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ABSTRACT Tetracycline-based combinations are increasingly used for serious carba-
penem-nonsusceptible Acinetobacter baumannii (CNSAb) infections given their potent in
vitro activity, synergism with other agents, and acceptable toxicity profile. Omadacycline is
a novel aminomethylcycline with activity against minocycline-resistant pathogens, once
daily oral dosing, and favorable pharmacokinetic properties. Given these potential advan-
tages, the in vitro potency and antibacterial activity of omadacycline were evaluated alone
and in combination against CNSAb with varying minocycline susceptibility. Broth microdi-
lution testing of 41 CNSAb revealed that omadacycline (MIC50/90: 4/8 mg/L) inhibited
68.3% (28/41) of isolates at #4 mg/L and its activity was unaffected by minocycline non-
susceptibility (MIC50/90: 4/8 mg/L; 74.2% [23/31] inhibited at #4 mg/L). Ten (5 minocycline
susceptible and 5 nonsusceptible) of the 41 CNSAb isolates were then evaluated in
time-kill analyses against omadacycline and comparator agents alone and in dual- and
triple-drug combinations at the free maximum concentration of drug in serum (fCmax).
Amikacin, meropenem, and polymyxin B alone were each bactericidal against 4 of 10
(40%) isolates while omadacycline and sulbactam were bactericidal against 0 (0%) and 1
(10%), respectively. In dual-drug combinations with omadacycline, synergy was observed
against 80% of isolates with sulbactam followed by 30% with amikacin or polymyxin B
and 0% with meropenem or rifampin. The triple-drug combination of omadacycline, sul-
bactam, and polymyxin B achieved synergy against just one additional strain over the
omadacycline-sulbactam dual combination but significantly reduced the time to 99.9%
kill by more than 6 h (4.6 6 2.8 h vs. 11.3 6 5.9 h, P , 0.01). These results support the
continued investigation into tetracycline-based combinations against CNSAb, particularly
those including sulbactam, and suggest that omadacycline may have in vitro advantages
over existing tetracycline-derivatives.

IMPORTANCE Treatment of infections due to Acinetobacter baumannii often involves
the use of multiple antibiotics simultaneously as combination therapy, but it is unknown
which antibiotics are best used together. Tetracycline agents such as minocycline and
tigecycline maintain good activity against A. baumannii and are often used with one or
more other agents to achieve better killing of the bacteria. Omadacycline is a new tetra-
cycline that may have a role in the treatment of A. baumannii, but no data are available
evaluating its interaction with other commonly used drugs such as polymyxin B and sul-
bactam. Therefore, the purpose of this study was to investigate the antibacterial activity
of omadacycline when combined with one or more other agents against carbapenem-
resistant strains of A. baumannii. These findings may then be used to design confirmatory
studies that could help decide what drugs work best together and what combination of
agents should be used for patients.
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Carbapenem-nonsusceptible Acinetobacter baumannii (CNSAb) remains one of only
two Gram-negative pathogens considered both an urgent threat nationally by the

Centers for Disease Control and Prevention (CDC) and a critical priority internationally
by the World Health Organization (1, 2). The exorbitant morbidity, mortality, and health
care costs associated with CNSAb infections are due in large part to the insufficient number
of available treatment options with adequate in vitro activity and appreciable clinical efficacy
(3). In the United States, 18% of A. baumannii express the difficult-to-treat resistance pheno-
type and $40% are carbapenem nonsusceptible; only cefiderocol, the polymyxins, and the
tetracycline-derivatives maintain reliable in vitro potency against this phenotype (4–7). Given
the high rates of resistance, importance of time to effective therapy, and the lack of an estab-
lished standard of care treatment regimen, combination therapy is routinely employed against
A. baumannii and is supported by recommendations from the Infectious Diseases Society of
America (8). Although clinical studies evaluating combination therapy are conflicting, preclini-
cal data support combinations including a polymyxin with sulbactam, meropenem, rifampin,
and/or a tetracycline derivative (9). Despite these data, the optimal combination of agents and
dosing regimens to maximize efficacy and minimize toxicity have not been established. As at-
tributable mortality rates for serious CNSAb infections are as high as 70% with current treat-
ment and the prevalence and resistance continue to increase, it is crucial to continue to
explore novel potential treatment regimens for this challenging pathogen (10–12).

