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Cancer genomic research at the crossroads:
realizing the changing genetic landscape as
intratumoral spatial and temporal heterogeneity
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Abstract

The US National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI) created the
Cancer Genome Atlas (TCGA) Project in 2006. The TCGA’s goal was to sequence the genomes of 10,000 tumors
to identify common genetic changes among different types of tumors for developing genetic-based treatments.
TCGA offered great potential for cancer patients, but in reality has little impact on clinical applications. Recent reports
place the past TCGA approach of testing a small tumor mass at a single time-point at a crossroads. This crossroads
presents us with the conundrum of whether we should sequence more tumors or obtain multiple biopsies from each
individual tumor at different time points. Sequencing more tumors with the past TCGA approach of single time-point
sampling can neither capture the heterogeneity between different parts of the same tumor nor catch the heterogeneity
that occurs as a function of time, error rates, and random drift. Obtaining multiple biopsies from each individual
tumor presents multiple logistical and financial challenges. Here, we review current literature and rethink the
utility and application of the TCGA approach. We discuss that the TCGA-led catalogue may provide insights
into studying the functional significance of oncogenic genes in reference to non-cancer genetic background.
Different methods to enhance identifying cancer targets, such as single cell technology, real time imaging of cancer
cells with a biological global positioning system, and cross-referencing big data sets, are offered as ways to address
sampling discrepancies in the face of tumor heterogeneity. We predict that TCGA landmarks may prove far
more useful for cancer prevention than for cancer diagnosis and treatment when considering the effect of
non-cancer genes and the normal genetic background on tumor microenvironment. Cancer prevention can be
better realized once we understand how therapy affects the genetic makeup of cancer over time in a clinical setting.
This may help create novel therapies for gene mutations that arise during a tumor’s evolution from the selection pressure
of treatment.
Introduction
The fight against cancer has been long and baffling. World-
wide instances of cancer increase through the years, yet
cancer research is still attempting to comprehend its
fundamental science and the history of hopeful medical
advances is littered with disappointments. Predisposed cell
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populations can take decades to accumulate enough somatic
mutations to transform into a malignant state with capacity
for metastasis and death [1]. Earlier detection can allow
intervention during states of lower tumor burden, and more
importantly, with low tumor heterogeneity thereby
improving treatment efficiency and thus reducing mortal-
ity. These promises allowed the conception of TCGA.
The Cancer Genome Atlas (TCGA) project strives to
sequence the entire genome of 10,000-tumor samples and
to identify the genetic changes specific for each cancer
[2,3]. These genetic changes include the inherited cancer
his is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

mailto:shengwel@uci.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Li et al. Cancer Cell International 2014, 14:115 Page 2 of 16
http://www.cancerci.com/content/14/1/115
risk alleles (germline mutations) and somatically ac-
quired alleles (somatic mutations, including amplifica-
tion and deletion of genomic DNA), as revealed by
combining somatic and germline analysis [4].
The TCGA is based on a hypothesis that (1) a unique

and reproducible genetic difference exists among patients’
tumors, (2) the signatures can be identified utilizing whole
genome sequencing (WGS) for each cancer type, and (3)
as WGS technology advances, TCGA will help develop in-
dividualized treatment. Thus, the TCGA provides a hope
to improve our ability to diagnose, treat, and even prevent
cancer (Figure 1). The aforementioned premises were
based on the notion of intertumoral heterogeneity. How-
ever, recent reports on spatial and temporal intratumoral
heterogeneity [5,6] question the clinical value of TCGA
sampling of a minute biopsy of tumor at a single time-
point of tumor growth. This conundrum prompts the
reappraisal of the validity of the TCGA approach and pon-
ders its future utility; even though the TCGA has improved
our ability to diagnose and treat a minor subset of tumors
(Figure 1). Here, we review TCGA data and ponder its
future utility: What point along the goal of tumor sequen-
cing is at the crossroads? Do benefits outweigh costs of
implementing new technology and new techniques?

TCGA highlights
Breakthroughs in whole genome sequencing (WGS) of
cancer were evident when recurrent mutations were found
in the active site of the cytosolic NADP + −dependent
isocitrate dehydrogenase 1 gene (IDH1), first identified
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Figure 1 The genome doctor’s diagnostics and treatment flow chart.
patient’s cancer with the same patient’s normal healthy organ is thoroughl
cancer treatment and cancer management for a lifetime.
in glioma [7] and then in acute myeloid leukemia (AML)
[8]. All IDH1 mutations are missense and heterogeneous
with retention of a remaining wild-type IDH1 allele;
however, the IDH1 mutants can dominantly inhibit the
wild-type IDH1 epigenetics in cells [9]. How the loss-
of-function mutations for isocitrate and α-ketoglutarate
interconversion relates to tumorigenesis remains uncer-
tain [10]. The discovery of IDH1 mutations has allowed
the categorization of biological subgroups of glioblastoma
[11] based on different cellular origins. Kim et al. recently
developed a 42 probe set that divided glioblastoma
patients into three prognostic groups, with one group
surviving an average of 127 weeks in comparison to 47
and 52 weeks for the other two groups [12].
Offering another clinical application to the genomic ap-

proach, Verhaak and colleagues have published a framework
for integrated genomic analysis that identifies clinically rele-
vant subtypes of glioblastoma characterized by abnormalities
in PDGFRA, IDH1, EGFR, and NF1 [13] utilizing recurrent
genomic abnormalities. Their gene expression-based mo-
lecular classification of glioblastoma multiforme (GBM) led
to the classification of four subtypes – proneural, neural,
classical, and mesenchymal, based on integrated multidi-
mensional genomic data (patterns of somatic mutations and
DNA copy number). Gene signatures of normal brain cell
types show a strong relationship between subtypes and dif-
ferent neural lineages. Additionally, the response to conven-
tional aggressive clinical therapy differs by subtype, with the
greatest benefit in the classical subtype and no benefit in the
proneural subtype. Our clinical study on GBM with WGS,
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however, shows that more heterogeneity exists than just
these four subtypes exist (unpublished data).
The discovery of IDH1 mutation in GBM, performed by

