identification of M. canis
M. canis samples were taken from the skin of dogs suffering from skin diseases from 
an animal hospital in Shenyang, China. Subsequently, clinical samples were cultured 
using Sabouraud's Dextrose Agar medium (Coolaber, China), and colonies similar to the 
morphology of M. canis were isolated and purified by using potato dextrose agar (PDA) 
medium (Solarbio, China). Subsequently, Tryptone Soy Broth (Solarbio) was cultured in a 
fungus incubator at 28°C for 96 h, and the concentration of the fungal solution was adjusted 
to 2 × 104 CFU/mL. KTZ was purchased from Solarbio Ltd. (Solarbio) and dissolved in 
dimethyl sulfoxide (DMSO). The experiment was divided into 2 groups: the test group (T4,T5, 
and T6) treated with KTZ at a concentration of ½MIC for 6 h, and the control group (T1,T2, 
and T3) treated with DMSO at the same concentration. Tests on specimens in each group 
were repeated 3 times.

Identification of M. canis
The purified and cultured fungi were subjected to Diff-Quik® staining, morphological 
observation, and 18s ribosomal DNA (rDNA) sequence analysis. The DNA of M. canis was 
extracted using the Ezup column fungal genomic DNA extraction kit (Sangon Biotech Co., 
Ltd., China). Polymerase chain reaction (PCR) was carried out to amplify the DNA of M. canis. 
The primer sequences used for PCR were (NS1: f:5′-GTAGTCATATGCTTGTCTC-3′ and NS6: 
5′-GCATCACAGACCTGTTATTGCCTC-3′). PCR was performed under following conditions: 
a hot start at 95°C for 4 min, then 30 cycles of 94°C (45 sec), 55°C (45 sec), and 72°C (60 sec), 
followed by extension at 72°C for 10 min. The resulting PCR amplification products were 
sequenced by Sangon Biotech Co., Ltd. BLAST (http://www.ncbi.nlm.nih.gov) was used to 
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identify sequences similar to the M. canis gene. All similar sequences were found from NCBI 
and a phylogenetic tree built after DNASTAR's alignment.

The minimum inhibitory concentration of KTZ against M. canis
M. canis and RPMI1640 medium were thoroughly mixed, centrifuged, and the fungal 
suspension obtained; the concentration of the RPMI1640 fungal suspension was adjusted to 
4 × 104 CFU/mL. According to the CLSI M27-A standard, a drug susceptibility test was carried 
out on M. canis by micro-broth dilution method. We inoculated the fungal solution into a 
96-well plate, dissolved KTZ with DMSO and added it to the fungal solution so that the final 
concentration of KTZ therein was 0 μg/mL, 0.195 μg /mL, 0.39 μg/mL, 0.78 μg/mL, 1.56 μg/
mL, 3.13 μg/mL, 6.25 μg/mL, 12.5 μg/mL, and 25 μg/mL. The same concentration of DMSO 
without KTZ was used as a negative control. The 96-well plate was placed in an incubator and 
held at 28°C for 7 days whereafter the optical density value was measured.

Library preparation for RNA and transcriptome sequencing
Total RNA was isolated from samples using the TRUEscript RT MasterMix (XinBaiJi 
Biotech, China) according to manufacturer's instructions. According to the manufacturer's 
instructions, NanoDrop 2000 (Thermo Fisher Scientific, USA) was used to measure the RNA 
concentration and purity, and the Agilent Bioanalyzer 2100 system (Agilent Technologies, 
USA) was employed to identify RNA integrity.

After the total RNA passed quality inspection, the magnetic beads connected to Oligo (dT) were 
used to enrich the eukaryotic messenger RNA (mRNA). The extracted mRNA was randomly 
interrupted into short fragments by RNA fragmentation buffer. Using fragmented mRNA as 
a template, a single-stranded complementary DNA (cDNA) was synthesised using random 
hexamers with 6 bases. Then buffer, dNTPs, RNaseH, and DNA polymerase I (Pol I) were added 
for double-strand cDNA synthesis. AMPure XP beads were used to purify double-stranded 
products, and the activities of T4 DNA polymerase and Klenow DNA polymerase were used 
to repair the sticky ends of DNA to form blunt ends. AMPureXP beads were used to perform 
fragment selection. Finally, PCR amplification was performed to obtain the final sequencing 
library. After the library was qualified, the Illumina Hiseq4000 was used for sequencing.

