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a b s t r a c t

COVID-19 spreads and contracts people rapidly, to diagnose this disease accurately and timely
is essential for quarantine and medical treatment. RT-PCR plays a crucial role in diagnosing the
COVID-19, whereas computed tomography (CT) delivers a faster result when combining artificial
assistance. Developing a Deep Learning classification model for detecting the COVID-19 through CT
images is conducive to assisting doctors in consultation. We proposed a feature complement fusion
network (FCF) for detecting COVID-19 through lung CT scan images. This framework can extract both
local features and global features by CNN extractor and ViT extractor severally, which successfully
complement the deficiency problem of the receptive field of the other. Due to the attention mechanism
in our designed feature complement Transformer (FCT), extracted local and global feature embeddings
achieve a better representation. We combined a supervised with a weakly supervised strategy to
train our model, which can promote CNN to guide the VIT to converge faster. Finally, we got a
99.34% accuracy on our test set, which surpasses the current state-of-art popular classification model.
Moreover, this proposed structure can easily extend to other classification tasks when changing other
proper extractors.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Since Dec 2019, a coronavirus storm turned out in one night,
nd outbreaking spread all over the world rapidly. This type of
oronavirus called Coronavirus Disease 2019 (COVID-19) became
n ongoing epidemic engulfing the globe. COVID-19 was firstly
eported in Wuhan, Hubei province of China [1]. Whereas, exten-
ive transportation and population mobility were still operating
uring the Chinese Spring Festival in China, which aggravated
he epidemic when people were unaware of its human-to-human
ransmission trait [2]. Some reports have indicated that this type
f coronavirus has a low potential for sustained community trans-
ission [3]. However, its spread speed is far more what people
an imagine. According to the report, this COVID-19 epidemic fol-
ows an exponential growth [2,3]. And up to November 2021, over
56,966,237 people have been detected infection, and deaths-
umulative have achieved 5,151,643 total [4]. This disease is
ighly contagious and may lead to acute respiratory distress
r multiple organ failure in severe cases [5]. People infected

∗ Corresponding author.
E-mail address: rcnie@ynu.edu.cn (R. Nie).
ttps://doi.org/10.1016/j.asoc.2022.109111
568-4946/© 2022 Elsevier B.V. All rights reserved.
with COVID-19 act fever and cough as the most common symp-
toms [6]. But these cannot examine the COVID-19 as the prin-
cipal argument. Recent theoretical developments have revealed
that the nearest clinical diagnosis regards the real-time reverse
transcriptase-polymerase chain reaction (RT-PCR) as the golden
standard to diagnose COVID-19 [7]. However, a scientifically syn-
thetic diagnosis must combine Chest X-ray (CXR) or computed
tomography (CT) result on patients. Both results show the same
characteristic in COVID-19 symptoms, demonstrating bilateral
peripheral consolidation in their lungs [8]. CXR and CT con-
tribute to early diagnosing the viral disease, although nucleic acid
detection with RT-PCR remains the standard Ref. [9]. Baseline
CXR performed a sensitivity of 69% compared to 91% of RT-
PCR [8]. Nevertheless, the CT scan receives a better sensitivity
in contrast to the RT-PCR [9,10]. Ground-glass opacity (GGO) and
consolidation are two principal higher confidence characteristics
for diagnosis, which display more distinctively on the CT scan
than the CXR [8,11]. Therefore CT scan displays a unicorn role in
COVID-19 diagnose mission.

With the development of computer science nowadays, appli-
cations based on the deep learning (DL) approach are extensively
used around our life, especially in image processing for fea-
ture extraction purposes. Like object detection and identification

https://doi.org/10.1016/j.asoc.2022.109111
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2022.109111&domain=pdf
mailto:rcnie@ynu.edu.cn
https://doi.org/10.1016/j.asoc.2022.109111
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ased on local calculate service, or deploys feature extraction
odels on users and edges relying on cloud computing so-called

ederated learning [12].
And numerous industries began to add the DL technique

o combine their original design. Convolutional neural network
CNN) especially shows its powerful ability in feature extraction
ork, which has dominated the DL field in recent decades. This
ype of network has even influenced the field of Clinical Medicine
cience because its tremendous ability has been adopted widely
n finding small details people overlooked [13]. Such as infection
iagnosis: CNN assists the doctor in making the decision more
recisely, which can focus on details people may neglect. It will
eliver a prediction on the infection category or locate the posi-
ion of the lesion [14–16]; lesion and organ segmentation: doctors
nce need segment the lesion and organ manually until CNN was
nvolved in and support doctors to segment their interest part
utomatically for the succeeding diagnose [17–19]; multimodal
edical image fusion: image imaging from different apparatus
tores various information, whereas CNN fused images can reduce
edundant data and preserve the essential data from both source
mages [20–22].