Omadacycline is a novel aminomethylcycline with structural modifications at the C7 and
C9 positions allowing it to circumvent the efflux pumps TetK and TetB and ribosomal
protection protein mechanisms TetM and TetO that confer resistance to traditional tet-
racyclines including minocycline (13). These structural alterations also allow for once
daily oral maintenance dosing making it only the second tetracycline-derivative after
minocycline with activity against CNSAb available in oral formulation. Additional advantageous
pharmacokinetic (PK) properties include significantly lower, concentration-independent pro-
tein binding and enhanced epithelial lining fluid penetration (14). Together these factors may
make omadacycline a promising alternative to existing tetracycline derivatives for the treat-
ment of A. baumannii, although supporting data are lacking. As such, the objective of this
study was to evaluate the in vitro potency of omadacycline and comparator agents against
A. baumannii via broth microdilution (BMD) testing and assess the antibacterial activity of
each agent alone and in two- and three-drug combinations in time-kill analyses.

RESULTS
Susceptibility testing. Genotypically, 97.6% (40/41) of CNSAb isolates tested har-

bored at least 1 aminoglycoside-modifying enzyme and at least 1 Ambler class D blaOXA gene
(most commonly blaOXA-23 at 48.8%), while all 41 (100%) carried the class C gene blaADC-25.
Nineteen of 41 (46%) also coharbored a class A blaTEM-1B or -1D gene while 32/41 (78%) and
1/41 (2.4%) carried the tet(B) and tet(A) efflux genes, respectively. The phenotypic MIC50, MIC90,
MIC range, and percent susceptible for each agent, as applicable, against all 41 CNSAb isolates
are summarized in Table 1. Only 12.2% (5/41) of isolates were susceptible to amikacin and
none (0%) were susceptible to meropenem (1 intermediate [2.4%] and 40 [97.6%] resistant).
Similarly, activity of sulbactam was poor with MIC50/90 values of 32/128 mg/L and just 1 isolate
testing susceptible. Polymyxin B displayed the lowest MIC50/90 values of any agent at 0.5/
0.5 mg/L although no isolates were considered susceptible as the revised CLSI interpretive cri-
teria only include intermediate and resistant breakpoints for the polymyxins. Minocycline dis-
played the highest rate of susceptibility overall at 29.3% (12/41) although MIC50/90 values were
16/16 mg/L compared to omadacycline and tigecycline each at 4/8 mg/L. Against the 31 min-
ocycline nonsusceptible isolates, omadacycline and tigecycline MIC50/90 were unchanged at 4/
8 mg/L each and 74.2% and 90.3% were inhibited at #4 mg/L of omadacycline and tigecy-
cline, respectively. The MIC distributions for each tetracycline derivative against all 41 CNSAb
isolates are overlaid in Fig. 1. Overall, isolate AB4 was the most resistant and displayed the
highest MICs across all eight agents tested followed by AB6. Isolate AB7 and AB8 were the
least resistant of the 10 tested although each were susceptible only to minocycline.

