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Abstract: Follicular lymphoma (FL) is the most common indolent B-cell lymphoma. Advanced stage
disease is considered incurable and is characterized by a prolonged relapsing/remitting course.
A significant minority have less favorable outcomes, particularly those with transformed or early
progressive disease. Recent advances in our understanding of the unique genetic and immune
biology of FL have led to increasingly potent and precise novel targeted agents, suggesting that
a chemotherapy-future may one day be attainable. The current pipeline of new therapeutics is
unprecedented. Particularly exciting is that many agents have non-overlapping modes of action,
offering potential new combinatorial options and synergies. This review provides up-to-date clinical
and mechanistic data on these new therapeutics. Ongoing dedicated attention to basic, translational
and clinical research will provide further clarity as to when and how to best use these agents, to
improve efficacy without eliciting unnecessary toxicity.

Keywords: follicular lymphoma; Bruton tyrosine kinase inhibitors; BCL2 inhibitors; anti-CD47;
antibody-drug conjugates; monoclonal antibodies; T-cell engaging bispecific antibodies; chimeric
antigen receptor T-cells; immunomodulatory agents; neoantigens

1. Introduction

Follicular lymphoma (FL) is the second most common type of non-Hodgkin lymphoma
(NHL) in western countries [1]. It is characterized by a waxing and waning disease course
where patients can experience multiple relapses between disease-free periods. Although
patients with prolonged responses have excellent outcomes, those with early relapse and
progression, or histological transformation, can have dismal outcomes [2,3].

Given the marked heterogeneity of the FL disease course, numerous prognostic models
to predict treatment outcomes have been evaluated. This includes the follicular lymphoma
international prognostic index (FLIPI) [4], which utilizes five clinical risk factors, and the
more recently described m7-FLIPI, which incorporates the tumor’s mutational profile in
addition to clinical variables [5]. But despite the availability of such risk scores, a biomarker-
guided treatment approach remains elusive in FL. Indeed, the FL tumor microenvironment,
which plays a critical role in the pathogenesis of this disease, has been shown to be
important in predicting outcomes [6,7] and warrants consideration into risk stratification
tools.

The introduction of anti-CD20 monoclonal antibodies (mAb) such as rituximab [8],
and, more recently the type II anti-CD20 mAb obinutuzumab [9], have revolutionized the
management of FL and it is likely that anti-CD20 antibodies will remain at the forefront of
the FL treatment armamentarium. But more recent insights demonstrating the intricate
relationship between the FL tumor cell and its distinct immune microenvironment have
led to a rapid accumulation of novel and innovative targeted therapies that harness the
power of the immune system to attack the malignant cell. Moreover, clinical trials utilizing
B-cell receptor signaling (BCR) inhibitors, BCL2 inhibitors and specific targeting of FL
genetic aberrations, such as EZH2, have also demonstrated promising activity (Figure 1

J. Pers. Med. 2021, 11, 152. https://doi.org/10.3390/jpm11020152 https://www.mdpi.com/journal/jpm

https://www.mdpi.com/journal/jpm
https://www.mdpi.com
https://doi.org/10.3390/jpm11020152
https://doi.org/10.3390/jpm11020152
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jpm11020152
https://www.mdpi.com/journal/jpm
https://www.mdpi.com/2075-4426/11/2/152?type=check_update&version=3


J. Pers. Med. 2021, 11, 152 2 of 19

and Table 1). This review summarizes the up-to-date data on the role of novel targeted
therapies beyond anti-CD20 mAbs in FL.
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Figure 1. Novel targeted therapeutic classes in follicular lymphoma (FL). Schematic diagram of novel agents grouped according to their mechanism of action. 
Abbreviations: BCR, B-cell receptor; PI3K, phosphatidylinositol-3-kinase; BTK, Bruton tyrosine kinase; SYK, spleen tyrosine kinase; mAb, monoclonal antibody; 
PD-1, programmed death-1; CAR, chimeric antigen receptor; NK, natural killer. 

Figure 1. Novel targeted therapeutic classes in follicular lymphoma (FL). Schematic diagram of novel agents grouped
according to their mechanism of action. Abbreviations: BCR, B-cell receptor; PI3K, phosphatidylinositol-3-kinase; BTK,
Bruton tyrosine kinase; SYK, spleen tyrosine kinase; mAb, monoclonal antibody; PD-1, programmed death-1; CAR, chimeric
antigen receptor; NK, natural killer.

Table 1. Summary of targeted treatments in follicular lymphoma. Abbreviations: ORR, overall response rate; CR, complete
response; PFS, progression-free survival; -, no additional agent; BTK, Bruton tyrosine kinase; PI3K, phosphatidylinositol-3-
kinase; SYK, spleen tyrosine kinase; BR, bendamustine-rituximab; CAR, chimeric antigen receptor; CRS, cytokine-release
syndrome; ICANS, immune effector cell-associated neurotoxicity syndrome.

