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Abstract

Background: Since primary data collection can be time-consuming and expensive, surgical site infections (SSIs)
could ideally be monitored using routinely collected administrative data. We derived and internally validated
efficient algorithms to identify SSIs within 30 days after surgery with health administrative data, using Machine
Learning algorithms.

Methods: All patients enrolled in the National Surgical Quality Improvement Program from the Ottawa Hospital
were linked to administrative datasets in Ontario, Canada. Machine Learning approaches, including a Random
Forests algorithm and the high-performance logistic regression, were used to derive parsimonious models to
predict SSI status. Finally, a risk score methodology was used to transform the final models into the risk score
system. The SSI risk models were validated in the validation datasets.

Results: Of 14,351 patients, 795 (5.5%) had an SSI. First, separate predictive models were built for three distinct
administrative datasets. The final model, including hospitalization diagnostic, physician diagnostic and procedure
codes, demonstrated excellent discrimination (C statistics, 0.91, 95% CI, 0.90–0.92) and calibration (Hosmer-
Lemeshow χ2 statistics, 4.531, p = 0.402).

Conclusion: We demonstrated that health administrative data can be effectively used to identify SSIs. Machine
learning algorithms have shown a high degree of accuracy in predicting postoperative SSIs and can integrate and
utilize a large amount of administrative data. External validation of this model is required before it can be routinely
used to identify SSIs.

Keywords: Surgical site infection, Administrative data, Machine learning, Random forests, Data mining, Predictive modeling

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: kthavorn@ohri.ca
1Clinical Epidemiology, Ottawa Hospital Research Institute, 1053 Carling Ave,
Ottawa, Ontario K1Y 4E9, Canada
2School of Epidemiology and Public Health, University of Ottawa, 75 Laurier
Ave E, Ottawa, Ontario K1N 6N5, Canada
Full list of author information is available at the end of the article

Petrosyan et al. BMC Medical Research Methodology          (2021) 21:179 
https://doi.org/10.1186/s12874-021-01369-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-021-01369-9&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:kthavorn@ohri.ca


Background
Surgical site infection (SSI) is common and considered
one of the most common types of postoperative compli-
cations [1]. SSIs are associated with substantial morbid-
ity and mortality, prolonged hospital duration of stay,
increased hospital readmission rate, and financial burden
to health care systems [1–5]. Previous research has
shown the importance of effective prevention strategies
targeting both short- and long-term consequences of
SSI, which requires an ability to track SSIs [2]. Since the
primary data collection can be time-consuming and ex-
pensive, routinely collected health administrative data
offer ample opportunities to identify and monitor SSIs,
and assess the impact of prevention strategies, given a
wide population coverage and minimal costs and efforts.
Several studies have developed some accurate adminis-
trative algorithms to identify SSIs [6–10], while other
studies have found that SSI identification using adminis-
trative data is imprecise [11]. However, previous studies
were often based on small sample sizes and/or a limited
set of pre-selected variables to predict SSIs.
Machine learning approaches have been successfully

applied to create predictive models in several fields of
study, including automatic medical diagnostics [12, 13].
With interpretability of model parameters and ease of
use, logistic regression can generate excellent models
and serve as a commonly accepted statistical tool.
Random Forests approach is used in situations where re-
gression assumptions may be violated by situations in
which many predictors are associated with a small num-
ber of outcomes [14]. It can cope with inter-correlation
between multiple explanatory variables, since each pre-
dictor is selected randomly for each stage of the learning
process [15], unlike standard regression approaches.
Previous studies have indicated that the Random Forests
approach may have better prediction accuracy than
other machine learning methods [16, 17]. We hypothe-
sized that the use of machine learning approaches and a
large data set with many features will improve the
accuracy of SSI prediction. This study aimed to develop
efficient algorithms to identify SSIs within 30 days after
surgery using health administrative data.

Material and methods
This study was divided into three stages. In the first stage, a
Random Forests algorithm was used to perform a prelimin-
ary screening of variables and to rank the importance of
candidate variables. In the second stage, the 30 most im-
portant variables from the first stage were input into the
high-performance logistic regression to build interpretable
and parsimonious models for all three administrative data-
sets used in this study. Finally, we used risk score modeling
methodology to transform the final logistic models form
the second stage into the risk score system.