Time-kill experiments. Table 2 displays the MIC values for each agent against the
10 CNSAb selected for time-kill experiments. Comparing the MIC values in Table 2 to the
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simulated free maximum concentrations of drug in serum (fCmax) as shown in Table 3 reveals
that, although only 3/10 (30%) isolates were considered susceptible to amikacin, 7/10 (70%)
had an MIC at or below the fCmax of 55.5 mg/L. All 10 (100%) isolates were considered nonsus-
ceptible to meropenem although 3/10 (30%) had MICs less than or equal to fCmax (40 mg/L)
compared to sulbactam for which all (100%) were considered resistant while 7/10 (70%) had
an MIC less than or equal to fCmax (60.8 mg/L). The vast majority (80%) of polymyxin MICs
were 5 to 10-fold below the fCmax (2.61 mg/L) though none were considered susceptible.
Finally, just 1/10 (10%) minocycline isolates had an MIC approximately equal to its fCmax

(0.24 mg/L) versus 2/10 (20%) for omadacycline (1.21 mg/L) and 0/10 (0%) for tigecycline
(0.08 mg/L).

Results of time-kill experiments for omadacycline, polymyxin B, and sulbactam alone and
in their respective dual omadacycline-based combinations at fCmax are displayed in Fig. 2
against the five minocycline susceptible isolates and in Fig. 3 against the nonsusceptible iso-
lates. Figures S1 and S2 in the supplemental material display the single- and dual-drug combi-
nation results for the other agents tested against the minocycline susceptible and nonsuscep-
tible A. baumannii strains, respectively. Alone, amikacin, meropenem, and polymyxin B were
each bactericidal against 4 of 10 (40%) strains. Sulbactam was bactericidal against one strain
(10%) while the tetracycline derivatives and rifampin were not bactericidal against any (0%)
and 24-h bacterial densities were similar to the drug-free control. Omadacycline with sulbac-
tam was the most active dual combination resulting in synergy against 8/10 (80%) strains (all
5 minocycline susceptible and 3 of 5 nonsusceptible), improvement in bactericidal activity
from just 1/10 (10%) with sulbactam alone to 8/10 (80%), and achievement of eradication
against 5/10 (50%) tested strains. It was also the only dual combination to have any activity or
achieve bactericidal activity against the challenging AB4 and AB6 strains (Fig. 3B and D). The
mean (6SD) log10 CFU/mL decrease after exposure to the omadacycline plus sulbactam com-
bination from 0 to 24 h across all 10 isolates was 4.24 6 2.51. Omadacycline in combination
with either amikacin or polymyxin B was synergistic against 3/10 (30%) strains each (2 minocy-
cline susceptible and 1 nonsusceptible), bactericidal against 6/10 (60%) each, and achieved

FIG 1 MIC distributions of minocycline, omadacycline, and tigecycline against 41 clinical carbapenem-
nonsusceptible Acinetobacter baumannii.

TABLE 1 Activity of omadacycline and comparator agents against clinical carbapenem-
nonsusceptible Acinetobacter baumannii isolates (n = 41)a

MIC (mg/L) Susceptibility (%)

Agent 50% 90% Range S I R
Amikacin 128 .256 2 to.256 12.2 24.4 63.4
Meropenem $256 $256 4 to$256 0 2.4 97.6
Minocycline 16 16 0.25 to 32 29.3 19.5 51.2
Omadacycline 4 8 1 to 16 NC NC NC
Polymyxin B 0.5 0.5 0.125 to$128 NC 95.1 4.9
Rifampin 16 64 4 to.256 NC NC NC
Sulbactam 32 128 2 to 128 2.4 0 97.6
Tigecycline 4 8 1 to 16 NC NC NC
aS, susceptible; I, intermediate; R, resistant; NC, no applicable interpretive criteria available.
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eradication against 5/10 (50%) and 6/10 (60%), respectively. The only instance of antagonism
occurred with the combination of omadacycline and polymyxin B compared to polymyxin B
alone against AB1 (Fig. 2A; mean 24-h log10 CFU/mL increase from 0 to 4.53). Omadacycline
plus rifampin was synergistic and bactericidal against only 2/10 (20%) strains and omadacy-
cline plus meropenem was synergistic against just 1/10 (10%) isolates and did not improve
bactericidal activity over meropenem alone (40%) (Fig. S1 and S2). Lastly, the dual combina-
tion of meropenem plus polymyxin B was also evaluated against the four strains for which
neither meropenem or polymyxin B alone was bactericidal (AB2, 4, 5, and 6). This combina-
tion achieved synergy and bactericidal activity against all four strains with a mean (6SD)
log10 CFU/mL decrease from 0 to 24 h of 4.776 2.48.