Class Agent Combination Indication Phase ORR (CR) Median PFS Notable Adverse
Events

BTK inhibitors Ibrutinib - Relapsed II [10] 38% (13%) 14mo
diarrhea, atrial

fibrillation bleeding,
rash

- Relapsed II [11] 30% (11%) 4.6mo

Rituximab Upfront II [12] 85% (40%) 42mo

Acalabrutinib Rituximab Upfront Ib [13] 92% (31%) diarrhea

PI3K inhibitors Idelalisib - Relapsed II [14] 56% (14%) 11mo
hepatitis, colitis,

transaminitis,
pneumonitis

Copanlisib - Relapsed II [15] 59% (12%) 11.2mo Hyperglycemia,
hypertension

Duvelisib - Relapsed II [16] 42% (1%) 9.5mo diarrhea
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Table 1. Cont.

Class Agent Combination Indication Phase ORR
(CR)

Median
PFS

Notable Adverse
Events

SYK inhibitors

Fostamatinib
disodium - Relapsed I/II [17] 10% 4.6mo hematologic

toxicity, diarrhea,
Entospletinib - Relapsed II [18] 17% (0%) 5.7mo

Cerdulatinib Rituximab Relapsed II [19] 59%
(12%) lipase increase

Immunomodulatory
agents

Lenalidomide

Rituximab Upfront III [20] 61%
(48%)

cutaneous
reactions, diarrhea,

hematologic
toxicity

Rituximab Relapsed III [21] 78%
(34%) 39.4mo

Obinutuzumab Upfront II [22] 98%
(92%)

Avadomide Rituximab Relapsed Ib [23] 65%
(22%) 6.3mo

EZH2 inhibitors Tazemetostat Relapsed II [24] 69%
(13%) 13.8mo alopecia

BCL2 inhibitors Venetoclax BR Relapsed II [25] 84%
(75%)

hematologic
toxicity

CAR T-cell
Axi-cel - Relapsed II [26] 95%

(80%)
CRS, ICANS

Tisa-cel - Relapsed II [27] 82%
(65%)

T-cell engaging
bispecific
antibodies

Mosunetuzumab - Relapsed I/Ib [28] 68%
(50%) 11.8mo

CRS, ICANS
Odronextamab - Relapsed I [29] 93%

(75%) 12.8mo

Glofitamab Obinutuzumab Relapsed I/Ib [30] 100%
(75%)

Epcoritamab - Relapsed I/II [31] 100%
(67%)

Antibody-drug
conjugates

Polatuzumab
vedotin Rituximab Relapsed II [32] 70%

(45%) 15.3mo neutropenia

Immune
checkpoint
inhibitors

Nivolumab - Relapsed II [33] 4% (1%) 2.2mo

immune related
adverse events

Pembrolizumab Rituximab Relapsed II [34] 64%
(48%)

Pidilizumab Rituximab Relapsed II [35] 66%
(52%) 18.8mo

CD47 blockade Rituximab Relapsed Ib [36] 71%
(43%) anemia

Radio-
immunotherapy

90Y-
ibritumomab

tiuxetan
- Relapsed III [37] 80%

(30%) 11.2mo myelosuppression

2. BCR Pathway Inhibitors

Despite the loss of an immunoglobulin (Ig) allele through the hallmark t(14;18) chro-
mosomal translocation with BCL2 (which is a recurrent feature in >85% of FL) [38], FL
tumor cells continue to express surface Ig, highlighting the notion that BCR signaling is
necessary for FL cell survival and proliferation. Both antigen-dependent and independent
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mechanisms have been suggested to promote BCR stimulation [39,40]. This includes a
selective pressure of the FL tumor cell to retain surface IgM BCR, which drives stronger
BCR signaling than IgG+ FL tumor cells [40]. Such IgM+ FL tumor cells efficiently bind
dendritic cell-specific intercellular adhesion-3-grabbing nonintegrin (DC-SIGN), a C-type
lectin receptor present on the surface of both macrophages and dendritic cells. In turn,
DC-SIGN induced signaling drives antigen independent, long-lasting BCR aggregation and
activation [40]. A subset of FL show BCL2 protein over-expression despite the lack of the
t(14;18) [41]. Additionally, BCL2 mutations, which frequently have enhanced anti-apoptotic
activity, are present in a subset of FL (~12%) and are associated with shortened time to
transformation and earlier death due to lymphoma. [42].

Upon BCR stimulation, downstream signaling cascades activate membrane-
proximal kinases such as spleen tyrosine kinase (SYK), Bruton tyrosine kinase (BTK) and
phosphatidylinositol-3-kinase (PI3K). Targeted approaches to disrupt BCR signaling us-
ing kinase inhibitors have emerged as an attractive approach in the management of FL
(Figure 2).
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Figure 2. Therapeutic agents targeting the B-cell receptor (BCR) signaling pathway in follicular lymphoma. Abbreviations: BCR, B-cell receptor; Lyn, tyrosine-protein kinase Lyn; SYK, 
spleen tyrosine kinase; BTK, Bruton tyrosine kinase; PI3K, phosphatidylinositol-3-kinase.

Figure 2. Therapeutic agents targeting the B-cell receptor (BCR) signaling pathway in follicular lymphoma. Abbreviations:
BCR, B-cell receptor; Lyn, tyrosine-protein kinase Lyn; SYK, spleen tyrosine kinase; BTK, Bruton tyrosine kinase; PI3K,
phosphatidylinositol-3-kinase.