Johns Hopkins investigators, helped initiate the TCGA
project of the National Cancer Institute/the National
Human Genome Research Institute (NCI/NHGRI). The
TCGA has sequenced about 8,000 cancer genomes of over
20 different types of cancers with documented genomic
changes (Table 1). The TCGA intends to sequence 10,000
tumors while the ICGC (the International Cancer Genome
Consortium) has a goal of 25,000 tumors. New data from
the TCGA helped identify certain new subsets of cancer
with potential clinical significance.
Vogelstein and colleagues set a precedent by developing

a protocol for WGS to address the complexity of intertu-
moral heterogeneity [14]. They sequenced the consensus
coding sequences of breast and colon cancer, two of the
most common tumor types affecting humans. By sorting
13,023 genes through a discovery screen, then filtering
mutations through a validation screen, the authors identi-
fied 189 cancer-associated genes, the majority of which
were not previously known to be mutated in tumors. Each
tumor accumulates about 93 mutated genes, but only a
few of these can enhance tumor progression. Surprisingly,
no gene was consistently mutated in breast or colorectal
cancer. The data reveals that the number of mutational
events as a cancer progresses from benign to metastatic is
much higher than originally hypothesized. Thus, WGS
with a discovery phase screen may provide an unbiased
approach to understanding cancer by revealing more de-
tails about the pathogenesis of cancer and providing new
genes that have not been previously studied. Of note, the
Table 1 List of cancer types that are studied under TCGA

Central Nervous System (Brain)

Glioblastoma Multiforme

Lower Grade Glioma

Breast

Breast Lobular Carcinoma

Breast Ductal Carcinoma

Gastrointestinal

Colorectal Adenocarcinoma

Stomach Adenocarcinoma

Gynecologic

Ovarian Serous Cystadenocarcinoma

Uterine Corpus Endometrial Carcinom

Cervical Squamous Cell Carcinoma
and Adenocarcinoma

Hematologic

Acute Myeloid Leukemia
Vogelstein data in breast cancer only pertains to clonal
mutations, as does most of the TCGA data.
Using mega-data computing, Alexandrov et al. analyzed

4,938,362 mutations from 7,042 cancers and extracted
more than 20 distinct mutational signatures [15]. How-
ever, the biological process generating these genome-wide
mutational signatures remains to be elucidated [16]. This
argues for the need for more selective, biologically rele-
vant screening technologies that will provide immediate
information.
Zhao et al. determined that the FGFR2IIIc, changed

from the normal FGFR2IIIb isoform, presented more
mesenchymal features in clear cell renal cell carcinoma
(ccRCC) tumors and was found in 90% of ccRCC cases
studied [17]. Tumors found with FGFR2IIIb isoform
were not differentiated from general ccRCCs. This subtype
appears to exhibit better clinical outcomes and patient sur-
vival [17]. FGFR2IIIc, unique to renal cell carcinoma, may
prove to be a significant negative clinical prognostic
marker in the future.
Most recently, Kandoth et al., have sequenced 3,281

tumors across 12 tumor types such as breast, uterus,
lung, brain, head and neck, colon and rectal, bladder,
and kidney cancers [18]. They identified 127 genes that
had high likelihood of being driver genes and studied
the prognostic value of these genes across multiple
cancer types by using TCGA. The authors determined
that mutations in known genes and some previously
non-reported novel genes such as BAP1, DNMT3A,
FBXW7, and TP53, correlated with poor prognosis;
whereas mutations in BRCA2 and IDH1 correlated with
improved prognosis [19]. Similar results were obtained for
Head and Neck

Head and Neck Squamous Cell
Carcinoma

Thyroid Carcinoma

Skin

Cutaneous Melanoma

Thoracic

Lung Adenocarcinoma

Lung Squamous Cell Carcinoma

Urologic

Clear Cell Carcinoma

a Kidney Papillary Carcinoma

Invasive Urothelial Bladder Cancer

Prostate Adenocarcinoma

Chromophobe Renal Cell Carcinoma
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molecular signatures dividing gastric cancer into four
subtypes [20]; however, prognostic prediction and
potential target therapies that match the four subtypes
remain to be developed and tested.
Although the TCGA project has the potential to direct

the path of creating clinically relevant gene-sequencing
panels, its efficacy, and utility are being challenged by
new data on intratumoral heterogeneity and subclonal
switching of cancer. The Vogelstein data on breast
cancer pertains to clonal mutations, as does most of the
TCGA data. The question of subclonally random muta-
tions [21] (subclonal switching of cancer [22]) has never
been approached in the TCGA project. The new sub-
clonal random mutations [23] data may herald a trans-
formation in the current TCGA practice of one small
biopsy of a tumor from a patient at one time point. A
single biopsy cannot help track down how tumors evolve
with treatment such as subclonal switch and metastases
in particular using single cell sorting device and its
derived single cell genomic sequencing [24].

Current challenges: TCGA project at a crossroads
TCGA operates on the assumptions that the WGS of a
tumor sample would be exemplary of and provide insight
into a broader idea of how an individual patient's disease
manifests. Recent research by Gerlinger et al. [5] and
Sottoriva et al. [6] reported the unexpected complexity of
intratumoral heterogeneity within metastatic renal cell
carcinoma and glioblastoma tumors, respectively, showing
the genetic difference in space and time within the same
tumor. Intratumoral heterogeneity can be defined as differ-
ences in cellular morphology, gene expression, epigenetic
regulation, or phenotypic expression that develop after
the initial genesis of cancer in a given patient. Previous
work focused on gene expression—such as levels of
growth factors, cell surface markers, hormone recep-
tors, cell motility, and mitotic activity. However, most
decisions on targeted therapies for tumors are based upon
limited biopsy samples of the primary tumor at one
specific time point, at the time of diagnosis using histology.
Complex intratumoral heterogeneity at a genetic level
suggests limitations on the use of current methods and
gives hope to potential future abilities to improve the
efficacy of treatments based on these new findings.
Gerlinger et al. performed exome sequencing, chromo-

some aberration analysis, and ploidy profiling on multiple
spatially distinct sites from primary and associated meta-
static renal carcinomas [5]. With a broader scope of genes
to examine, this study synthesizes a personalized history
of branching evolution of the cancer within each patient
[25]. They discovered convergent tumor evolution since a
given tumor contained different mutations of the same
genes, SETD2, KDM5C and PTEN, depending on its
spatial orientation [5]. Distinct mutations in the same
tumor illustrate how gene expression is dynamic, provid-
ing evolutionary means for tumor cells to respond to selec-
tion pressure, changing their gene function, and adapting
to the tumor environment. Alterations in epigenetic mech-
anisms and signaling pathways as the tumor progresses and
evolves provide additional diversity generally enhancing
tumor survival [25,26].
In the analysis of glioblastoma, branching evolution within

brain tumors was determined by Sottoriva examining the
copy number alterations of samples that had been collected
from spatially distinct regions of the surgically resected
tumor [6]. Copy number alterations in EGFR, CDKN2A/B/
p14ARF were considered early events because all tumor sam-
ples shared these changes. In contrast, mutations in PDGFRA
and PTEN developed later in tumor progression, finding that
not all biopsy tumor fragments expressed these aberrations
[6]. Similarly to the work performed by Gerlinger and
colleagues, Sottoriva et al. generated a map of branching
evolution that elucidated the origin of genetically distinct
clones, over time and space. Of significance, six out of ten
patients in Sottoriva’s study had tumors with regions that
belonged to two or more glioblastoma clinical subtypes,
suggesting that tumors contain cell populations that
display varying survival outcomes and treatment responses.
Along the same line, primary triple negative breast cancers