Based on results from the two-drug combination experiments, the triple combination of
omadacycline plus sulbactam plus polymyxin B was evaluated to assess whether the anti-
bacterial activity could be improved over the omadacycline plus sulbactam two drug combi-
nation. Consequently, the dual combination of sulbactam plus polymyxin B was tested
against all 10 strains to allow for comparison to the triple combination and demonstrated
50% synergy (3 minocycline susceptible and 2 nonsusceptible) and 100% bactericidal activ-
ity (10/10), which was improved over 4/10 (40%) for polymyxin B alone. The mean (6SD)
log10 CFU/mL decrease after exposure to the sulbactam plus polymyxin B combination from
0 to 24 h across all 10 isolates was 5.86 0.64. Figure 4 displays the results of the omadacy-
cline plus sulbactam plus polymyxin B triple combination versus the three comparative dual
combinations against a representative subset of five strains (minocycline susceptible strains
AB1 and AB10 and nonsusceptible strains AB3, AB5, and AB9). The triple combination of
omadacycline plus sulbactam plus polymyxin B achieved synergy against only one (10%)
additional strain (AB5; 9/10) over the omadacycline plus sulbactam combination (8/10). The
triple combination did achieve a $3 log10 CFU/mL reduction almost 7 h sooner on average
than the omadacycline and sulbactam dual combination (4.6 6 2.8 h versus 11.3 6 5.9 h,
P , 0.01). Additionally, eradication was increased from 5/10 (50%) with omadacycline plus
sulbactam to 10/10 (100%) and was not affected by susceptibility to minocycline. The mean
(6SD) log10 CFU/mL decrease after exposure to the omadacycline plus sulbactam plus poly-
myxin B triple combination from 0 to 24 h across all 10 isolates was 5.99 6 0.11. While the

TABLE 2MICs and susceptibility interpretation of omadacycline and comparator agents against 10 carbapenem-nonsusceptible clinical A.
baumannii isolates included in time-kill experimentsa

Isolate Amikacin Meropenem Minocycline Omadacycline Polymyxin B Rifampin Sulbactam Tigecycline
AB1 32 I 16 R 0.25 S 4 NC 0.5 I 4 NC 128 R 8 NC
AB2 32 I $256 R 2 S 16 NC 0.25 I 16 NC 32 R 8 NC
AB3 8 S 4 I 16 R 8 NC 0.5 I 16 NC 32 R 4 NC
AB4 .256 R 128 R 16 R 16 NC .64 R .256 NC 16 R 16 NC
AB5 32 I $256 R 16 R 1 NC 0.25 I 16 NC 64 R 2 NC
AB6 .256 R $256 R 8 I 4 NC .64 R 16 NC 16 R 4 NC
AB7 32 I $256 R 1 S 2 NC 0.25 I 8 NC 16 R 2 NC
AB8 .256 R $256 R 4 S 4 NC 0.25 I 4 NC 32 R 2 NC
AB9 2 S 16 R 8 I 1 NC 0.25 I 8 NC 16 R 1 NC
AB10 4 S 64 R 2 S 8 NC 0.5 I 8 NC 64 R 4 NC
aGray shaded cells represents isolates for which the respective drug’s free maximum concentration of drug in serum (fCmax) was$MIC. NC, no applicable interpretive criteria.