2.1. SYK Inhibitors

Spleen tyrosine kinase (SYK) initiates the BCR signal and is upstream of BTK and
PI3K [43]. Irish and colleagues first demonstrated that SYK phosphorylation and BCR-
mediated signaling occurred more rapidly in FL tumor B-cells compared to non-tumor B-
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cells, providing a therapeutic rationale for SYK inhibition in this disease [44]. Fostamatinib
disodium, a first-in-class SYK inhibitor, showed only modest activity in a small cohort
of recurrent FL with an overall response rate (ORR) of 10% [17]. Entospletinib, a second
generation oral SYK inhibitor which is more selective than fostamatinib disodium, has also
shown activity in relapsed/refractory (r/r) FL [18].

Notably, co-stimulation of the BCR with IL-4 enhances BCR mediated cellular acti-
vation. Indeed, FL tumors are enriched with T-follicular helper cells (TFH) which highly
express IL-4 [45], and dual SYK and Janus kinase (JAK) pathway inhibition can simultane-
ously target BCR and IL-4 respectively [46]. In this regard, initial results from an ongoing
phase II study of cerdulatinib, a dual SYK/JAK inhibitor, in combination with rituximab in
r/r FL demonstrated an ORR of 59% [19].

2.2. BTK Inhibitors

The BTK enzyme is crucial in the B-cell signaling cascade and is essential for B-cell
survival and proliferation [47]. Ibrutinib is an orally available, first-in-class irreversible
inhibitor of BTK. Bartlett et al. investigated the use of single-agent ibrutinib (560 mg,
once daily) in r/r FL [10]. Though reasonably well tolerated, the overall response rate
(ORR) was 52.6% amongst patients with rituximab-sensitive disease, but only 16.7% in the
rituximab-refractory cohort, and whether this differential response relates to the impact
of ibrutinib mediated immunomodulation warrants further consideration [48]. Patients
harboring a CARD11 mutation did not respond to ibrutinib [10] highlighting the predictive
utility of the FL genetic profile for targeted treatments. CARD11 mutations are present in
~12% of FL [5] and gain-of-function mutations result in constitutive activation of NF-κB,
(independent of BCR activation) [49].

The phase II DAWN study of single-agent ibrutinib in heavily pretreated FL also
demonstrated a modest ORR of 20.9% [11]. Correlative peripheral blood biomarker anal-
yses showed that responders had a significant downregulation in circulating regulatory
T-cells (TREG), and increased IFN-γ and IL-12 (T-helper 1 promoting cytokines) compared
to non-responders, again suggesting that the ibrutinib response may be associated with
beneficial off-target T-cell immunomodulation via inhibition of IL-2-inducible T-cell kinase
(ITK) [48].

More recently, ibrutinib was investigated in combination with rituximab in frontline
FL and demonstrated an ORR of 85% (40% achieving complete response, CR) with a
30-month progression-free survival (PFS) rate of 67% [12]. Ibrutinib-related adverse events
included fatigue, diarrhea, nausea, atrial fibrillation, bleeding, and maculopapular rash,
but only a minority of patients required dose reductions. The higher ORR in the frontline
setting is likely related to the additive effect of rituximab and lower BCR-resistant tumor
clones in the absence of prior chemotherapy exposure. Taken together, these encouraging
findings suggest that ibrutinib-rituximab could be a therapeutic option in the frontline
setting, especially in those not expected to tolerate chemo-immunotherapy. Randomized
trials are ongoing to confirm these findings [50].

More selective (second-generation) and potent BTK-inhibitors that show promise in
other indolent lymphomas are currently being tested. Acalabrutinib was evaluated with
rituximab and demonstrated an ORR of 92% in treatment naive FL in a Phase Ib study [13].
Other approaches include combination regimens such as the ongoing phase III SELENE
study of ibrutinib with chemotherapy in relapsed FL [51]. A more novel approach is the
use of intratumoral CpG (a toll-like receptor 9 agonist) vaccination, local radiation therapy
and oral ibrutinib, which recently demonstrated a T-cell mediated systemic anti-tumor
response in relapsed FL [52,53].

2.3. PI3K Inhibitors

Idelalisib, a PI3Kδ inhibitor, is US Food and Drug Administration (FDA) approved
for the treatment of relapsed FL after at least two prior systemic therapies. This first-
in-class oral agent was shown to have therapeutic efficacy in a phase II clinical trial of
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relapsed indolent lymphomas, where 72 patients in this cohort (58% of total) had relapsed
FL with refractoriness to both rituximab and an alkylating agent [54]. Patients were
treated with 150mg twice daily single-agent idelalisib with therapy maintained until
progression. The ORR in FL was 55.6%, (CR, 13.9%), with a median duration of response of
10.8 months [14]. Importantly, a post-hoc analysis demonstrated that idelalisib remained
efficacious in FL patients who had progression of disease within 24 months (POD24) of
initial chemoimmunotherapy and suggests that idelalisib may be an attractive option in
treating high-risk, early relapsing FL [55]. However, the unique toxicity profile of idelalisib
is notable. In addition to hematological and gastrointestinal toxicity, clinical vigilance for
immune-mediated hepatitis, colitis and transaminitis from idelalisib’s off-target effects
on T-cells is required, as is consideration of antimicrobial prophylaxis for opportunistic
infections.