(TNBCs) have been grouped together under one name as if
they share commonalties in genetic and chemotherapy treat-
ment responses [27]. However, Aparicio and colleagues
completed deep sequencing of 104 primary TNBCs; and
found a wide and continuous spectrum of genomic evolu-
tion with multiple clonal frequency modes within each
tumor, demonstrating intratumoral heterogeneity [28]. These
reports pointed out the necessity of re-evaluating our clinical
approaches to cancer treatment. Gerlinger’s and Sottoriva’s
findings are expected given that a central prediction of the
concept results in a mutated phenotype, the concept that
stretches back more than 30 years across different cancer
types [29-33]. However, these mutation based tumorigenesis
and cancer progression remain to be further elucidated.
Recently, scientists have developed powerful new tools such
as single cell technology and biological global positioning
systems [34] for studying these changes.

Comparison of primary to metastatic cancer provides
insight into cancer progression
Tumor is characterized by grade (defined by benign and
malignant) and stage (local, invasive, and metastatic). WGS
revealed that using primary tumor biopsies to categorize
cancer subtypes might not provide an optimal strategy for
adequately defining the pathological grade of a given tumor
in treating the disease, as current strategies may fail to
address intratumoral heterogeneity, and failing to capture
right information that makes tumor resistant to therapy.
In fact, primary tumor biopsies bare little resemblance to
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their metastatic counterparts. Sottoriva et al. suggest a
multiple sampling scheme to determine a patient’s tumor
heterogeneity before making treatment decisions [6].
However, spatially distinct tumor samples may prove diffi-
cult to obtain clinically, and multiple metastatic sampling
often proves unattainable due to unacceptable risks to the
patient [35]. In addition to the barrier of physically obtaining
multiple regional primary and metastatic cancer samples,
increased numbers of samples needed to determine hetero-
geneity and lineage of evolution would vastly increase the
cost of cancer diagnosis and treatment planning. Respond-
ing to this tissue pressure, Marusyk and Polyak suggest
investing more time in research to determine if the clonal
heterogeneity of primary tumors is predictive of the
clonal variances found in metastatic tumors [36].
New findings based on information obtained from mul-

tiple samplings of tumor varied spatially and temporally,
differing from the previous tumor sampling method of
A BB C
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dynamic model to study how a tumor evolves under
therapeutic intervention (Figure 2). Also, it will be useful
to study how therapeutic selection pressures a dormant
subclone of a tumor to become a dominant subclone
[22]. This “switch” signal affecting the dormant subclone
may be derived from inflammation caused by surgery
or by cellular death from chemotherapy and radiation
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therapy [38,39]. It may prove important to define what
keeps dormant subclones from proliferating, and then
what activates these cells [40].
Current concepts of cancer grade (benign, malignant)

and cancer stage (local, invasive, and metastatic) may
not be relevant in cancer treatment since it persists as a
continuum of evolving cell populations. Lack of models
for studying this continuum hinders the development of
therapy and protocols to confront the changing clonal
subtypes within a given tumor over time. A therapy that
starts with certain tumor subtypes needs to be modified
over time to address the fact that the target changes over
the course of treatment. Until we get to the basic com-
monality of a given tumor, based upon where it initiated
and whether or not all given subtype mutations share
that commonality, we are only treating one type of malig-
nant population cells where others escape therapy resulting
in poor outcomes. Thus, “treating cancer by chasing muta-
tion after mutation with expensive drug after drug is not a
sustainable model— not the least because few cancers other
than leukemia have simple, known genetic causes” [38].
Sonnenschein and Soto criticized the current theoretical

paradigm that focuses heavily on cancer genes [41] as not
every mutation in every cancer cell can be therapeutically
addressed. Dr. Sangeeta Bhatia likens the diversity of
cancer to HIV and HCV, highly mutable viruses, with
many quasi-species existing in the body without being
recognized. Current schemes of antiviral regimens can
ascertain the top three forms of drug resistance and
provide combination therapy to address those three
only [35]. Likewise, using a drug to target one mutated
genetic marker and to shut down this abnormal pathway
changes the regulatory network of the cell [42]. Many cells
are killed by this drug, but those that do not die and adapt
to the new landscape, gives them a chance to survive,
induce mutations, and become further resistant to the
drug [42].
Many of the newly identified mutations do not suggest

targeted therapies. Even if a tumor presents with eight to
ten genetic mutations, the most important priorities
would be to limit chemotherapy targets to the top three
in order to limit drug toxicity and treat the most malig-
nant, invasive subclones. Current capabilities potentially
target one or two genetic markers that are shared by
many patients exhibited by different types of tumors, a
non-unique treatment that hardly qualifies as personal-
ized therapy [43]. Irwin Nash thought “such genetically
based personalized oncology care” is not qualified to be
personal [43].
Despite possible intratumoral heterogeneity, clinical

benefit has been demonstrated for the targeted therapy
guided by genomic information obtained from primary
bulk tumor. For example, the Biomarker-integrated Ap-
proaches of Targeted Therapy for Lung Cancer Elimination
(BATTLE) clinical trial [44-46] incorporates concurrent
improvements in new therapeutics with its matching indi-
cative test [47], and recognizes that patients are destined to
benefit from next-generation sequencing (NGS) approach.
BATTLE’s success is likely an exceptional case, unlikely ap-
plicable to other patients due to its complicated procedure
and financial cost. The concept of “actionable” somatic
genomic alterations present in each tumor (e.g., point
mutations, small insertions/deletions, and copy-number
alterations that direct therapeutic options, obtained from
systematic genomic profiling) has rarely been achieved
beyond a limited number of oncogene point mutations,
such as EGFR, KRAS, TP53, PIK3CA that are com-
monly shared by many patients and across many tumor
types [48]. In fact, it is not clear that the most import-
ant priority is to target the most prevalent “actionable”
mutations. This is exactly the opposite of the data reported
by Beckman; his data indicate that the best approach
would be to target minor resistant subclones first [49].
These studies show significant heterogeneity within a pri-