Data analysis
Cutadapt and internal Perl scripts were utilised to delete reads that contain adapter 
contamination and low-quality or uncertain bases. FastQC (www.bioinformatics.
babraham.ac.uk/projects/fastqc/) was used to identify the quality of the sequence, including 
determining the quality scores Q20 and Q30 and the GC content of the clean data. All 
downstream analyses used high-quality clean data. Then we compared the high-quality 
sequence obtained after quality control with the designated reference genome.

Differential expression analysis
Differential expression analyses of 2 groups were performed using the DESeq2. The resulting 
p values were adjusted using the Benjamini and Hochberg's approach for controlling the 
false discovery rate. Genes with an adjusted p value of less than 0.01 found by DESeq2 were 
assigned as differentially expressed.

Gene ontology (GO) and KEGG pathway enrichment analyses
GO and KEGG databases were used for enrichment analysis of DEGs to ascertain the 
functions of DEGs. The Goseq R software package was used for the GO enrichment analysis 
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of DEGs. KOBAS software was employed to test the statistical enrichment of DEGs in the 
KEGG pathway.

Verification of DEGs
Total RNA was isolated from samples using TRUEscript RT MasterMix (XINBAIJI Biotech) 
according to manufacturer's instructions. The A260/A280 ratio of RNA was detected using an 
ultra-micro-nucleic acid protein analyser (Analytik Jena AG, Germany). When the A260/A280 
ratio of RNA ranged from 1.8 to 2.0, it was used in subsequent experiments.

According to the instructions provided by the manufacturer, the first strand of cDNA was 
synthesised using TransScript First-Strand cDNA Synthesis kit (AiDLAB Biotech, China). 
Thereafter, according to the manufacturer's requirements, quantitative reverse transcription 
PCR (qRT-PCR) was conducted on an ABI 7500 real-time PCR system using SYBR Green 
QPCR Mix (DF Biotech, China) under the following conditions: thermal cycling denaturation 
at 95°C for 3 min, followed by 40 cycles at 95°C for 10 sec, annealing at 60°C for 30 sec, and 
then extension. PheRS can be used as an internal reference gene. Finally, the relative change 
in mRNA was calculated using the 2−ΔΔCt method. Table 1 displays the primers used in the 
experiment. The primers were synthesised by Sangon Biotech Co., Ltd.

Statistical analysis
All statistical tests were conducted using SPSS 19.0 software (IBM, USA) and the results were 
expressed as mean ± standard deviation (X ± SD). To reveal the difference between 2 groups, 
2-tailed Student's t-tests were used and significant differences among multiple groups 
were evaluated by using 1-way analysis of variance and least significant difference methods. 
Differences of p < 0.05 were considered significant.
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Table 1. Primer sequences of messenger RNA used for quantitative real-time polymerase chain reaction
Gene name Primer sequence (5′-3′) Annealing temperature (°C)
SC F: ACTGTTGGTGATGGATAC 58