Copanlisib is an FDA approved, intravenous, pan-class PI3K inhibitor that inhibits
the catalytic activity of the four PI3K isoforms (PI3Kα, PI3Kβ, PI3Kγ and PI3Kδ), with
predominant activity against PI3Kα and PI3Kγ [56]. In a pivotal phase II study of r/r
indolent lymphoma (73 of 143 patients with FL) after two or more lines of prior therapy,
the ORR to single agent copanlisib was 59%, with a median duration of response of 22.6
months [15]. Interestingly, higher response rates to copanlisib were seen in patients with a
high expression of PI3K and BCR pathway genes [15]. Due to the inherent differences in
PI3K isoform selectivity compared to idelalisib, copanlisib treatment was associated with
transient hyperglycemia and hypertension, but lower immune-mediated toxicity [15].

There are numerous other PI3K inhibitors being explored in FL and include duvelisib
(FDA approved for r/r FL, PI3Kγ/PI3Kδ inhibitor), umbralisib (PI3Kδ and casein kinase-1ε
inhibitor), ME-401 (PI3Kδ inhibitor) and buparlisib (pan-class PI3K inhibitor) [16,57–59].
The efficacy of PI3K inhibitors in combination regimens has also been investigated in early
phase trials [60].

3. Immunomodulatory Agents

Lenalidomide is an orally active immunomodulatory (IMiD) agent that provides
pleotropic direct and indirect anti-tumoral effects through modulation of the substrate
specificity of the CRL4CRBN E3 ubiquitin ligase in B and T lymphocytes. This results in
rapid ubiquitination and degradation of the zinc-finger containing transcription factors
Ikaros and Aiolos. Direct tumoricidal effects of lenalidomide are associated with reduced
interferon regulatory factor 4, a downstream target of cereblon. Indirect actions are via
immune-mediated mechanisms involving stimulation of both the innate (NK-cells) and
adaptive immune system (T-cells), modification of microenvironmental cytokines, and
inhibition of angiogenesis [61–63]. Indeed, lenalidomide was also shown to restore the
impaired T-cell synapse with FL tumor cells [64]. Furthermore, IMiD mediated immune
modulation enhances the activity of rituximab via NK-cell expansion and subsequent
improved antibody-dependent cellular cytotoxicity (ADCC) [65,66].

In this regard, lenalidomide 20mg (for 21-days in 28-day cycles) in combination with
rituximab was investigated in the upfront treatment of advanced-stage symptomatic FL in
the large, phase III RELEVANCE trial and compared to rituximab plus chemotherapy [20].
Patients in both arms received rituximab maintenance monotherapy for 2 years. There was
no significant difference in the rates of CR in patients receiving rituximab-lenalidomide
compared to rituximab-chemotherapy (48% vs. 53% respectively), nor was there any differ-
ence in 3-year PFS (77% vs. 78%, respectively). As expected, hematological toxicity was
more common in those who received rituximab-chemotherapy, but patients on rituximab-
lenalidomide had other distinct side effects including higher rates of cutaneous reactions,
diarrhea and rash.

The rituximab-lenalidomide combination has also been investigated in relapsed FL in
the phase III AUGMENT study, where patients with r/r FL were randomized to receive
single agent rituximab versus rituximab-lenalidomide [21]. Notably, rituximab refractory
patients were not included in this study. The PFS was significantly higher in rituximab-
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lenalidomide treated patients compared to rituximab treated patients (39.4 months versus
14.1 months, respectively), albeit with higher rates of treatment emergent adverse events.
Interestingly. a post-hoc analysis of the AUGMENT study demonstrated superior efficacy
of rituximab-lenalidomide over rituximab in FL patients with POD24 [67]. Based on these
studies, lenalidomide has emerged as a promising agent in FL and is now US FDA approved
for previously treated FL in combination with rituximab. However, in the absence of a
predictive biomarker, selecting the appropriate patient most likely to benefit from an IMiD
based therapy remains a challenge.

Other chemotherapy-free combination approaches using lenalidomide are currently
under investigation and yielding encouraging results [68–71]. Indeed, a CR rate of
92%, with an estimated median 2-year PFS of 96% was reported with obinutuzumab-
lenalidomide in the upfront setting [22]. However, triplet combinations of lenalidomide-
rituximab and either ibrutinib or idelalisib was associated with significant toxicity [72,73].
Avadomide, a novel immunomodulatory agent, is also being investigated in combination
with anti-CD20 antibodies in r/r FL and has shown encouraging results [23,74].