Nearly, Vision Transformer (ViT) appeared in the computer
ision (CV) field, which migrates the algorithm used in natural
anguage processing (NLP). This action impacts the status domi-
ated by CNN and exerts a profound influence on CV researchers.
n the subsequent time, ViT presented, researchers applied this
tructure to explore more facet applications. Like U-Transformer
oes a great framework on the task of complex organ segmen-
ation [23]. And RTMIC can caption the CXR image automatically
nd generate a medical diagnosis [24].
A massive of methods of DL assist diagnosis occurred in this

nti-COVID storm. Inspired by those works mentioned above,
e further put forward our framework. In contrast to existing
ethods, the main contribution of our approach can be listed as

ollows:

• Different from CNN-based local feature extraction or ViT-
based global feature extraction, our method employs two
ones to extract local and global features of CT, respectively,
and further integrated these features to give more effective
discrimination for COVID-19.
• We construct a feature fusion block named FCT to fuse the

local and global features. Due to the usage of the Trans-
former, our FCT can produce an embedding vector result-
ing from attention mechanism to present better feature
representation.
• We designed a hybrid loss combined supervised learning

with a weakly supervised learning strategy training our
model efficiently to boost ViT structure converge faster in
our proposed FCF.
• Our proposed FCF defeats other models on the benchmark

and provides a reliable pre-diagnose to assist clinic surgeons
doing the final diagnosis.

The rest of the paper is organized as follows. In Section 2, we
ntroduced the recent feature extraction works and feature fu-
ion works. Section 3 included details of our algorithm methods.
ataset choice, training details, and extended experiments are
rranged in Section 4. The conclusion is finally given in Section 5.

. Related work

.1. Feature extractors

CNN has been used widely in the DL involved task for fea-
ure extraction since VGG [25] opened up the era of the deep
eural network. Subsequently, add identity mapping from the
2

shallower layer into the deep layer first appeared in ResNet [26].
It was broadly adopted to maintain the feature in CNN encoders
helpfully and overcome the gradient vanish in the training pro-
cess [27]. Another framework to efficiently reuse features is
DenseNet [28]. This novel approach leverage violent concate-
nate operation to link all features from the front layer to the
current layer. It further reduces the parameters and accelerates
the propagation efficiency in the deep neural network. Because
of the development of the neural network, artificial intelligence
for the COVID-19 detecting task joins following this popular
stream as well. Yujin Oh et al. exploit the feature reuse by
dense architecture to receive a clear edge result on COVID-19
CT lung segmentation [29]. People began to shift their attention
to researching what information should be most careful when
extracting information from images meets its bottleneck. For this
reason, attention-based algorithms become embedded in blocks
to lead crucial information into a better representation [30,31].
Attention mechanisms combined with the residual block, which
emerges henceforth, further activate to focus and preserve more
on core information importance [32,33]. But in recent years, a
popular model stemmed from the natural language processing
(NLP) domain called Transformer transplant into the computer
vision domain successfully [34]. This kind of model named Vision
Transformer (ViT) [35] is a fully-attention structure and inherent
the conspicuous characteristic of BERT [36], which applies a
token ahead of the embedding for final decision. However, the
original ViT structure is hard to train economically without a
large base dataset supported even if it surpasses the remarkable
performance created by CNN [37]. And the converge situation
of the Transformer model heavily depends on the training batch
and multi-parallel GPUs [38]. Consequently, people began to add
absolute position attribution on tokens, a different approach from
the position embedding (PE). T2T-ViT compresses the tokens by
re-structurization them like input images [37]. This approach
provides a piece of new position information between tokens.
Besides, the NesT creates tokens by block aggregation service
to contribute sturdy position information. Besides, the NesT also
emphasizes the importance of the absolute position by deploying
block aggregation service on tokens [39]. In addition, tokens
in the Swin-Transformer serve as different scales for acquiring
extra position information [40]. These optimizations of ViT es-
tablish closer connections on position information, which made
its long-range relationship characteristics involved orderly.