R: ACTTGGTTAGAGACTTTGT
CYP51 F: AGATATGGTGTGGAACTTA 58

R: CATCAATAGAGCAATCATCAT
SQLE F: ATTTCCCGCCCATACTTA 58

R: AACTGATGCTGAAGGTAGA
ERG6 F: TGAACAACTACTATGACCTT 58

R: GTGATTGCCTGAAGAAAG
ABCB1 F: CAGCAGTGACGCCTTATC 58

R: ATAGAGTATGAAGTTGGAGTGATG
RPA1 F: ATTGCCAACTTGCTTCTC 58

R: CGTAAGATGCCGATAGACT
ATM F: CTCAATGGTCTGCGGAAT 58

R: AGGCTGTGGTAGTAATGGT
RNP F: GATTGTCGTGGAGAAACTTA 58

R: TGCCGATTCATTGGTAAC
KRE33 F: CTATACCATCCTCCAGTCAA 58

R: TGCCTATGTTGCCTATGA
PheRS F: CTTGAGCCGAGAACTACT 58

R: GGTCTCGTTCGTTATCGCAATT

https://vetsci.org


RESULTS

Identification of M. canis 
The isolated M. canis colony was white, the mycelium on the PDA medium appeared in the 
form of white wool, and the colony exuded a yellow pigmented secretion (Fig. 1A). After 
Diff-Quik staining, the fungus was found to be fusiform, thick, rough, thorny, and able 
to produce large conidia (Fig. 1B). The DNA sequencing results showed that the 18s rDNA 
sequence of the isolated fungal strain was highly homologous to the 18s rDNA sequence of 
the M. canis. A phylogenetic tree was constructed with similar 18s rDNA sequences (Fig. 2). 
The results indicated that the isolated fungal strain is closely related to M. canis area under the 
first moment curve. According to the phylogenetic analysis of the morphology and 18s rDNA 
sequence, the fungal strain was identified as M. canis.

Determination of MIC of KTZ
As shown in Fig. 3, KTZ plays a significantly inhibitory role in the growth of M. canis. The 
results showed that the MIC of KTZ against M. canis was 1.56 μg/mL.
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A B

1 cm 100 µm

Fig. 1. Morphological characteristics of M. canis. (A) Colonies of M. canis strain on potato dextrose agar plates. 
(B) Diff-Quik staining of M. canis (10 × 40).
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Fig. 2. Homology analysis based on partial 18s ribosomal DNA sequences of the M. canis and the related 
microorganisms. 
AUMC, area under the first moment curve. 
*The DNA sequence of M. canis compared here.
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Statistics pertaining to DEGs
As shown in the volcano diagram of DEGs in Fig. 4, there are 779 DEGs, of which 453 DEGs 
are up-regulated and 326 DEGs are down-regulated.

DEGs performed cluster analysis and cluster genes had the same or similar expression 
patterns. The clustering results of DEGs are shown in Fig. 5. The expression levels of DEGs in 
the same group were similar. The expression levels of DEGs in different groups differed. The 
results show that the sample repeatability was good, and that KTZ significantly changed the 
gene expression of M. canis.
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Fig. 4. Differential gene expression volcano diagram. Each point in the differential gene expression volcano 
diagram represents a gene, and the abscissa represents the logarithmic value of the difference in the expression 
of a certain gene of the 2 samples; the ordinate refers to the negative logarithm of the statistically significant 
change in gene expression. In the figure, green dots represent down-regulated DEGs, red dots are up-regulated 
DEGs, and black dots represent non-DEGs. 
DEG, differentially expressed gene.
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GO enrichment analysis
Through GO annotation, 779 DEGs were enriched and analysed from 3 perspectives: 
biological process, cell composition, and molecular function (Fig. 6).

In the “biological process” category, the subcategories of “biological process” and “cellular 
process” have the most enriched DEGs. In the category of “cell components”, “cells”, “cell parts”, 
“organelles”, and “membrane parts” have the most enriched DEGs. In the category of “molecular 
function”, the 2 most enriched subcategories of DEGs are “binding” and “catalytic activity”.

KEGG annotation and pathway enrichment analysis
As shown in Fig. 7, DEGs are highly enriched in the 3 pathways of RNA polymerase, steroid 
biosynthesis, and ribosome biogenesis in eukaryotes. Therefore, these 3 pathways were 
selected for follow-up research.

qRT-PCR identification of DEGs
Ten DEGs, including SC, CYP51, SQLE, ERG6, ABCB1, RPA1, ATM, RNP and KRE33, were 
screened from 3 pathways of RNA polymerase, steroid biosynthesis, and ribosome biogenesis 
in eukaryotes (Table 2). The expression levels of DEGs were identified by qRT-PCR. As shown 
in Fig. 8, DEGs SC, CYP51, SQLE, ERG6, and ABCB1 in the KTZ group were up-regulated (p 
< 0.05), and the expressions of RPA1, ATM, RNP and KRE33 were down-regulated compared 

7/13https://vetsci.org https://doi.org/10.4142/jvs.2021.22.e4

Transcriptome sequencing of Microsporum canis treated with ketoconazole

T1
4

3

2

1

0

T2 T3 T4 T5 T6

Fig. 5. Cluster analysis of DEGs. The abscissa represents the sample name and the clustering result of the sample, 
and the ordinate represents the clustering result of the DEGs. The different columns in the figure represent 
different samples, where control samples are T1, T2, and T3, and ketoconazole samples are T4, T5, and T6. Different 
rows represent different genes. The color represents log10 (FPKM + 0.000001) of gene expression in the sample. 
DEG, differentially expressed gene.
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with the control group (p < 0.05). The experimental results of qRT-PCR were aligned with the 
results of transcriptome sequencing.