4. EZH2 and HDAC Inhibitors

EZH2, a histone methyltransferase, supports germinal center (GC) formation and
contributes to FL lymphomagenesis [75]. Recurrent gain-of-function mutations in EZH2
have been reported in ~25% of FL [75], which act to amplify the transcriptional silencing of
GC proliferation checkpoint genes and enhance GC B-cell proliferation and accumulation
via the formation of an aberrant immunological niche [76,77]. Morschhauser and colleagues
investigated the use of tazemetostat, a first-in-class oral inhibitor of mutant and wildtype
EZH2 in heavily pre-treated FL [24]. Results from this single arm, phase II clinical trial
demonstrated an ORR of 69% in the EZH2mutant cohort, with a low prevalence of treatment
related adverse events. Tazemetostat is now FDA approved in EZH2mutant FL patients
in the relapsed setting (after at least two prior systemic therapies). Interestingly, single-
agent tazemetostat was also efficacious in the EZH2wildtype cohort, albeit with a lower
ORR of 35%, but nonetheless highlighting the consistent role of the EZH2 enzyme in GC
maintenance and B-cell proliferation [24].

More recently, a post-hoc analysis found that early progression of disease was not
predictive of response to tazemetostat, suggesting that EZH2 inhibition may be another
attractive option for early-relapsing (EZH2mutant) FL patients [78]. Given as the EZH2
mutation remodels the FL tumor cells’ interactions with the tumor microenvironment [77],
it is intriguing to speculate that combinational approaches of tazemetostat with other
targeted therapies may be synergistic. Indeed, the role of tazemetostat in combination with
rituximab and lenalidomide is currently being tested [79,80]. Notably, EZH2 copy-number-
gains (CNG) have also been described in ~15% of FL, with such CNG having a similar
transcriptional profile to EZH2 mutations [81], and the role of EZH2 inhibition in those
with CNG warrants consideration.

As PI3K inhibitors (idelalisib, copanlisib, duvelisib) and tazemetostat are both US
FDA approved in the 3rd line setting, and in the absence of a head-to-head comparison,
selecting the appropriate agent will require an individualized approach. Though caution
must be taken when making cross-trial comparisons, intriguingly, tazemetostat was found
to have a similar efficacy and lower risk of adverse events compared to PI3K inhibitors
when tested using a match adjusted indirect comparison methodology [82].

In addition to EZH mutations, other chromatin modifying genes (CREBBP, KMT2D)
are frequently mutated in FL [5] and point to potential therapeutic targeting of these FL
lesions. However, unlike EZH2, mutations in KMT2D and CREBBP are loss-of-function,
and therefore difficult to target [83]. Histone deacetylase (HDAC) inhibitors have been
tested in FL, with the ORR ranging from 47% to 64% but with low CRs [84,85].
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5. Venetoclax

FL’s hallmark t(14:18) chromosomal translocation leads to disruption of the BCL2
oncogene at chromosome 18q21.33, and subsequent over-expression of the anti-apoptotic
BCL2 protein. Therefore, selective inhibition of BCL2 with venetoclax in patients with FL
should have significant activity in FL. However, response rates with venetoclax monother-
apy (and/or combined with anti-CD20 mAbs) have been modest [86]. It is possible that
although BCL2 over-expression is a founding event required for lymphomagenesis, the
presence of other characteristic mutations in genes such as CREBBP, and KMT2D, along
with heterogenous expression of BCL2, and clonal evolution leading to new genetic aber-
rations, results in reduce dependence on BCL2 for the FL B-cells survival. Competing
pro-survival signals from the tumor microenvironment may also contribute to venetoclax
resistance [87]. Combination strategies with other FL therapeutics have been tested to
sensitize FL to venetoclax. The phase II CONTRALTO study assessed the addition of
venetoclax to chemoimmunotherapy in patients with r/r FL [25]. Over 100 patients were
enrolled onto one of three study arms: (1) venetoclax + rituximab (Arm A), (2) venetoclax +
bendamustine/rituximab (Arm B) or (3) bendamustine/rituximab (Arm C). The CR rate
was modest at 17% in patients receiving venetoclax + rituximab, and efficacy was similar
between Arm B (CR, 75%) and Arm C (CR, 69%). However, there was frequent hematologic
toxicity in Arm B which led to higher treatment discontinuations compared to Arm C. The
potential synergistic activity of venetoclax with other targeted therapies is being actively
explored in the frontline setting [71,88].

6. CAR T-Cell Therapy

Chimeric antigen receptor (CAR) T-cell therapy has led to a transformational advance-
ment in the management of B-cell malignancies, and is US FDA approved for r/r large
B-cell lymphoma after two or more lines of systemic therapy. CAR T-cell receptors are
composed of an antigen binding domain, transmembrane domain, co-stimulatory domain
and CD3-zeta intracellular signaling domain. The construct is inserted into and expressed
on the surface of autologous T-cell using a retroviral or lentiviral vector. In so doing, CAR
T-cell constructs cause an anti-tumor effect by expression of high-affinity tumor antigen
specific antibodies on autologous T-cells.

Second-generation autologous anti-CD19 CAR T-cell therapies are being evaluated
in r/r FL and interim results of the ZUMA-5 study of axicabtagene ciloleucel (axi-cel) for
indolent r/r NHL has demonstrated highly promising results [26]. Eighty r/r FL patients
(66% of whom had POD24) with at least two prior lines of therapy had an ORR of 95% (CR
rate, 80%) to axi-cel with durable responses at early follow-up. The unique toxicity profile
of CAR T-cell therapy was similar to that seen with aggressive B-cell lymphomas, with
the presence of cytopenias, cytokine-release syndrome (CRS) and immune effector cell-
associated neurotoxicity syndrome (ICANS). However, both high-grade CRS and ICANS
events were lower than that seen with aggressive B-cell lymphomas [26,89].