mary tumor. Single biopsies have an assumed homogeneity
throughout a given tumor and its metastasis yet we know
this to be false. Neither does it extend to other patients and
the associated metastases because they are genetically
different. Current diagnostic practice involves tumor-
sampling bias. Current TCGA genomic analyses based on a
single tumor biopsy yields an inaccurate and incomplete
picture of the complexity of disease in a given individual.
This leads to ineffective therapies [6]. The TCGA method-
ology may help certain patients; however, all of these
discrepancies have placed the TCGA approach at a cross-
roads on the path toward cancer management.
This crossroads is represented by the dilemma which

exists between sequencing more single-time tumor sam-
pling of different types and sequencing multiple biopsies
from different regions of the same tumor at many time
points. The latter approach sounds excellent, but at what
cost to reveal the genetic evolution of a tumor? It may not
be technically possible. The crossroads manifest two ways
of obtaining related but diverse/unique information. One
way is to sequence more tumors with the past TCGA
methodology of single time-point, but this way cannot de-
termine the heterogeneity of the inside of a tumor site, the
difference between diverse sites of the same tumor, nor
the heterogeneity generated as a function of time, lapse
rates, and irregular genetic drift. The other way of acquir-
ing multiple biopsies from every individual tumor can il-
lustrate an evolutionary genetic change within a tumor,
but this way still has limitations of tumor sampling and
the cost of sequencing. A choice on the paths for either
sequencing multiple tumor types or sequencing multiple
biopsies must be made, a choice with economic impact, a
choice that leads to cancer prevention, a choice that is re-
lated to cancer patient’s life expectancy.



Li et al. Cancer Cell International 2014, 14:115 Page 7 of 16
http://www.cancerci.com/content/14/1/115
Emerging opportunities
Recent reports point out that current TCGA projects
beget the same, major problem of intratumoral hetero-
geneity with spatial and temporal changes. How can we
overcome this problem of intratumoral heterogeneity?
What are ongoing technical developments that may
tackle the intratumoral heterogeneity problem? What
are practical approaches to this problem based on novel
technologies? What are current technical hurdles for
these novel technologies (massive parallel sequencing of
DNA/RNA isolated from more homogeneous cancer cell
population obtained by microdissection tools)? The TCGA
provides emerging opportunities for developing an inte-
gral component of diagnostics for cancer related to
non-cancer genetic background (Figure 3). These in-
clude standardization of single cancer cell isolation,
cancer genome sequencing devices, and development
of further studies on TCGA-catalogue-guided tumori-
ginesis and therapy-driven cancer evolution.

Practical approaches to intratumoral heterogeneity based
on novel single cell technologies and standardization
Single cell analysis
To track those dominant and dormant subclones within
a tumor, single cell technology has been proposed to
Figure 3 Effects of non-cancer genetic background (cancer microenvi
of population, e.g., Li-Fraumeni syndrome, p53, Retinoblastoma) always acq
exclude cancer. The rest 90% of population can undergo either cancer i
because oncogenic mutation (cancer variant carriers) may not be suffici
that certain patients are susceptible to cancer risk factors such as smoking, HP
initiate cancer for vulnerable patients. Management of these risk factors (relat
suppress cancer initiation – whole genome sequencing can help predic
benefit the rest 90% population.
understand and predict intratumoral heterogeneity. Not
only is it necessary to determine the range of genetic
markers of disease and its progression within a tumor,
but we also need to study the combinations and interac-
tions among gene mutations of subclonal populations.
By understanding the genetic composition on a single-
cell level, we will have greater insight into the interplay
between genetic mutations within subclonal tumor
populations. For example, new single cell genome tech-
nology reveals host-tumor immune interface as a key
part of the glioblastoma ecosystem composed of cancer
and immune cells, leading to a novel discovery suitable
for target therapy [50]. Ideally, single cell genome tech-
nology would ultimately apply to other tumor eco-
systems as well.
TCGA-integrated single cell analysis technology may

help to uncover the role of each subclone in intratu-
moral heterogeneity and to understand the advantages
this arrangement affords to a tumor. There are different
theories of intratumoral heterogeneity, including variant
subclones interacting competitively for resources versus
cancer growth stemming from clonal relationships of
commensalism and mutualism [36]. It appears that het-
erogeneity contributes to therapeutic resistance. If the
potential mutability of each cancer cell can be determined
ronment) on cancer initiation and progression. Certain patients (5%
uire cancer and certain patients (5% of population are cancer-free)
nitiation or cancer-free depending on their non-genetic background
ent to drive cancer initiation. The non-genetic background determines
V, UV, food addiction, heavy metals, free radicals; these risk factors may
ed non-cancer genetic background) may either promote cancer or
t these risk factors thereby preventing cancer – the prevention can
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and the mutation predicted, novel strategies and therapies
may arise [51]. For instance, directing drugs to subclones
with angiogenic properties may eradicate non-angiogenic,
“free rider” subclones [36].
Current technologies for detecting single cancer cells

in peripheral blood or cerebrospinal fluid, termed circu-
lating tumor cells, represents a novel method to deter-
mine efficacy of therapeutic drugs on cancer as well as
identifying tumor progression. Research has shown that
identifying circulating tumor cells may predict overall sur-
vival in metastatic breast, prostate, and colorectal cancer
and may provide prognoses in additional cancers, such as
small cell lung cancer and hepatocellular carcinoma [52-56].
While there is significant research in the field of single

cell cancer detection, CellSearch™ was the first to obtain
FDA clearance for a method of detecting circulating
tumor cells in patients. It uses antibody-coated magnetic
beads to bind to and sort cells derived from blood or
CSF samples as a means to identify cancer cells [57].
Newer mechanisms are emerging due to the rising inter-
est in single cell classification, such as capturing cancer
cells in blood utilizing a microfluidic approach, where a
blood sample flows through microchannels and cells are
sorted by size to identify cancer cells [58]. Most com-
monly, though, single cell detection uses biomarkers,
such as epithelial adhesion molecule, prostate-specific
membrane antigen, and cytokeratin [59]. Complete se-
quencing of the cancer genome will provide insight on
new biomarkers that may enhance specificity in discrim-
inating tumor cells from normal circulating cells. Fur-
thermore, sequencing of copy number variations, SNPs,
DNA methylation, and microRNA profiling from TCGA
will provide information beyond recognizing gene ex-
pression for enhancing single cell detection. While im-
mense progress has been made at a single-cell detection
level, the significance of circulating tumor cells and their
potential for contributing to recurrence and metastasis
has yet to be fully determined [35]. Therefore, technol-
ogy that amplifies the whole genome from a single cell
may prove useful to advance the specificity of detecting
circulating tumor cells and in further defining the role
of single cells in predicting resistance to treatment or re-
currence of disease.
The next step in progression of single cell analysis is