DISCUSSION

The antifungal mechanism of the most commonly used clinical imidazole drugs is very 
complex. In addition to inhibition of the activity of 14α-demethylase, some imidazole drugs 
also exert an inhibitory effect on other related enzymes present on the cell membrane 
[8,14]. For example, when Candida albicans is treated with voriconazole, an accumulation of 
yeast sterols and squalyl alcohol is found [8,15], however, it is unclear whether this result is 
ascribed to the interaction between voriconazole and some enzymes related to ergosterol 
synthesis on the cell membrane, or the secondary effect of 14α-demethylase activity after 
being inhibited. Besides, the mechanism of action of imidazole drugs is also related to 
the target, such as FLZ and IT, in addition to inhibiting the 14α-demethylase activity of 
Cryptococcus neoformans, it can also inhibit the reduction of obtusifolione to the corresponding 
obtusifoliol [16,17]. This effect causes the accumulation of methylated sterol precursors 
to affect the function of cell membranes [16,17], therefore, the antifungal mechanism of 
imidazole drugs requires further study. KTZ is commonly used in clinical practice to treat 
M. canis infections. To study the antifungal mechanism of KTZ on M. canis, we collected and 
purified a fungus from dogs with fungal skin diseases. After morphological observation and 
DNA sequence alignment, the fungus was identified as M. canis.
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Based on the experiments of Xiao et al. [18], we used a half MIC of KTZ to treat M. canis. This 
is a stress concentration for M. canis that can better reflect the antifungal mechanism of KTZ 
on M. canis. Sequencing results showed that after KTZ treatment, a total of 779 genes were 
significantly differentially expressed, of which 453 genes were up-regulated and 326 genes 
were down-regulated. These genes will be the key to explore the antifungal mechanism of 
KTZ on M. canis.

In the results of GO enrichment analysis, the DEGs were most abundant in “biological 
process”, “cell process”, “cell”, “cell part”, “organelle”, “membrane part”, “binding”, and 
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Table 2. Differentially expressed genes were screened from 3 pathways of RNA polymerase, steroid biosynthesis, 
and ribosome biogenesis in eukaryotes
Gene name Gene ID Fold change (up/down)
SC Gene-MCYG_05458 Up
CYP51 Gene-MCYG_07307 Up
SQLE Gene-MCYG_02365 Up
ERG6 Gene-MCYG_05366 Up
ABCB1 Gene-MCYG_06184 Up
RPA1 Gene-MCYG_00357 Down
ATM Gene-MCYG_03240 Down
RNP Gene-MCYG_02807 Down
KRE33 Gene-MCYG_05927 Down
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“catalytic activity” subcategories. Coincidentally, inhibition of fungal cytochrome P-450-
dependent 14α-demethylase changes the permeability of the cell membrane, resulting in the 
loss of intracellular nutrients and organelles: this is the main antifungal mechanism of KTZ 
[8-10], therefore, we speculated that the antifungal mechanism of KTZ against M. canis was 
closely related to the presence of these differential genes.

The further to study the role of these differential genes in the antifungal mechanism of KTZ 
on M. canis we screened 3 pathways of RNA polymerase, steroid biosynthesis, and ribosome 
biogenesis in eukaryotes by KEGG enrichment analysis. The DEGs in these 3 pathways were 
verified by qRT-PCR. The results of qRT-PCR of the differential genes are consistent with the 
sequencing results, which show that our sequencing results were correct.

Among the DEGs, CYP51 (sterol 14α-demethylase) is the most conserved cytochrome P450 
enzyme in the entire system [19]. In eukaryotes, the P450 enzyme is an enzyme necessary for 
sterol biosynthesis, and sterol is an essential component of the plasma membrane, which is 
essential for maintaining the function of fungal cell membranes [20,21]. CYP51 protein is 
also a target for azole drugs. It demethylates the 14-α position of lanosterol to form ergosterol 
to change the permeability and fluidity of the cell membrane [21,22]. The up-regulation 
of CYP51 expression in this experiment indicated that KTZ may play an antifungal role by 
mediating the P450 enzyme regulated by CYP51.