TABLE 3 Representative doses and fCmax values simulated for each agent in time-kill experiments

Agent Dosea Cmax (mg/L) Protein binding (%) fCmax (mg/L) Reference
Amikacin 15 mg/kg i.v. over 1 h 60 7.5 55.5 (54)
Meropenem 2 g i.v. over 3 h 40.9 2 40 (55)
Minocycline 100 mg i.v. over 1 h 0.99 76 0.24 (56, 57)
Omadacycline 100 mg i.v. over 30 min 1.51 21 1.21 (14)
Polymyxin B 1.5 mg/kg i.v. over 1 h 6.21 58 2.61 (58)
Rifampin 300 mg i.v. over 30 min 8.90 80 1.78 (59)
Sulbactam 1 g i.v. over 30 min 98 38 60.8 (60)
Tigecycline 50 mg i.v. over 30 min 0.38 80 0.08 (61)
aSingle doses.
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activity of the triple combination was improved over that of either the omadacycline plus
sulbactam or omadacycline plus polymyxin B dual combinations, it was virtually indistin-
guishable from the sulbactam plus polymyxin B dual combination (Fig. 4).

DISCUSSION

The inability to achieve bactericidal activity in vitro, the obstinate link between resistance
and delays in time to effective antimicrobial therapy, and the high mortality rates associated
with monotherapy against CNSAb strongly support the use of combination therapy (8, 15).
Even when faced with favorable MICs, monotherapy is often inadequate as was demon-
strated well in the recent cefiderocol CREDIBLE-CR study in which 85% of patients received
cefiderocol monotherapy versus 72% combination therapy in the best available therapy
(BAT) group (16). Despite 92% of A. baumannii cefiderocol MICs being #2 mg/L, 28-day
mortality was twice as high for cefiderocol compared to the BAT group. Although combina-
tion therapy is standard and endorsed by national and international societies and guidelines,
the optimal combination for serious CNSAb infections has remained elusive (3, 8). As the tra-
ditional polymyxin-carbapenem combination has fallen out of favor due to refuting con-
trolled trial data and concerns over pharmacokinetic-pharmacodynamic (PK/PD), toxicity,
and the development of carbapenem resistance, investigation into alternative combination
regimens for CNSAb is sorely needed (17–26).

The novel aminomethylcycline omadacycline is a welcomed addition to the available tet-
racycline derivatives given its potency against TetB positive, minocycline-resistant CNSAb
(;70% of A. baumannii), once daily oral dosing, and favorable PK properties including low
protein binding and enhanced intrapulmonary penetration (14, 27, 28). Tetracycline deriva-
tives, including omadacycline, have demonstrated little antibacterial activity against A. bau-
mannii alone in in vitro pharmacodynamic models, as expected given their low free serum
concentrations and bacteriostatic nature (29–31). Conversely, tetracycline-based combinations
often produce the most potent synergy and bactericidal activity in vitro and in vivo versus non-
tetracycline-based combinations and available comparative clinical data are encouraging (8,
32–36). In the present study, omadacycline was evaluated alone and in combination for the

FIG 2 Mean log10 CFU/mL versus time profiles for omadacycline, polymyxin B, and sulbactam alone versus each respective omadacycline-based dual drug
combination at the free maximum concentration of drug in serum (fCmax) against each of the 5 minocycline susceptible A. baumannii strains. Curves represent average
concentrations from triplicate experiments. (A) AB1. (B) AB2. (C) AB7. (D) AB8. (E) AB10. GC, growth control; OMC, omadacycline; PB, polymyxin B; SUL, sulbactam.
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first time in six different two- and three-drug combinations against CNSAb with varying mino-
cycline susceptibility. Broth microdilution testing of omadacycline demonstrated the second
lowest MIC50/90 values at 4/8 mg/L behind polymyxin B despite intentionally enriching our
sample with minocycline nonsusceptible isolates (Table 2 and Fig. 1). The in vitro potency
observed herein is consistent with previous analyses of omadacycline against larger samples

FIG 4 Mean log10 CFU/mL versus time profiles for the triple combination of omadacycline plus sulbactam plus polymyxin B versus each respective two drug
combination against a representative subset of 5 A. baumannii strains (2 minocycline susceptible, 3 nonsusceptible). Curves represent average concentrations
from triplicate experiments. (A) AB1. (B) AB3. (C) AB5. (D) AB9. (E) AB10. AMK, amikacin; MER, meropenem; RIF, rifampin.