2.2. Feature fusion

Vary embeddings from the feature extractor represent dif-
ferent detailed information learned by the network. UNet fuse
the same scale feature in the encoder and decoder network to
reinforce the context feature [41]. Whereas feature pyramid net-
work (FPN) fuse the different scale feature embeddings in the
encoding process to acquire a better feature representation [42].
Another way is utilizing a fully-connected layer to process the
concatenated embeddings, which also can conserve essential in-
stances of them all [43]. In [44], Chao et al. encode multi-type
data and concatenate the representation embeddings for syn-
thesis prediction on ICU admission through the random forest.
Anunay Gupta et al. proposed InstaCovNet obtains a more reliable
accuracy performance by associating features from five different
feature extractors together for the final decision [45].

3. Method

3.1. Motivation

Current works only applied CNN or ViT for feature extraction.
But CNN is only good at capturing local features, which cannot
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Fig. 1. Respective Field: (a) respective field of CNN, (b) respective field of ViT.

xtract global features causes of its small convolution kernels. In
ontrast, ViT benefits from its particular way to get embeddings
rom patches, which obtain a large receptive field but lack of
etail information. So, we consider that integrating the feature
rom CNN and ViT can complement the feature deficiency of each
ther. The respective field of CNN and ViT were visualized in Fig. 1
a) and Fig. 1(b) severely. According to the trait of their respective
ield, we define features from CNN as local features and features
rom ViT as global features. In Fig. 1(a), we have already cannot
ecognize what is meaning in the filter. Whereas we can clearly
e aware of an outline with some details of a lung was shown in
he filter as Fig. 1(b).

And we also consider that merging local feature embedding
nd global feature embedding can complement the data defi-
iency of each other. But operating a linear layer only to process
he concatenated embeddings cannot emphasize the comple-
ent information specifically. We thus proposed a feature com-
lement Transformer (FCT) to strengthen the expression of the
oncatenated feature embeddings.
Due to our architecture is consists of a ViT, and the full-

ransformer model needs a large dataset to train. Otherwise, it
ill exhibit an inferior performance compared to the identical
ize CNN model without pretraining [37]. And CT scan images are
rayscale images, which cannot transfer learning on the three-
hannel input pretraining model. It also converges slowly when
raining on a single GPU without transfer learning. To resolve
his problem mentioned above, we provided a weakly supervised
odule to guide the ViT extractor gaining better performance.

.2. Network

According to our motivation in Section 3.1, we proposed a
eature complement fusion network (FCF) contributing to provid-
ng a brand new view to get various aspect feature embeddings.
nd further combining the CNN and ViT hybrid embeddings inte-
rated for prediction efficiently. The overview of our FCF structure
s shown in Fig. 2. Pseudocodes of the whole FCF architecture are
hown in 1. Specifically, we separate this model into three parts:

• Feature extractor: this module consists of a CNN branch
and a parallel ViT branch to extract CT images features into
feature embeddings.
• Weakly supervised module: it produces a weak label to

weakly supervise the ViT extractor, which accelerates its
convergence rate meanwhile.
• Feature complement fusion block: features come from the

feature extraction part gathered here, then make a comple-
ment fusion for the final decision.

.2.1. Feature extractor
Features extracted from the feature extractor have to involve

ocal information and global information from the object. We
3

select CNN and ViT to extract local information and global infor-
mation severally.

CNN Extractor In our model, the CNN extractor is based on
a backbone network, e.g., the ResNet [26] and DenseNet [28].
We will discuss how to select a specific one in the ‘‘Ablation
Study’’ and ‘‘Compared to Classic SOTA’’ sections. Where to bal-
ance the compute efficiency and the performance, we finally
adopt ResNet-50 as an extractor to extract local features with spa-
tial information consisting of abundant texture and edge [37,46]
in the CNN branch. Generally, a ResNet-50 includes one 7 × 7
convolutional layer, 16 residual blocks, and a linear layer. Each
residual block consists of 3 convolutional layers of kernel size
1 × 1, 3 × 3, and 1 × 1 respectively. A ReLU activate function
is employed between every convolution layer. More details can
see in [26]. Finally, we retain all convolutional blocks and rectify
the output dimension of the final linear layer to generate a 512-D
feature.