Selection and description of participants
This study was performed at The Ottawa hospital
(TOH), Canada, a 1200-bed academic health sciences
center providing approximately 90% of the major surgi-
cal operations in a catchment area of 1.2 million
people. We identified all patients at TOH aged 18 years
and older who underwent surgery and were included in
the American College of Surgeons National Surgical
Quality Improvement Program (NSQIP) data collection,
between April 1, 2010, and March 31, 2015. The
NSQIP uses trained Surgical Clinical Reviewers to
collect data using a combination of chart review and
follow up from the preoperative period through 30 days
postoperatively. Patients were excluded if: 1) they were
not eligible for the Ontario Health Insurance Program
(OHIP) or had an invalid OHIP number, because this
was required for linkage to health administrative
datasets; or 2) they had missing admission, discharge,
or surgery dates.

Population-based health administrative datasets
We linked the NSQIP dataset to three distinct
population-based, health administrative datasets
housed at the Institute for Clinical and Evaluative
Sciences (ICES). ICES is an independent, non-profit re-
search institute whose legal status under Ontario’s
health information privacy law allows it to collect and
analyze health care and demographic data, without
informed consent, for health system evaluation and
improvement. The use of data in this project was au-
thorized under section 45 of Ontario’s Personal Health
Information Protection Act, which does not require
review by a Research Ethics Board. The datasets in-
cluded: 1) the Discharged Abstract Database and Same
Day Surgery Database to identify the records of the
hospitalization (ICD-10 code), including admission and
discharge dates, diagnoses, 2) the Physician Services
Database to retrieve all claims for services provided by
all eligible health care providers, and 3) the Ontario
Health Insurance Plan (OHIP) database that contains
physician diagnostic codes (ICD-9 codes) and diagno-
sis descriptions. All patients were followed for 30 days
from the time of their surgery. All databases were
linked using anonymized unique identifiers and ana-
lyzed at the ICES at the University of Ottawa, Ontario.
This study was approved by the Ottawa Health Science
Network Research Ethics Board.

Study outcome
All individuals who had any type of SSIs (i.e. superficial,
deep, or organ space) (Additional file 1) within 30 days
after surgery, according to the definition of the NSQIP
protocol, were defined as having experienced an SSI.
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Statistical analysis
This study utilized a 3-stage predictive modeling based
on the hybrid modeling approaches developed in previ-
ous studies [14, 15, 18]. All stages described below were
applied to each administrative dataset used in this study
to generate three sub-models that contributed to the
omnibus SSI model.

Stage 1 – model development using random forests
algorithm
Details of Random Forests method have been described
elsewhere [19–21]. In short, each of the classification
trees is built using a bootstrap sample of the data, and a
random subset of variables was selected at each split,
thereby constructing a large collection of decision trees
with controlled variation [22, 23] (Additional file 2). The
Random Forests trees are not pruned, so as to obtain
low-bias trees. Every tree in the forest casts a “vote” for
the best classification for a given observation, and the
class receiving most votes results in the prediction for
that observation. The study cohort was first divided
randomly into derivation (70%) and validation (30%)
samples (Additional file 3). Then, the derivation data
was sampled to create an in-bag partition – (2/3) to
construct the decision tree, and a smaller out-of-bag
partition (1/3) to test the constructed tree to evaluate its
performance by computing: 1) misclassification error, 2)
C-statistics, and 3) model performance (sensitivity, spe-
cificity, etc.). The optimal number of trees and a subset
of variables at each node were selected using the
“tuneRF” function in R to minimize the misclassification
error. Random Forests calculates estimates of variable
importance for classification using permutation variable
importance measure (VIM) [19], which is based on the
decrease of a classification accuracy when values of a
variable in a node of a tree are permuted randomly.
Finally, K-fold cross validation was used to evaluate the
Random Forests model with 10 folds. We identified sub-
sets of top 30 important diagnostic or procedure codes
to predict SSIs, using a mean decrease accuracy value of
0.02 as a cut-off point. The Random Forests analyses
were performed in R statistical software (3.3.2.) using
“randomForest” package [21].