massive parallel sequencing, or next-generation sequen-
cing (NGS), which is becoming more feasible with compe-
tition to improve technology among biotech companies.
Current NGS platforms, such as Illumina HiSeq2000, can
allow profiling of 200 single cells in one run [60]. Implica-
tions of current platforms include being able to sample
multiple sites of fluid with the potential to identify circu-
lating cancer cells, identifying tumor cell lineage relation-
ships, and classifying different subclones within a tumor
sample at once. Barriers to massive parallel sequencing
currently include high costs, which are soon predicted to
decrease with rapidly advancing technology, and the
necessity for high-fidelity methods of whole genome
amplification of single-cell DNA without incorrect SNPs,
without uneven sequencing coverage, and without allele
dropout [61].
Another diagnostic tool becoming increasingly com-

mon in cancer centers is gene-sequencing panels. In
March 2013, the first multi-gene DNA-sequencing tests
were administered to patients through the National
Health Service (NHS) in the United Kingdom to classify
oncologic genetic mutations. These were designed to
help physicians choose the most effective therapeutic
targets for each patient’s tumor [62]. While a single gen-
etic screen on a tumor previously cost £150 through the
NHS, this 46-gene panel costs £300 [63]. This relatively
inexpensive multi-gene panel aims to eradicate guess-
work for selection of chemotherapy strategies, which im-
prove efficacy by minimizing the negative consequences
of ineffective treatment. Similarly, in the U.S., a genetic
panel predicting prognosis, the Oncotype DX Colon
Cancer test, provides prognostic information that other
diagnostic tools have not yielded; the test distinguishes
the absolute increase in recurrence risk at three years
between low and high-risk patients by 10% [64,65].

Standardization
Tools for diagnosis of cancer should be sensitive, minim-
ally invasive, reproducible, standardized, and potentially
be able to prognosticate outcomes at early stages of a
disease. Researchers can collaborate with health-care
groups to establish regulations for sharing genetic in-
formation from large research endeavors, like TCGA,
without compromising medical ethics and patient priv-
acy. By creating a framework for institutions to aggregate
and exchange genomic data, researchers and medical pro-
viders can advance the progress of diagnosis and treatment
of certain malignancies. In regards to cancer, mega-
databases of thousands of tumor samples may enable
faster development of TCGA catalogues for tumor pro-
gression and drug responding profiles, a routine testing
like a blood biochemical profile.
The TCGA project inspires the development of TCGA-

integrated instrumentation to bring down the cost and facili-
tate broad clinical access [66]. For example, Cancer Research
UK has embedded de-identified breast cancer genetic data
into a new Smartphone program so that average participants
can identify copy number variations within chromosomes
that are difficult to visualize. Along the same vein, emerging
smartphone applications to encrypt digitized genome data
will provide patients with risk factors for cancer. A third
venue to utilize the TCGA with advancing technology
is to create diagnostic kits for every day clinical diag-
nosis. Although currently in the research phase, kits,
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such as RightOn Cancer Sequencing Kit may be used
every day in the hospital. Its technology enables identi-
fication of 1,000 cancer genes with a single test. An
ideal diagnostic kit would include comprehensive pro-
filing of all cancer types, with vast coverage, high spe-
cificity and high sensitivity to detect common and rare
genetic variants, in one-cost efficient test [67]. The Ion
Proton, a desktop-sized, semi-conductor based gene
sequencer, can help sequence the entire human gen-
ome for less than $1,000 in two hours [66]. With the
advent of multi-gene sequencing panels and portable
DNA sequencers, a patient’s genetic profile will become
part of the routine regimen for cancer diagnosis and treat-
ment protocol decisions.
Can all of these diversified instruments, analytical tools,

and different institutions produce the accuracy of DNA se-
quencing? This is particularly critical for DNA sequencing
with respect to some of the personally held instrumenta-
tion as mentioned. A general guideline for the quality con-
trol of DNA sequencing should be implemented to
produce medically meaningful genetic information, a
regulation that should be generated by a government
agency like the US Food and Drug Administration (FDA).

Tumorigenesis, cancer progression, and metastasis
The TCGA has shown that the mutational landscape of
cancer is complex and multifaceted. In order to carry
out diagnosis and treatment of an individual with poten-
tially 500 oncogenic mutations [38], we must have an
understanding of cancer initiation and progression. New
algorithms (Dendrix™) have scaled up to whole-genome
analysis of thousands of patients for larger data sets of
TCGA for specific “driver” mutations [68]. While the
number of genetic mutations in a tumor may range from
30–200 depending on the type of tumor, research has
shown that approximately 2–8 of these mutations are
“driver genes” [69]. A “driver gene” mutation is a muta-
tion that provides the cancer with a small, but selective
growth advantage over the surrounding cells, potentially
enabling that cell to become a clone [14]. Multiple in-
sults in these “driver genes” occur over years within a
cell before the cell takes on a cancer phenotype. Passen-
ger gene mutations, on the other hand, provide neither a
positive nor a negative effect to cancer cell growth.
Cancer mutations follow a natural selection theory.