ViT Extractor Concerning the limitation of the training con-
dition mentioned in the ‘‘motivation’’ section, we utilized T2T-
ViT [37] in the ViT extractor to extract global features by its
long-range dependency. We make two modifications to the T2T-
ViT so that it can fit COVID-19 classification tasks. Firstly, we
truncated the inner Transformer layer into 5. Secondly, we adjust
its hidden dimension to 512 formulating a 512-D feature directly.

According to the feature extractor we chose above, a pair of
512-D feature embeddings generated from ResNet-50 and T2T-
ViT-5, which represents local and global features severally.

3.2.2. Feature fusion block
We note that using concatenated feature embedding from CNN

extractor and ViT extractor directly cannot reflect the importance
proportion derived from different feature extractors. For this
reason, we designed a feature complement Transformer (FCT)
shown in Fig. 3 to conduct the merging features from the different
feature extractors. FCT adopts the multi-head self-attention as
the core mechanism, which gets the ability to concentrate on
the essential value automatically. After that, we further intro-
duced a single-layer feed-forward network (FFN) to reinforce the
expression capability of the FCT structure.

Let FFF = {x1, x2, x3...xn} ∈ RL denote the concatenated feature
embedding from the CNN and ViT extractor: where L is the length
of the concatenated feature embedding. To meet the requirement
of calculating the self-attention, we thus add an extra dimension
to this embedding to get F ′ ∈ R1×L. This approach makes the
embedding match the size of the FCT required only, which does
not influence the data and its structure. To balance the compu-
tational efficiency and model performance, we finally utilize an
8-head self-attention structure, such that each instance project
to embeddings Qi, Ki, and Vi of each headi can represent as:

Qi = F ′ · wqi (1)

Ki = F ′ · wki (2)

Vi = F ′ · wvi (3)

where wq∈ RL× L
8 , wk∈ RL× L

8 , and wv∈ RL× L
8 denote the embed-

ing weight matrix of each head. The process of calculating the
ttention of the whole feature embedding of each head is then
iven by:

ttention (Qi, Ki, Vi) = softmax
(
Qi · K T

i
√
dk

)
· Vi (4)

where dk =
dF

headnum
=

L
8 is the embedding dimension of each

head. The symbol (·) represents the dot product operation. For
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Fig. 2. The architecture of our proposed FCF-Net includes two feature extractors, a feature fusion block, and a weakly supervised module. A CT scan image passed
two various feature extractors to generate 512-D local and global feature embeddings. Feature fusion block concatenates these embeddings and processes them
within a feature complement Transformer (FCT), then makes the final prediction. The weakly supervised module first maps the various embedding to 2-D feature.
These 2-D features will translate into probability distribution through a softmax layer. Finally, we calculate the KL divergence of these two distributions to optimize
the ViT extractor in a weakly supervised way.
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each of these, we refer to the final attention embedding F ′Attention
as:

FAttention = Concate(head1, head2, . . . headi) (5)
where headi = Attention (Qi, Ki, Vi)

FFN = MLP1(GELU(MLP2(FAttention))) (6)

F ′Attention = FFN(FAttention) (7)

where MLP represents the multilayer perceptron and GELU de-
notes the activation function. The output dimension of MLP1 and
LP2 is set to L and 2L correspondingly. Then restore its shape

from F ′Attention ∈ R1×L to F ′′Attention ∈ RL. Cause the attention mech-
nism effect, the processed feature embedding retains the crucial
nstance and attaches more importance to its staple feature from
he different feature extractor. On the other side, the weak-
ess instance, meanwhile, recedes its representation through the
ttention process. That means local feature and global feature
einforce their representation and integrate more efficiently. In
ddition, we add an FFN as the sub-layer to apply local and
ranslationally equivariant that do not supply in the attention
echanisms. It further strengthens the representation power of

he whole FCT structure.
As other neural network classification tasks do, we adopt a

inear classifier and a softmax layer to make the final prediction
ˆ as:

ˆ = argmax (softmax (Linear(F ′′Attention))) (8)