FIG 3 Mean log10 CFU/mL versus time profiles for omadacycline, polymyxin B, and sulbactam alone versus each respective omadacycline-based dual drug
combination at fCmax against each of the 5 minocycline-nonsusceptible A. baumannii strains. Curves represent average concentrations from triplicate experiments. (A)
AB3. (B) AB4. (C) AB5. (D) AB6. (E) AB9.
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of A. baumannii (37–39). Bactericidal activity was achieved against #4 of 10 isolates for any
agent in alone in time-kill analyses, in line with the high rates of nonsusceptibility observed
among the selected isolates (Table 3). Omadacycline-based combinations were tested in 50
separate time-kill experiments overall (5 per isolate), demonstrating synergy with another
agent in 17/50 (34%) and bactericidal activity in 26/50 (52%). Across the 10 isolates included,
the highest rate of synergy and degree of bactericidal activity was observed when omadacy-
cline was combined with sulbactam (80%), followed by omadacycline with amikacin or poly-
myxin B (30% each). The addition of polymyxin to the omadacycline-sulbactam dual combi-
nation resulted in more rapid bactericidal activity, although this mimicked the activity of the
dual polymyxin-sulbactam combination which was less synergistic (50% versus 80%) than
omadacycline-sulbactam. While previous in vitro, in vivo, and clinical data have demon-
strated compelling synergy between tetracyclines and sulbactam, this combination is almost
never employed clinically despite the added benefit of reduced toxicity compared to poly-
myxin-based regimens (20, 30, 40–44). Our work adds to the existing literature supporting
the further exploration of tetracycline-sulbactam combinations and adds the first set of data
evaluating omadacycline in combination against A. baumannii.

Strengths of our study include the use of a broad panel of clinical A. baumannii isolates
with varying minocycline susceptibilities and the evaluation of omadacycline alone and in
combination with currently preferred agents. Limitations are primarily related to the inher-
ently static, in vitro nature of time-kill experiments including the inability to simulate human
PK parameters and other physiologic factors such as protein binding. Nonetheless, time-kill
assays are well recognized as suitable and efficient tools for assessing antibacterial activity
and PD drug interactions of antibiotic combinations (45). Additionally, as the current study
was focused on omadacycline-based combinations, not all possible dual and/or triple com-
binations were evaluated including some that have demonstrated synergy in previous stud-
ies (46). Recent findings suggest rifabutin may be significantly more potent than rifampin
against A. baumannii, although this was only evident when testing in nutrient-depleted,
mammalian cell culture media, which would not be suitable for the other agents included in
this study (47). Finally, testing agents at fCmax could have overestimated the antibacterial ac-
tivity and limited comparability between agents versus using MIC multiplicatives although
MICs were greater than fCmax in the majority of experiments and bactericidal activity was
rare in single-drug time-kill experiments.

In conclusion, omadacycline displays potent in vitro activity against CNSAb including strains
that harbor TetB and are minocycline resistant. Omadacycline in combination with sulbactam
was synergistic and bactericidal against 8/10 (80%) isolates, including strains that were nonsus-
ceptible to every drug tested. In agreement with the growing body of data supporting tetra-
cycline-based combinations against CNSAb, this work adds further impetus to continue to
explore tetracycline-sulbactam combinations as a promising regimen toward the goal of
maximize antimicrobial efficacy and minimizing toxicity against this challenging pathogen.

MATERIALS ANDMETHODS
Bacteria and susceptibility testing. A total of 41 genotypically characterized clinical A. baumannii

isolates were selected from the CDC & FDA Antibiotic Resistance Isolate Bank to encompass a range of
phenotypes against the agents tested, particularly the tetracycline derivatives (48). Complete genomes
were downloaded from the NCBI nucleotide database and resistance genes were identified by BLAST
searching against ResFinder 3.1 and CARD-RGI databases (49, 50). Isolates were maintained at 280°C in
cation-adjusted Mueller-Hinton broth (CAMHB; Teknova, Hollister, CA, USA) with 20% glycerol and were
subcultured twice on tryptic soy agar plates with 5% sheep blood prior to use.