The planned interim analysis of the ELARA study of tisagenlecleucel (tisa-cel) in
r/r FL was also recently reported. Of the 52 patients evaluable for efficacy (60% with a
POD24 event), the ORR was 82.7% (CR rate, 65.4%) in the intent-to-treat population, with
no high-grade (≥3) CRS and minimal (2%) high-grade neurologic events [27].

The high efficacy from these preliminary data inspires cautious optimism regarding
the role of CAR T-cell therapy in r/r FL but longer follow-up is necessary to determine
durability. The apparent higher efficacy and toxicity seen with axi-cel may be attributed to
the CD28 costimulatory domain, which typically causes a rapid T-cell expansion compared
to the 4-1BB costimulatory domain of tisa-cel [90].

Despite the promise of CAR T-cell therapy, considerable numbers of patients’ relapse
and this can be related to antigen loss, limited persistence of the infused CAR T-cell product
and immune escape [91,92]. There is a need to better understand and overcome mechanisms
of resistance using CAR T-cell therapy and strategies to enhance antitumor activity are
being explored in the preclinical setting. This includes ex-vivo polarization to IL-9 secreting
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CAR T-cells, which exert a greater antitumor efficacy compared to standard CAR T-cell
constructs [93]. Other approaches to enhance the antitumor efficacy of CAR T-cells include
constitutive expression of the CD40 ligand on CAR T-cells [94], modifying CAR T-cells to be
used as ‘micro-pharmacies’ for local delivery of tumor suppressor proteins [95], the testing
of bivalent CAR constructs that target two domains to mitigate antigen resistance [96],
using novel antigen targets [97] and the incorporation of immune checkpoint inhibitors
with CAR T-cell treatment [98].

7. CAR NK-Cells

Natural killer (NK) cells are emerging as a promising cell source for CAR-therapy and
are currently being investigated in numerous clinical trials. NK-cells can target tumor cells
with decreased or absent expression of major histocompatibility complex (MHC) 1 [99].
Importantly, because NK-cells are human leukocyte antigen (HLA) agnostic, graft-versus-
host-disease is not induced. This opens up the option of manufacturing using “off the
shelf”, allogenic, umbilical cord blood derived NK-cells (Table 2) [100]. The first-in-human
phase 1/2 clinical trial of allogenic CAR NK-cell therapy in B-cell malignancies encoded a
CAR against the CD19 B-cell antigen and IL-15 to enhance transduced NK-cell persistence
and function [101]. CAR NK-cell administration appeared efficacious and, in keeping
with their distinct cytokine profile, was not associated with the development of CRS or
ICANS [101].

An alternative platform for CAR engineering that also provides off-the-shelf capabili-
ties involves the generation of NK-cells from pluripotent stem cells derived from easily
accessible sources such as fibroblasts or peripheral blood [102].

Table 2. Ongoing clinical trials of novel immune agents.

Class Agent Phase Population and Study Design

CAR NK-cells CAR NK-cell I/II [103] r/r B-cell lymphoid malignancies
Umbilical Cord Blood-Derived CAR NK Cells

Cancer Vaccines

NeoVax I [104]
Front-line FL

Front-line rituximab followed by personalized
neoantigen vaccine

Oncoquest-L-Vaccine II [105] Front-line, non-bulky FL
Autologous tumor-derived vaccine

Tumor Vaccine I [106] Relapsed FL
Personalized tumor vaccine + Nivolumab

Abbreviations: NK, natural killer; r/r, relapsed/refractory; FL, follicular lymphoma.

8. T-Cell Engaging Bispecific Antibodies

A recent therapeutic approach in B-cell malignancies has been redirecting T-cells
to attack the malignant B-cell using bispecific antibodies that bind to a B-cell surface
target (e.g., CD20) and a surface component on the T-cell (CD3). The fusion protein
generates proximity between the target malignant B-cell and effector T-cell compartment,
leading to a synapse formation and T-cell mediated cytotoxicity independent of tumor
cell recognition [107]. In this regard, several off-the-shelf IgG based monovalent T-cell
engaging bispecific antibodies (TCB) directed against B-cell surface proteins therapies are
in advanced clinical development.

Mosunetuzumab is a fully humanized intravenous TCB and is being currently tested
in r/r B-cell malignancies. Early results from an ongoing phase I/Ib study which included
62 r/r FL patients (30 of whom had a POD24 event), demonstrated an ORR of 68% (50%
achieved CR) [28]. Durable responses were seen in those achieving CR and despite po-
tential safety concerns from potent immune stimulation, rates of high-grade CRS and
ICANS were low [28]. Intriguingly, a small subset of FL patients with prior CAR T-cell
therapy demonstrated modest responses to mosunetuzuamb, and expansion of previously
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administered CAR T-cells has been reported [28,108], suggesting a role for TCBs in treating
relapses post CAR T-cells.