Thus, when a cancer cell divides, it will acquire new mu-
tations upon selection pressure, in addition to or altering
its “driver gene mutations” [70]. These new mutations
cause the new cell’s genetic composition to be slightly
different from its progenitor cell. Therefore, it is not sur-
prising that heterogeneity exists within a tumor; cells at
different ends of the tumor may be genetically different.
The same rules of evolution apply in metastatic cancer.
Research performed by Gerlinger et al. showed that
tumor samples from multiple primary tumor sites, peri-
nephric fat metastasis, chest-wall metastases, and germ-
line DNA could be synthesized into a phylogenetic tree,
much in the same way that trees are constructed in the
evolution of species [5]. This means metastatic tumor
samples and the primary tumor itself exhibit different
genetic compositions; their mutations diverged from the
common mutations of the original primary tumor. The
diverging genetics of metastatic tumors also stresses the
importance of early diagnosis.
The evolutionary growth of cancer sounds impossible to

tackle, but Vogelstein et al. have organized all of the known
driver genes into 12 cancer cell-signaling pathways: RAS,
PI3K, STAT, MAPK, TGF-β, DNA damage control genes,
transcriptional regulation, chromatin modification, APC,
HH, NOTCH, and cell cycle/apoptosis [14]. Rather than fo-
cusing on the differences among tumor cells, we must target
the common mutations that occur before the branching, or
diverging, points. Indeed, a TCGA-guided new approach to
therapy has surfaced based on a comprehensive molecular
analysis of tumor samples from 825 patients with breast
cancer [71]. Previously breast cancers were classified in four
main molecular subtypes of the disease: basal-like; luminal
A and luminal B, which are both estrogen receptor (ER) posi-
tive; and HER2 enriched. The TCGA analysis uncovered new
mutated genes, expanding these four subtypes. For example,
they found at least two subtypes of clinical HER2-positive tu-
mors. One type is ER negative and has high levels of EGF re-
ceptor and HER2 enriched in HER2 protein phosphorylation.
The other with ER positive shows lower DNA amplification
and protein-based signaling, resembling the luminal subtypes.
This may explain why current HER2 (trastuzumab)-based
treatment failed half of patients with HER2-positive tumors.
In certain breast cancers, mutations of genetic regulatory

sequences promote cancer. Mutations such as duplications
of the densely estrogen receptor-α-bound distant estrogen
response elements in the chromosomal sequences 17q23
and 20q13 predict poorer outcomes and anti-estrogen
resistance in patients [72].
Other researchers think that TCGA provides only part of

the picture of tumor heterogeneity under pressure from
drug therapy. Joan Brugge pointed out that cells that are not
intrinsically resistant to a drug rewire their gene circuitry
during treatment to become resistant without any genetic
changes [38]. Mina Bissell and Jacqueline Lees show that tu-
mors cannot thrive without certain signaling patterns from
their neighboring cells since traditional drug screening
missed that microenvironment [38]. These wake-up cells
switch back on by taking advantage of interactions with nor-
mal surrounding cells [38,39]. Thus, drugs that suppress this
crosstalk could prevent them from restarting a tumor after
therapy [38].
TCGA genomic data has been collected simultan-

eously while other comprehensive “omic” profiles have
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begun to build extensive libraries as well in order to
provide better indicators on how to holistically identify
and characterize disease. The notion of calling diseases
by body part is rooted in mid-1800s in France and is
likely characterized by pathways and signals at the mo-
lecular level (David Agus) [66]. The importance of copy
number analysis, for example, argues that tumors can be
classified in those driven by either mutations (M class) or
copy number aberrations (C class) (Paul C. Boutros,
11JUN2014, webinar.sciencemag.org). C class tumors
include breast, ovarian, squamous cell lung, and pros-
tate cancer. However, next generation sequencing tech-
nologies have limited ability to detect clinically relevant
lower level amplifications, copy neutral loss of heterozy-
gosity, and homozygous deletions, even at significant depth
of coverage.
TCGA-integrated biochemical assays would enable mon-

itoring of tumor progression using soluble, biochemical
markers. Cytokine profiling in blood or cerebrospinal fluid
may also help with diagnosis and evaluating prognosis in
cancer patients. While previous research has shown
characterization of cytokine profiles for breast cancer,
TCGA project is revealing how cytokines affect other
tumors. For example, TCGA data showed that expres-
sion of high levels of miR-18 and low levels of TGF-β
genes in the proneural glioblastoma subtype correlates
with prolonged patient survival [73]. For the same
subtype, proneural glioblastoma, increased levels of
interferon/STAT1 and genes related to interferon also
determined poor survival outcome [74]. By incorporat-
ing key markers yielded from TCGA, cytokine profil-
ing of tumors would provide an additional layer of
diagnostic and prognostic information in conjunction
with gene expression. Another forms of soluble bio-
markers are those that undergo DNA methylation because
this can be detected in blood serum samples of cancer pa-
tients [75]. Markers, such as O (6)-methylguanine-DNA
methyltransferase (MGMT) that is known to confer resist-
ance to temozolomide in glioblastomas, would help to
predict a cancer patient’s personalized response to chemo-
therapy [76]. In a study by Majchrzak-Celińska et al.,
methylation profiles of biomarkers—MGMT, RASSF1A,
p15INK4B, and p14ARF—in cancer patient’s serum were
found to match the methylation profiles in paired tumor
samples in most cases [77]. In clinical practice, sequenced
genomes of tumor profiles would direct which markers to
test in biochemical assays. These assays can aid in the
development of a personalized therapeutic plan and
predict the effectiveness of various cancer drugs in a
given individual.
The human metabolome may be another adjunct to link

the gap between genotype and phenotype [78]. Integrating
genetic data with metabolomics will add additional power
to analysis, yielding improved accuracy and sensitivity.
TCGA mutations can serve as a guide to focus metabolo-
mic research, and the metabolomics can validate TCGA
research by cross checking protein synthesis with DNA
expression. Altered metabolism is a distinct feature of
tumor cells, and it is known that specific genetic alter-
ations, such as KRAS and BRAF, increase the expression
of glucose transporter 1 [79,80]. Research in metabolomics
has defined altered levels of metabolic enzymes and me-
tabolites in various tumors, including oncogenic muta-
tions that cause the malignancy [81,82]. It has been
recently determined that the master transcriptional regu-
lators of prostate cancer progression, AR and ETS gene
fusions, control the regulatory enzymes of sarcosine, and
therefore, high levels of sarcosine in the urine demon-
strates a promising clinical biomarker of metastatic
prostate disease [83]. TCGA-driven discovery may help
elucidate the mechanisms of tumor-altered metabol-
ism. This in turn may help develop quantitative, high-
throughput metabolomics for systems biology to define
metabolites as biomarkers for tumor progression. Key
metabolites can be identified non-invasively and rap-
idly in the blood, cerebrospinal fluid, urine, saliva, and
prostatic fluids. Another example of metastatic effects
is the Warburg effect, which shows that under oxygen
consuming (aerobic) conditions tumor tissues take up
glucose and convert it to lactate ten-fold as much as
than typical tissues in a given time [84]. TCGA may
help us narrow down on some mutations tied in with
cancer metabolism, opening up new targets for detection
and treatment [85].
TCGA approach may shed new light on some not

well-characterized cancer metastasis. For example, little
was known about the metastasis of medulloblastoma, a
tumor that is the most widely recognized childhood and
adolescent tumor of the central nervous system (CNS).
New data provide a mechanism by which metastasis of
medulloblastoma yield a highly intrusive spread of
tumor cells into the leptomeningeal space along the
neuroaxis over the course of disease, this extraneural
metastasis that is uncommon yet oftentimes deadly,
happening in 1 to 5% of patients, the metastasis that pre-
sents near ventriculoperitoneal shunt [86]. Another ex-
ample is the genomic characterization of 128 instances of
metastases from the primary modalities of GBM defined
the uncommonness of the metastasis based on histological
and immunogenetic data [87]. Cancer genome informa-
tion may therefore offer patients a hope to seek treatment
for metastases to improve survival time.