Analytical grade amikacin, meropenem, minocycline, polymyxin B, rifampin, sulbactam, and tigecycline
powders were obtained commercially (Sigma-Aldrich, St. Louis, MO, USA). Sulbactam was tested alone as ampi-
cillin has no activity against A. baumannii nor does it impact the activity of sulbactam (51). Analytical grade
omadacycline powder was provided by the manufacturer (Paratek Pharmaceuticals, Boston, MA, USA). Stock
solutions of each agent were freshly prepared as single-use aliquots at the beginning of each week and kept
frozen at 280°C. CAMHB was freshly prepared and used within 12 h of preparation. MICs were determined in
triplicate via reference BMD according to Clinical and Laboratory Standards Institute (CLSI) guidelines using the
same 0.5 McFarland suspension on the same day (52). Modal MIC values from triplicate BMDs were recorded
and are reported as MIC50, MIC90, and MIC range. Escherichia coli ATCC 25922 and Pseudomonas aeruginosa
ATCC 27853 were used as quality control organisms. Susceptibility interpretations were based on CLSI criteria
against A. baumannii where available (52).
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Time-kill experiments. Time-kill experiments were performed in triplicate on the same day against
a subset of 10 CNSAb isolates purposefully selected from the original group of 41. These 10 isolates were cho-
sen based on their minocycline susceptibility (5 susceptible and 5 nonsusceptible) and to ensure that each log2
omadacycline BMD MIC across the observed range (1–16 mg/L) was represented at least once. Experiments
were performed according to CLSI guidelines modified using a final volume of 2 mL in deep-well, nontissue-
treated plates (20). A starting inoculum of ;106 CFU/mL was prepared by suspending three to four isolated
colonies selected from a pure overnight culture in 5 mL of sterile saline and adjusting to 0.5 McFarland stand-
ard, which was subsequently incubated with agitation to ensure log-phase growth and then diluted 1:100 in
CAMHB. Colony counts were performed to ensure final inoculum densities. Time-kill experiments were per-
formed with each agent at its representative plasma fCmax concentration after standard dosing as displayed in
Table 3. Single-drug experiments were performed for each agent followed by dual combinations of omadacy-
cline with amikacin, meropenem, polymyxin B, rifampin, and sulbactam. Additionally, triple combinations of
omadacycline plus polymyxin B plus either meropenem, rifampin, or sulbactam were tested based on results
from the dual combination experiments. A growth control without any antibiotic was included with each
experiment. At the prespecified time points of 0, 2, 4, 6, 12, and 24 h, aliquots of 20 mL were removed from
the suspensions and serially diluted in log10 dilutions. A 50-mL aliquot was then plated on MH agar plates using
an automated spiral plater (Don Whitley WASP Touch, Microbiology International, Frederick, MD) and incu-
bated at 35°C for at least 24 h prior to enumeration. Colony counts were performed using an automated col-
ony counter (ProtoCOL 3 Plus, Synbiosis, Frederick, MD). The theoretical lower limit of quantitation was 100
CFU/mL. Time-kill curves were generated by plotting the average log10 CFU/mL versus time to compare the
24-h killing effects of drugs alone and in dual and triple combinations. Bactericidal activity was defined as $3
log10 CFU/mL reduction at 24 h compared to the starting inoculum. Synergy was defined as$2 log10 CFU/mL
reduction at 24 h compared to the most active drug alone for dual combination experiments and versus the
most active dual combination for triple combination experiments. Antagonism was defined as $2 log10 CFU/
mL increase at 24 h compared to the most active drug alone or dual combination (53).
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