3.2.3. Weakly supervised module
To overcome the convergence problem in the ViT structure, we

designed this weakly supervised module. DL model for classifica-
tion task final mapping the feature embedding into a probability
distribution, no matter the CNN model or the ViT model. And
considering the CNN model has tremendous generalization abil-
ity, we adopt the probability distribution created by the CNN
extractor to be a weak label. We employ this weak label to inform
the ViT where the probable location of proper distribution is,
although it cannot provide a definite distribution of the ground
truth. First, this module leverage the embedding features from
two different extractors into 2-D features by a linear layer. Then
we use a softmax layer to render it into a probability distribution
of the final prediction. We use these distributions to calculate KL
divergence to optimize the ViT extractor in training. It will detail

more in the modified loss section.

4

Fig. 3. FCT structure.

3.3. Modified loss

We utilize the categorical cross-entropy loss as the majority
loss to supervise this classification model.

LCE = −
1
N

∑
i

ŷi logpi +
(
1− ŷi

)
log (1− pi) (9)

here pi is the actual probability of the image, ŷ denotes the
redict label of the model.
Consider our model incorporated with ViT structure for adding

lobal features. And Transformer-based model gets a worse per-
ormance when it lack of large dataset to do pretraining on it,
n contrast to the same size CNN model counterpart [37,47]. To
ddress this problem, we created a weakly supervised module to
ccelerate the rate of convergence of ViT by a weakly supervised
earning manner.

Due to these two distributions from various feature extractors
eeding to describe the same prediction result, we expected
he prediction distribution from these feature embeddings to be
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Algorithm 1 Feature Complement Fusion Network (FCF)

Input: A Batch of Image Data: Xi;
Label of A Batch of Image: Li;

nitialization: Loss = 0;
1: for Xi in Dataset do
2: Ec , Ev ← CNN(Xi), ViT(Xi)

% Acquire embeddings from CNN and ViT networks
3: Ec2−D , Ev2−D← Linear(Ec), Linear(Ev)

% Obtain 2-D feature embeddings
4: Dc , Dv ← Softmax(Ec2−D ), Softmax(Ev2−D )

% Translate 2-D feature embeddings into probability distribu-
tions

5: F ← Concate(Ec , Ev)
% Fuse feature embeddings

6: F ′′ ← FCT(F )
% emphasizes the representation of F

7: LCE ←CrossEntropy(F ′′, Li)
8: LKL ← KL Divergence(Dc , Dv)
9: LTotal ←LCE + λ ∗ LKL

10: Loss← Loss + LTotal
11: end for
12: Backward Loss to optimize the parameters in FCF

similar. We consequently introduced a KL divergence as a regu-
larization term loss to minimize the distance of two distributions:

LKL (Dc ∥ Dt) =
∑
x∈X

Dc(x)log
Dc(x)
Dt (x)

(10)

here x here denotes each input from the dataset X , Dc(x) means
the distribution of x ∈ X generated from the CNN feature embed-
ding. Dt (x) can be obtained in the same way by the ViT extractor.

e set Dc(x) as the pseudo label, let Dt (x) learn information from
the pseudo label to optimize the ViT extractor. That means the
ViT extractor can learn the distribution generated from the CNN
extractor to accelerate its convergence rate and train the ViT
extractor more efficiently.

The total loss can be written as follow:

Ltotal = LCE + λ ∗LKL (11)

here λ represents an impact factor to restrain how strength this
erm intervenes in the ViT extractor optimization process. λ will
e discussed in the following parameter analysis section.

. Experiment

.1. Implementation details

ataset. The dataset we used is a subset of COVID-CTset, which
as introduced in a COVID-19 pneumonia detecting framework
y Mohammad Rahimzadeh [48]. COVID-CTset was gathered from
egin medical center in Iran, they adopt a SOMATOM Scope
odel and syngo CT VC30-easyIQ software version for capturing
nd visualizing the lung HRCT radiology images from the patients.
t uses 16-bit rather than 8-bit grayscale images to reserve more
etail for experts to diagnose low-level inflation precisely. These
inds of images in this dataset perfectly evade the data leakage
roblem by compressing the image into other formats mentioned
n [49]. CT images are not in color, and these raw data is only
ne channel instead of RGB (R=G=B) [49], which is more scientific
or the later training process. This subset contains 4562 images
hich controlled the positive and negative samples as the same
roportion strictly. And then we split the selected images into
5

Fig. 4. Dataset Configuration.