Therapy-driven cancer evolution may inspire TCGA-guided
cancer prevention
The TCGA data may prove more significant in cancer
prevention than in cancer diagnosis and treatment. This
is an interesting concept as genomic heterogeneity

http://webinar.sciencemag.org
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within a single tumor evolves over time, location (domin-
ate or dormant subclonal state that is regulated by tumor
microenvironment), and random genetic drifting that
serve as substrate for their evolution. An assumption
that early diagnosis and early treatment yields the
better results seems in question. Still, certain cancers
have no effective treatment. In fact, cancer is curable
only if the body’s immune system properly functions.
Some mutations in our bodies may lead to cancer;
the body’s immune system recognizes and eliminates
the mutant cells. Current cancer treatments (radiation
therapy, chemotherapy) have side effects on normal cells.
The immune system is the hardest hit by these treatments
and seems counterproductive to the goal [88]. However,
specific data suggesting the relationship between the
immune status and clinical response to molecularly
targeted cancer therapy remains to be obtained. Cur-
rently limited data is available on pediatric patients’
immune response to chemotherapy [89] and on HER2-
overexpressing breast cancer showing the relationship
between markers of an antitumor immune response
and clinical outcome [90].
Current therapeutic agents cannot exquisitely differenti-

ate tumor from normal cells as both have similar signaling
pathways [91]. In the future, individualized treatment
depends on tumor behavior and maximizing recognition
of abnormal cells by the patient’s immune system. Thus,
an integrated and comprehensive treatment plan with
cellular specificity will minimize side effects and maximize
efficacy. To do that, we have to align precision diagnosis
and treatment within an early therapeutic window [92] to
make treatment simpler due to less tumor heterogeneity
[49,93].
A mechanism by which cancer develops is by onco-

genes accumulating and initiating unrestricted growth
[94]. The mainstream treatment paradigm now is to use
targeted drugs for cancer-causing genes or pathways.
However, even for patients with deep sequencing of single
cells, we look for targeted drugs, which is futile because
the target is constantly changing [95]. That is because can-
cer cells are in constant evolution and transformation;
their reactions to cancer drugs are also constantly chan-
ging [96]. So far this reality has not attracted the attention
of cancer drug development - its drug screening is based
on biopsy results obtained from patients 3–4 years previ-
ously and their derived xenografted tumors that are
subjected to selection pressures of animal environ-
ment, different from human.
Robert Beckman thus conceives that cancer as a small

ecological environment is in constant evolution and dy-
namic transformation. He thinks the application of math-
ematical models can determine the genetic evolution of
cancer co-evolving with treatment [97]. That is particu-
larly important for current treatments that focuses on
quickly partitioned tumor cells, a way that actuates lethar-
gic subclones of a tumor [49] and pressures tumor pro-
gression and metastasis [97,98]. Thus, TCGA approach
may not lead to new cancer treatments, as it does not
analyze real-time but rather post-diagnostic cancer speci-
mens. This sampling allows for chasing after cancer muta-
tions could help elucidate the history of tumor progression
and its resultant heterogeneity. Such a history of cancer
progression may guide the design of cancer prevention: a
prevention timeline that shows a molecular cancer clock
identifying the therapeutic window of surgical and chem-
ical intervention [92], and a prevention profile that shows
the onset of driver mutations and the switchboard signal of
dormant to dominate subclone of a cancer evolving within
its tumor Microenvironment. Its related non-cancer gen-
etic background and its risk factors determine tumor
microenvironment (Figure 3).

Tracking subclonal behaviors with real-time imaging
How can we determine treatment-triggered tumor sub-
clonal cell’s behavior in the changing microenvironment?
Perhaps, an ex vivo tumor microenvironment of patient-
derived tissues may be ideal to study the co-evolution of
a tumor within a tumor environment [99] (Figure 2).
Lack of knowledge on co-evolution dynamics potentially
hinders the progress of a team-based, cross-disciplinary
approach like TCGA [100]. Can these changes of cancer
subclones be followed at the single cell level with a
“biological global positioning system (bGPS)” [34], with
visualization techniques for exploring oncogenomics data,
allowing researchers to effectively visualize multidimen-
sional oncogenomics datasets [101]? The idea of identify-
ing one or a few simple biomarkers unique to a certain
cancer type may prove to be unrealistic, as initially antici-
pated with the onset of TCGA. Biomarker panels initially
demonstrating the needed 12 cancer-signaling pathways
may differ in different stages of cancer because the num-
ber of cancer subclones will increase with time since onset
of disease. Progress will need to be made to determine
how these signaling pathways work in those cancer
subclones.
Optical spectroscopic techniques like Raman spectros-

copy have shown promising potential for in vivo pre-cancer
and cancer diagnostics in a variety of organs [102].
Confocal micro-Raman spectroscopy–a valuable analyt-
ical tool in biological and medical field of research-allows
probing molecular vibrations of samples without external
labels or extensive preparation, ideal for real-time moni-
toring of tumor progression [103]. Raman spectroscopy
can discriminate the differences found in regions charac-
teristic for vibrations of carotenoids, unsaturated fatty
acids, proteins, and interfacial water between the noncan-
cerous and cancerous human breast tissues [104]. How-
ever, our practice led us to realize that a mega-database is
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needed to record the basic Raman spectrum for all the tis-
sues, cells, and related molecules under the physiological
and pathological conditions before we can translate infor-
mation from Raman spectroscopy to clinical use. For ex-
ample, the surface enhanced Raman scattering (SERS)
technique shows the excellent specificity, high sensitivity
(1 pg mL(−1)), as well as the great reproducibility of this
SERS-conjugated immunoassay for simultaneous detec-
tion of tumor suppressor p53 and cyclin-dependent kinase
inhibitor p21 for early cancer diagnosis [105]. The SERS-
enabled narrow ‘fingerprint’ Raman spectra from the ana-
lyte molecules allows multiplex detection for biosensing
applications [106], ideal for clinical use [107].
The challenge for imaging-guided evaluation of cancer-

driven biomarker levels as an indicator for early cancer
prediction is to correlate the immunoassay with the quan-
titative imaging technology [105]. First, we have to deter-
mine if TCGA-identified biomarkers are true biological
drivers of cancer or background mutations that have no
significance in the development or progression of a can-
cer. Information on genetic variations has been used to
better understand the inheritance of and susceptibility to
certain diseases, response to drugs, signaling pathways in-
volved in normal versus disease states, and more. How-
ever, biological interpretation of thousands of variants is a
bottleneck in extracting valuable insights from DNA se-
quencing studies, often requiring months of effort after
completion of the reference genome alignment and vari-
ant calling steps. These limitations can largely be over-
come by using more sophisticated informatics tools that
can help interpret the biology accurately and in more
detail.