Odronextamab (REGN1979), another intravenous CD20 TCB used as a continuous
therapy showed a robust signal in r/r FL, with a 92.9% ORR (CR 75%) in a phase I study of
r/r B-cell NHL [29]. Most frequent high-grade toxicity was predominantly hematological in
nature, with only a minority developing high-grade CRS or neurologic adverse events [29].
Baseline CD20 level did not predict response, but CD20 antigen loss was seen in progression
and although this is preliminary data, it suggests that treatment emergent resistance to
TCBs is partly driven by antigen loss [109]. A phase II trial of odronextamab in r/r B-cell
NHL is currently recruiting [110].

Glofitamab, an intravenous novel CD20 targeting TCB with a unique ‘2:1′ molecular
configuration (2 CD20 binding domains and 1 CD3 binding domain), was demonstrated to
have high potency due to its bivalent binding to CD20 on malignant B-cells in preclinical
studies [111]. Preliminary data from a phase I/Ib clinical trial evaluating the efficacy of
glofitamab in r/r B-cell NHL was recently presented. Patients received obinutuzumab
pre-therapy to effectively mitigate high-grade CRS. Of the 8 efficacy-evaluable FL patients
the ORR was 100%, with 75% achieving a CR [30]. The toxicity profile was manageable.
Pending updated study results, glofitamab may offer a novel, efficacious and safe approach
for the management of heavily pretreated FL patients. A phase I study combining glofi-
tamab with RO7227166, a bispecific antibody like fusion protein that targets CD19 and
activates T and NK-cells (via its 4-1BBL costimulatory domain), is currently ongoing [112].
Epcoritamab (GEN3013) is another novel CD20 TCB showing promising anti-tumor activity
in r/r FL, and with an acceptable safety profile [31]. A key advantage of epcoritamab is its
convenient subcutaneous route of administration.

Collectively, high-grade CRS and neurological toxicity rates appear less pronounced
with TCBs than with CAR T-cell therapy [26,89,92]. Another advantage may be their
off-the-shelf availability, but the continuous duration of TCB treatment regimens is no-
table. How to select amongst these CD20 TCBs in r/r FL is a question that remains to be
answered, and whether they can be incorporated into other combination strategies with
immunotherapeutic partners (such as 4-1BBL) are eagerly awaited.

9. Antibody-Drug Conjugates

Antibody-drug conjugates (ADC) are composed of a targeted monoclonal antibody
conjugated via a protease-cleavable linker to a cytotoxic agent, such as microtubule in-
hibitors. Upon cellular binding, the ADC is internalized, broken down and the subse-
quent release of the microtubule disruptor leads to apoptosis. Polatuzumab vedotin and
pinatuzumab vedotin are ADCs delivering monomethyl auristatin E (MMAE) that are
conjugated to the B-cell lineage antigens CD79b and CD22, respectively. Polatuzumab
vedotin and pinatuzumab vedotin were combined with rituximab and studied in the phase
2 randomized ROMULUS study of r/r FL [32]. The ORR with rituximab-polatuzumab
vedotin was 70%, with a CR of 45% and median duration of response of 9.4 months. Pa-
tients in the rituximab-pinatuzumab vedotin cohort had an ORR of 62% (CR 5%) with
a median duration of response of 6.5 months. Treatment discontinuations from adverse
events, which included fatigue, diarrhea, peripheral neuropathy and neutropenia, were
notably significant.

Polatuzumab vedotin has been tested in combination with bendamustine-rituximab,
but its addition did not appear to improve upon CR rates [113]. More recently, po-
latuzumab vedotin has been combined with other targeted therapies such as obinutuzumab-
lenalidomide [114] and obinutuzumab-venetoclax in r/r FL [115], and early interim analy-
ses demonstrate encouraging ORRs.

10. Immune Checkpoint Inhibitors

The FL tumor cells act to re-educate the surrounding tumor microenvironment and
create a tumor permissive immune niche [116]. In this regard, the goal of immune check-
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point blockade in FL is to target immunosuppressive ligands and restore an effective
anti-tumor immune response. Intratumoral T-cells in FL can express immune-inhibitory
receptors, including programmed death-1 (PD-1), T-cell immunoglobulin mucin-3 (TIGIT)
and lymphocyte-activation gene 3 (LAG3), leading to an exhausted phenotype [117–120].
Single agent PD-1 checkpoint blockade was tested in r/r FL but resulted in minimal re-
sponses [33]. The absence of PD-1 ligand (PD-L1) gene amplification, as seen in Hodgkin
lymphoma, or PD-1 structural variants, as reported in adult T-cell leukemia and diffuse
large B-cell lymphoma, may account for these findings [121,122]. Furthermore, Yang and
colleagues demonstrated that PD-1 expressing intratumoral CD8+ cytotoxic T-cells are
functionally active in FL and it is the co-expression of PD-1 with LAG3 that determines
an exhausted phenotype [117], and a combination strategy using anti-PD-1 and anti-LAG
antibody therapy is under active investigation [123]. Combination approaches with PD-1
checkpoint blockade and anti-CD20 mAb therapy have yielded more favorable results than
single agent immune checkpoint blockade [34,35]. Younes et al. tested the combination of
a PD-L1 inhibitor (atezolizumab) with obinutuzumab and bendamustine in frontline FL
with promising results on interim analysis [124].