The other 2 genes related to the cell membrane are squalene monooxygenase (SQLE) and 
ERG6. The SQLE is a key flavin adenine dinucleotide-dependent enzyme in the biosynthesis 
pathway of ergosterol and cholesterol, and it is a drug used to inhibit the growth of 
pathogenic fungi or lower cholesterol levels in potential targets [23]. Zare et al. [24]. found 
that, after treating C. albicans with Te nanoparticles (NPs) (0.2 mg/mL), Te NPs can inhibit 
SQLE and lead to an increase in the level of SQLE gene expression. This is consistent with our 
experimental results. Therefore, we speculate that KTZ can inhibit SQLE, so that squalene 
accumulates to kill M. canis. The ERG6 gene encodes the S-adenosylmethionine-dependent 
sterol C-24 methyltransferase in the ergosterol biosynthetic pathway [25]. Studies have 
shown that when fungi are resistant to azole drugs, ERG3 and ERG6 may play a role in the 
biosynthetic pathway of ergosterol [26]. The expression of ERG6 was significantly up-
regulated in this experiment, which may be related to the resistance of M. canis to KTZ. In 
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addition, the active efflux of ATP binding cassette (ABC) superfamily proteins is found to be 
an important mechanism for resistance among azole antifungal drugs [8]. Therefore, we also 
speculated that the 2 genes of the ABC, ATM and ABCB1, are also involved in the resistance 
mechanism of M. canis to KTZ.

KTZ also affected genes related to the cell wall of M. canis. Among differential genes, the 
expression of Chitinase (SC) gene was significantly up-regulated. SC is an enzyme that 
can cleave the β-(1,4) glycosidic bond of chitin in the cell wall [27]. Chitin is an important 
component of the fungal cell wall, and is essential for maintaining the structural integrity of 
the fungal cell wall and the growth and survival of the fungus [28,29]. Therefore, KTZ may 
damage the cell wall of M. canis by regulating SC.

KTZ not only inhibits those genes related to the cell membrane and cell wall of M. anis, 
but also affects the genes responsible for M. canis growth, reproduction and transcription 
regulation. KRE33 (NAT10) is an N-acetyltransferase and studies have shown that NAT10 
may play an important role in cell division by promoting the reorganisation of nucleolus 
and middle body in the late mitosis and the stabilisation of microtubules [30]. RPA1 is an 
RNA polymerase, and RNA Pol I is a highly synthetic enzyme that can transcribe rDNA and 
regulate the growth of eukaryotic cells [31]. RNA polymerases I and III are responsible for 
most nuclear transcription in actively growing cells, and their activity affects the biosynthetic 
capacity of the cell [32]. Ribonucleoprotein (RNP) is a protein associated with RNA [33]. 
It can combine with mRNA and non-coding RNA to form an RNP complex. They can 
coordinate the production of function-related proteins, so that the activity and stability of 
many RNAs are regulated after transcription [33,34]. The differential expressions of these 
genes change significantly, so we speculated that KTZ can inhibit the mitosis of M. canis cells 
by down-regulating the expression of the KRE33 gene and mediating the transcriptional 
regulation of M. canis by regulating RPA1 and RNP.

Our results revealed the potential mechanism of KTZ treatment against M. canis through 
transcriptome sequencing; however, the more detailed aspects of these findings should be 
clarified in future studies of gene function, such as gene knock-out experiments, so as to 
better describe the genes selected in this study.

In conclusion, 779 DEGs were screened by transcriptome sequencing. Among them, 453 
DEGs were up-regulated and 326 DEGs were down-regulated. The results of GO and KEGG 
enrichment analysis showed that KTZ could change cell membrane permeability, destroy 
the cell wall, affect drug resistance, and inhibit mitosis and transcriptional regulation by 
regulating CYP51, SQL, ERG6, ATM, ABCB1, SC, KER33, RPA1, and RNP in M. canis.
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