Cross-examination of big data sets helps decision-making
Accumulating profiles (pathology, microarrays, bulk
tumor, and single cell genome sequencing - TCGA,
mass spectrometry-based flow cytometry, imaging,
therapy-driven genetic changes, and bioinformatics) is
going forward to create a mega-database. This mega-
database allows us to decipher cancer progression and
treatment-driven evolution through super-computing
to extract this information and synthesize new con-
cepts [108]. Super-computing can interpret the large-
scale, high-dimensional data sets that are generated by
advanced technologies [109,110]. Lack of technology
for integrating these different platforms might hinder
the translation of big data into treatment. Conceptual
integration of different diagnostic data remains to be
determined. For example, how can MRI images inte-
grate with morphological pathology, genome-scaled mu-
tations, and biochemical assays in forming treatment
strategy? How can we implement the automation in these
processes? What is the accuracy of this automation? What
is the cost for clinical applications?
In March 2012, the Obama Administration launched a
$200 million “Big Data Research and Development Ini-
tiative”, which aimed to improve the tools and tech-
niques needed to access, organize, and glean discoveries
from huge volumes of digital data. The initiative would
help to transform the use of big data in various sectors
including scientific discovery and biomedical research.
Big data in medical research is transforming and transi-
tioning research from being hypothesis-driven to becom-
ing data-driven. Efficient analysis and interpretation of
big medical data can open up new avenues to explore,
new questions to ask, and new ways to answer, leading
to better understanding of diseases and development of
better and personalized diagnostics and therapeutics
[111]. However, such an assumption is based on fully
understanding cancer initiation, progression, metastasis,
subclonal switch for dormant cells, and evolving drug
targets, which we know little about at the present. Thus,
people should not be misled; no miracles happen from
genome sequencing until we know how genes interact
and evolve in the context of treatment. As geneticists
Jon McClellan and Marie-Claire King stated, "a paradigm
shift is that loci; previously thought of as origin of dis-
ease and as special targets are better thought of as as-
sociated with disease risk factors". In genetics, a rare
variant of the common diseases may be the main cause
of this conversion from a dormant state [112]; how-
ever, evolutionary forces introduce new variants to het-
erogeneity, leading to de novo temporal and spatial
mutations in affected persons [113]. For these affected
persons, their oncogenes alone are not sufficient to de-
velop cancer, but with their non-cancer genetic back-
ground, may provide a supporting (promote cancer)
microenvironment (Figure 3). As such, genomics should
deal with a changing landscape of both cancer and non-
cancer genetic background [114]; “Genomics is a way of
doing science, not the way to do medicine” (Harold
Varmus, the US National Cancer Institute). TCGA-
generated cancer genome may serve as a common
scaffold of information to accelerate cancer research.
TCGA is a tool, which can be combined with single
cell technology and bGPS [34] to follow how a cancer
cell (dormant subclone) awakens, divides, grows to be-
come a dominant cancer clone, and to take over the
host over time. This progression process will give us the
first handle as to when and where cancer starts and how
we can attack it at the molecular and cellular level.

Future perspectives
TCGA represented an unprecedented first step, a monu-
mental effort to understand cancer. Here, we discuss
current limitations of NGS ACTG genome projects,
focusing on the problem of tumor heterogeneity and
how this heterogeneity might inform the way we think
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about data from the large projects discussed here. The cancer
genome is highly unstable and heterogeneous, making it
difficult to differentiate driver mutations from passenger
mutations. Large-scale unbiased genomic sequencing projects,
such as TCGA, are ongoing for a large variety of clinical
tumors to overcome the problem of intertumoral hetero-
geneity. As a result, recurrent somatic alterations have been
identified by such projects, leading to the development of
targeted therapies that have been shown to prolong some
patient survival. The intratumoral heterogeneity has been a
long-recognized issue, as correctly raised by recent reports.
TCGA is at a crossroads in the fight against cancer

given the new understanding of intratumoral hetero-
geneity, requiring multi-spatial and multi-temporal sampling.
We may have to perform single cell-based genome analysis,
which will further complicate data interpretation and may
increase price. We do not yet know what represents sufficient
tumor area and the number of tumor cells that should
be sampled to represent intratumoral heterogeneity. As
TCGA builds the mega dataset of cancer gene sequences,
we hope that TCGA can lead us to the “trunks” of diver-
ging phylogenetic trees of cancer. These common points
may be targets for therapeutics. Unless tumor hetero-
geneity is fully appreciated, we will lag behind the changes
occurring within non-responsible clonal malignancies to
form yet other types of clones.
Cancer appears not to be a single disease due to its

innumerable genetic changes, each with its distinct mo-
lecular signature. Genetic mutations in cancer are inevit-
able and necessary to evolve under the selection pressure
of the tumor microenvironment [98]. Practical approaches
to these problems based on novel technologies (engineered
tumor tissue graft models, single cell WGS) for massive
parallel sequencing of DNA/RNA isolated from more
homogeneous (microdissected) cancer cell population may
redefine the TCGA project. With new research equipped
with more high-tech studies (Single cells, bGPS) where we
hope to follow the progression of cancer over time, TCGA
may prove far more significant and more effective to
pursue cancer prevention than cancer diagnosis and
treatment, e.g., providing guided TCGA-defined catalogues
of cancer risk factors. Specifically, cancer prevention can
be realized with better understanding of how a therapy
affects the genetic makeup of cancer over time in a clinical
setting (e.g., engineered cancer tissue graft models, single
cell technology, bGPS). Such study can validate mutations
that arise during a tumor’s evolution under treatment and
for which novel targeted therapies could be developed.
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