11. Macrophage Immunomodulation

A recent new class of agent involves induction of pro-inflammatory macrophages to
phagocytose FL tumor cells (given in combination with rituximab). Malignant cell surfaces
upregulate CD47 [125], which is an innate immune checkpoint that binds to its ligand SIRP
to form the CD47-SIRPα signaling complex. SIRPα is a transmembrane protein expressed
on myeloid cells (especially macrophages) and signaling induced by the CD47-SIRPα
complex inhibits macrophage phagocytosis. Inhibiting the CD47-SIRPα signaling pathway
enhances the phagocytosis of tumor cells by macrophages. CD47 blockade can therefore
increase macrophage phagocytosis of FL tumor cells by rituximab and also induce a T-cell
response by increasing tumor antigen presentation to cytotoxic T-cells [126]. CD47 blockade
with Hu5F9-G4 has shown synergistic activity with rituximab in an early phase clinical
trial [36] and a phase II study is currently enrolling patients [127].

Other approaches are being investigated. Extracellular adenosine impedes rituximab-
mediated cellular phagocytosis by pro-inflammatory macrophages. Pharmacological inhi-
bition of the adenosine 2A receptor as a strategy to overcome adenosine mediated immune
evasion, along with other macrophage checkpoint inhibitors in addition to Hu5F9-G4 are
currently in development [128–130].

12. Cancer Vaccines

Neoantigens are novel tumor-specific peptides that are generated by somatic mu-
tations acquired within neoplastic cells. They elicit an anti-tumor T-cell response upon
cell-surface presentation by MHC-I/II molecules [131], and because they are only expressed
by malignant cells, spare normal tissues. Not only can the study of neoantigens provide
detailed mechanistic insight into immune evasion strategies in FL, but they can also serve
as highly personalized potential therapeutic targets for the development of tumor-specific
vaccines (Table 2). Tumor vaccines targeting neoantigens can be formulated as RNA, DNA,
dendritic cell targeting, glycolipid, protein and synthetic long peptide vaccines. Delivery
strategies, choice of adjuvants, administration routes and combination with immune check-
point blockade and/or strategies to evoke immunogenic cell death (such as radiotherapy or
oncolytic vaccines) are all factors under active investigation [104–106,132]. Patient selection
is likely to be important, with FL containing several mutations known to impair antigen
presentation [133,134].

Unique to B-cell lymphomas, somatic neoantigens can be derived from V-D-J recom-
bination of the immunoglobulin heavy chain and light chain variable region genes of the
malignant FL cells of the B-cell receptor, or from ongoing somatic hypermutation (‘id-
iotypic neoepitopes’) [135]. Although best described in mantle cell lymphoma using a
proteomic based approach [136], idiotypic neoepitopes have also been detected in FL [137].
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These neoantigens are mostly derived from framework region 3 and complementarity
determining region 3 and are strongly biased towards presentation by MHC-II molecules.
Non-immunoglobulin neoantigens have been investigated in early-stage FL using sequenc-
ing combined with algorithms based on predicted HLA class I binding efficiencies, which
show MHC-I neoantigens derived from frame-shift mutations in commonly mutated genes
such as KMT2D [138]. Importantly, these neoantigens were typically associated with intact
HLA class I presentation.

13. Radioimmunotherapy

Radioimmunotherapy (RIT) is a therapeutic approach that uses monoclonal antibodies
as a carrier of radionuclides and, in this way, allows for the selective targeting of cancer
cell surface antigens [139]. It is well known that FL is a highly radiosensitive tumor. RIT
with the radiolabeled anti-CD20 antibody 90Y-ibritumomab tiuxetan is FDA approved
in r/r FL and as consolidation after upfront induction chemoimmunotherapy. A single
center retrospective analysis recently demonstrated the highly efficacious activity of this
agent in FL [140]. Furthermore, a prior randomized trial of 90Y-ibritumomab tiuxetan
had shown higher clinical response rates when compared to rituximab monotherapy in
relapsed FL [37]. RIT is generally well tolerated but myelosuppression has been observed,
with higher rates seen in patients with significant bone marrow involvement. Although
the current practical challenges of RIT administration have limited its clinical application,
ongoing advancements in theranostics may lead to its more prominent role within the
treatment armamentarium of FL.

14. Conclusions

The rapid expansion of novel targeted therapies makes for exciting times in the
management of patients with FL. Although a chemotherapy-free future appears to be
within our reach, notable challenges remain. Given the biological heterogeneity of FL, it is
imperative to be able to identify predictive biomarkers to accurately risk-stratify patients
that will likely benefit from therapeutics that utilize particular modes of action [141].
However, with the notable exception of EZH2 inhibitors, this remains to be achieved. There
is also the ongoing debate regarding the optimal therapeutic sequencing approach, to both
maximize durable response and quality of life. Finally, the most important question in FL
is whether targeted therapy offers the possibility of high rates of cure not just in early but
also advanced-stage disease [142]. That we can now plausibly ask such questions suggests
that the future is bright for the management of FL.
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