Fig. 5. Samples in COVID-CTset: (a) COVID-19 samples, where red arrows denote
the infection area. (b) Normal samples.

train-set, val-set and test-set as a proportion of 8:1:1. We show
the dataset configuration in Fig. 4 and sample details in Fig. 5.

Training details. The implementation of the whole FCF archi-
tecture software is based on the Pytorch [50] framework. The
hardware information to train this model is on an i9-10900F CPU
and a single RTX 3090 GPU. Our proposed work is an end-to-end
model, which represents this model requires a CT image only for
the final result. We train this network end-to-end for 200 epochs
using Adam [51] optimizer with a constant learning rate of 7e-5
through our proposed loss. The parameters in the Adam optimizer
are setting as β1 = 0.9, β2 = 0.999.

Assessment criteria. And to better critic the performance of our
proposed model, we applied four evaluation metrics to judge our
model synthetically.

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

ecall =
TP

TP + FN
(13)

Precision =
TP

(14)

TP + FP
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Table 1
Parameter Analysis.
Para. Value Accuracy Recall Precision F1-Score

λ

0.4 97.81 98.25 97.39 97.82
0.5 98.68 98.25 99.12 98.68
0.6 99.34 99.56 99.13 99.34
0.7 97.81 96.93 98.66 97.79
0.8 97.15 96.49 97.78 97.13
1.0 98.90 100.00 97.85 98.92
1.2 98.46 97.81 99.11 98.45

F1-Score = 2 ∗
Precision ∗ Recall
Precision+ Recall

(15)

here

• True Positive (TP): The model forecasts the COVID-19 cate-
gory to be the COVID-19 class.
• False Positive (FP): The model predicts the initially Normal

class into the COVID-19 class.
• True Negative (TN): The model forecasts the Normal cate-

gory to be the Normal class.
• False Negative (FN): The model predicts the COVID-19 class

into the Normal class.

.2. Parameter analysis

We introduced a hyperparameter λ to describe the impact
orce on the regularization term in Eq. (11). This parameter con-
trains how similar these distributions are, generated from the
ifferent extractors. We experiment with seven different values
f this hyperparameter from 0.4 to 1.2 to analyze the performance
f the COVID-19 detection model. To guarantee fairness in the
xperiment, we initial the training model at the same weight. And
e introduced four metric methods from Eq. (15) to judge the
esult synthetically. These four metric methods show different
ariations when changing the parameter λ. We can see the best
ccuracy shows up s.t. λ = 0.6 in Table 1. It indicates that this

model can make the minimum error decision in the prediction
process. The highest recall emerged when λ = 1.0, which repre-
ents the model acquired an excellent capability to cover the fully
OVID-19 samples in the test set. Besides, the precision reaches
he apogee when λ = 0.6. It demonstrates our model gets the best
bility to predict the COVID-19 class using this hyperparameter.
owever, greedy much on the recall or precision of the model
s not a wise choice. The comprehensive critical ability of the
ocal infection prediction model cannot be neglected. Thus we
ompared their F1-Score, which employs an average judgment
n recall and precision, to determine the best accuracy and F1-
core model. We finally choose λ = 0.6 to be the best optimization
yperparameter.

.3. Ablation study

We design various ablation experiments to illustrate the effec-
iveness of our proposed methods in this brand-new architecture.
e show the ablation result of the whole architecture used
esNet-50 to be the CNN extractor and T2T-ViT-5 as the ViT
xtractor in Table 2. All these experiments are based on the same
nitial weight to ensure fairness. We first focus on how the KL
ivergence in the loss function affects the performance of the
hole architecture. Then, we remove the KL divergence in the

oss function and add our FCT structure to test the influence of
his proposed method. After that, we merged them into the model
o see its bonus performance.

L divergence. We introduced KL divergence in the loss function

o assist the ViT extractor in learning from the CNN extractor. This
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Table 2
Ablation on FCF-Res model.
FCT KL Accuracy Recall Precision F1-Score

97.81 97.37 98.23 97.80
✓ 98.46 98.68 98.25 98.47

✓ 98.49 98.68 98.25 98.47
✓ ✓ 99.34 99.56 99.13 99.34

Table 3
Ablation on FCF-Dense model.
FCT KL Accuracy Recall Precision F1-Score

98.46 99.12 97.84 98.47
✓ 98.90 99.12 98.69 98.91

✓ 98.68 99.56 97.85 98.70
✓ ✓ 99.34 99.12 99.56 99.34

Fig. 6. The variation of accuracy in the training process: (a) FCF-Res model, (b)
FCF-Dense model.

approach aims to train the model more efficiently and overcome
the low convergence defect of the Transformer-based model. It
raises the accuracy performance in the final prediction as well.
Although ablation on KL divergence only model gets the same
performance as the FCT only model. As shown in Fig. 6, the model
adding KL divergence to the loss function achieves a higher speed
in the convergence course.

FCT. Next, we dissect the result in Table 2 and note that the
whole model performed well when adding our elegant fusion
strategy — FCT into it. Given result demonstrates that using FCT
rather than mere concatenated feature embeddings can make a
0.25% rise in prediction accuracy. It also developed the recall
indices, which represent the whole model receive a strong ability
in detecting disease through the FCT.

We do the same ablation experiment when replacing the
ResNet-50 with DenseNet-121 in CNN branch to prove the va-
lidity of our framework. The result in Table 3 corroborates the
effectiveness of our thought and the correctness of our framework
as well.

4.4. Compared to classic SOTA

We do experiments to compare our network with the state-
of-the-art classic classification algorithms, including CNN models,
ViT models, and feature fusion models in Table 4.

FCF reaches 99.34% accuracy, which is 0.44% higher when
compared to CNN models. This performance can defeat any CNN
model, but it receives more parameters and FLOPs than ResNet-
50 and DenseNet all series. As we declared in the related work,
a fully-Transformer structure will get a poor performance if it
encounters a data scarcity condition or training on a single GPU.
Hence, we only exhibit the result of base ViT and the T2T-ViT-
5 we used in our framework. As for FPN and UNet, they both
gathered features to enhance the representation for the final pre-
diction. FPN concatenates every embedding from different fusion
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Table 4
Compared to Classic SOTA.
Model type Model Params. (M) FLOPs (G) Accuracy Recall Precision F1-Score

CNN

ResNet 50 23.5 10.6 97.81 97.37 98.23 97.80
ResNet 101 42.5 20.2 98.03 98.25 97.82 98.03
ResNet 152 58.1 30.0 98.68 99.56 97.84 98.70
DenseNet 121 6.9 7.2 98.46 99.12 97.84 98.47
DenseNet 161 26.5 20.0 98.46 99.56 97.42 98.48
DenseNet 169 12.5 8.6 98.90 99.12 98.69 98.91
DenseNet 201 18.1 11.2 98.68 99.56 97.84 98.70

ViT ViT-b 15.8 8.2 81.36 88.16 77.60 82.55
T2T-ViT-5 10.9 6.0 94.74 92.11 97.22 94.59

Feature Fusion FPN(ResNet 50) 26.3 17.8 98.03 97.81 98.24 98.02
UNet 17.2 80.0 99.34 99.56 100.0 99.34

Feature Complement Fusion FCF-Res(ours) 40.0 16.6 99.34 99.56 99.13 99.34
FCF-Dense(ours) 24.2 13.2 99.34 99.12 99.56 99.34
Fig. 7. Confusion matrix of FCF and their source feature extractor.
p
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Fig. 8. ROC of FCF and their source feature extractor.

layers in the pyramid network. And every sub-layer under the
top layer applied a feature enhancement by adding an up sample
feature of its up-neighbor layer. This process increases 40% FLOPs
than normal ResNet-50, although it gets a better accuracy per-
formance when compared to ResNet-50. UNet attains the same
high accuracy with 99.34%, according to its characteristic U-shape
structure. This architecture applied huge feature maps in the skip
connection process to do feature enhancement roughly. However,
the FLOPs run up rapidly along with that process corresponding.
A four times increase in FLOPs to get an extra 0.22% F1-Score is
not a wise choice. In contrast, our provided framework makes
a good trade-off on prediction performance and computation
efficiency. We sacrifice the training parameters and bring our
model size into the middle-level to trade fewer FLOPs for refining
our model. The confusion matrix we post in Fig. 7 shows the
detailed performance of each model we applied in our feature
complement fusion framework. We compare each class that was
 a

7

Fig. 9. ROC of FCF and other feature fusion methods.

redicted, including every engaged sample. Although T2T-ViT-
performs inferior to ResNet-50 and DenseNet-121, it provides
seful property features fed into FCT and promotes prediction
erformance. Compare the data shown in Fig. 7 (a) and Fig. 7
d), we can conclude that global features generated from T2T-
iT-5 compensate the local features extracted by the ResNet-50.
he same conclusion can be easily obtained when comparing the
ig. 7 (b) and Fig. 7 (e). The AUC of ROC curve results in Fig. 8
nd Fig. 9 also shores up the effectiveness of our proposed model
xactly.

.5. Compared to COVID-19 SOTA

We also compared our FCF-Res with other COVID-19 state-
f-art works on three public datasets to verify its generalization
bility and effectiveness. As shown in Table 5, InstaCovNet-19
nd our FCF-Res emerge with the same accuracy of 99.34% on
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Fig. 10. Grad-CAM on comparison methods.
Table 5
Accuracy performance of COVID-19 SOTA methods on COVID-CTset [48], iCTCF [52] and MosMedData [53].
Method Params. (M) FLOPs (G) COVID-CTset[48] iCTCF [52] MosMedData [53]

ADLN [48] 26.2 17.8 96.05 97.56 72.40
InstaCovNet-19 [45] 165.8 69.2 99.34 99.31 78.73
COVID-Net CT [54] 15.2 0.9 78.82 97.00 66.86
FCF-Res(ours) 40.0 16.6 99.34 98.19 84.50
the COVID-CTset, but our calculation efficiency is more econom-
ical. Whereas InstaCovNet-19 integrated five baseline models to
get the final prediction. Due to InstaCovNet-19 integrating five
baseline models to get the final prediction, it boosts parameters
and FLOPs dramatically, although it achieves the best perfor-
mance on iCTCF [52]. It boosts parameters and FLOPs increasing
to a dramatic extent, although it achieves the best performance.
Four times of resource usage but only increasing the accuracy
by 1.12% is not a cost-effective strategy. COVID-Net applied the
minimum parameters, which perform well on iCTCF while lack-
ing generalization ability performing worse on other datasets.
Even on the MosMedData [53], our model shows the best accu-
racy performance and verified its robustness and generalization
ability.

We also handle Grad-CAM [55] to visualize the result to illus-
rate where the gradient actually focused in Fig. 10. ADLN shows
similar result on iCTCF (Fig. 10 (c)) as ours (Fig. 10 (f)) but
ppears weak gradient on MosMedData. Although InstaCovNet-
9 achieves the best accuracy, it cannot locate the gradient of
esion areas in visualization results. The gradient of COVID-Net CT
annot focus on lesion areas in all three datasets, which also ex-
lains its poor generalization ability. The gradient was relatively
ispersed in the T2T-ViT-5 or made misregistration of lesion areas
n ResNet-50. Ours FCF integrated the advantage characteristic of
esNet-50 and T2T-ViT-5. It not only possesses broader receptive
ields to guarantee a wide range of gradients but also preserves
ffective gradients on the lesion areas precisely.

. Conclusion

In this paper, we introduce a detailed study of feature com-
lement fusion network (FCF) to detect COVID-19 through CT
mages. This structure involves the advantage of the receptive
ield in both CNN and ViT models to extract complement fea-
ures. And a weakly supervised module successfully assists the
iT structure to converge better. We further provided an FCT
rchitecture to merge the characteristics from feature extrac-
ors economically. Extensive ablation experiments demonstrate

hat our proposed method specifically worked in the weakly

8

supervised module and feature fusion block. Moreover, these
algorithms perform well in the whole construction. It emphasizes
the priority in different features and enables them fused more
efficiently.

Although we alleviate the converge slow question caused by
ViT in our architecture, our model is training unstable cause of
its inner layer normalization structure. It also needs a long time
to train for convergence on a large-scale dataset compared to
the pure CNN model. We are going to overcome the problems
mentioned above in our future works.
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