Stage 2 – stepwise model selection using high-
performance logistic regression approach
Random forests algorithm was used to perform a prelim-
inary screening of variables and to gain importance
ranks. Then, the selected top-30 important predictors
were input into the high-performance logistic model
with stepwise variable selection to find the best parsimoni-
ous model to predict SSIs [14, 24, 25]. High-performance
logistic regression (proc hplogisitc) belongs to the high-
performance analytics procedures that can be used to

reduce the dimension or identify important variables to
obtain parsimonious predictive models [26]. It permits
several link functions and can handle ordinal and nominal
data with more than two response categories [26]. The
Schwarz Bayesian Criterion (SBC) was used as a penalized
measure of fit for logistic regression model to help avoid
the model over-fitting.

Stage 3 – point system or risk scores
We used the methods suggested by Sullivan et al. [27] to
summarize each logistic model from stage 2 as a point
system. The point system or risk scores provide statis-
tical information in a more clinically useful form than
logistic regression models, as generalizability of the
models developed from data from a single or a small
group of hospitals to other patient populations is ques-
tionable [28, 29]. Clinical prediction models and associ-
ated risk-scoring systems are popular statistical methods
as they permit a rapid assessment of patient risk without
the use of computers or other electronic devices [30].
The use of such points-based systems facilitates
evidence-based clinical decision making [30]. The point
system developed in this study was designed to predict
the risk of postoperative SSIs, based on a patient’s pre-
procedural risk factors or predictors. The point score
assigned to each predictor was derived from a well-fit lo-
gistic regression model.
The point scores were developed for hospitalization

(ICD-10) and physician (ICD-9) diagnostic codes, and
physician procedure claims. All variables in the models
were categorical, and the distance between a variable
and its base category in regression coefficient units was
equal to the size of the coefficient. For each variable, its
distance from the base category in regression coefficient
units was divided by this constant and rounded to the
nearest integer to get its point value.
Then, the obtained point scores were input into logis-

tic regression model and adjusted for other potential
confounding factors suggested by the existing literature,
including age, sex, surgical procedure, emergency case,
concurrent surgical procedures, patient’s physical status
(ASA-5), and duration of surgery. The full model dis-
crimination (C statistics or AUC) and calibration
(Hosmer-Lemeshow (H-L) statistics) were assessed in
the validation dataset. All methods were performed in
accordance with the guidelines for developing and
reporting Machine Learning predictive models in bio-
medical research [31]. The high-performance regression
and point score assignment were performed in SAS 9.4
statistical software.

Results
We identified 14,351 patients who underwent surgery
from April 1, 2010 to March 31, 2015 and were enrolled
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into NSQIP at our hospital. An SSI was identified in 795
(5.5%) of these patients. Of these, 540 (68%) had superfi-
cial SSIs and 255 (32%) had deep or organ space SSIs.
Descriptive statistics for patients in the study sample are
reported in Additional file 4. The derivation and valid-
ation datasets were similar in terms of baseline covari-
ates (Additional file 5).

Predictive modeling for hospitalization diagnostic codes
(ICD-10)
We identified 3085 hospitalization diagnostic (ICD-10)
codes recorded within 30 days following the surgery
date. These codes then were clustered into 994 three-
digit hospitalization diagnostic codes that were used for
the further analyses.
Stage 1: Given a large number of diagnostic codes (pos-

sible predictors), the Random Forests approach was used
to identify a subset of top important 30 hospitalization
diagnostic codes that best predicts classification. We used
800 classification trees and 46 variables available for split-
ting at each tree node. The accuracy of the Random
Forests model was 95.3%. The resulting SSI prediction
model demonstrated positive predictive value (PPV) of
98%, negative predictive value (NPV) of 97%, and AUC
(area under the receiver operating characteristic curve) of
0.78 (95% CI 0.77–0.79). The accuracy of the Random
Forests model after a 10-fold cross-validation was 94.3%.
Figure 1 presents the top 30 hospitalization diagnostic
(ICD-10) codes for classification of SSIs that have been
identified using the permutation VIM.
Stage 2: The identified top 30 hospitalization diagnos-

tic codes (ICD-10) codes were input into the high-
performance logistic regression with a stepwise selection
to identify the best parsimonious model to predict SSIs.
Table 1, model 1 presents the final model of six
hospitalization diagnostic codes to identify SSIs (AUC
0.87, 95% CI 0.86–0.89).
Stage 3: Risk scores for the final model of hospitalization

diagnostic (ICD-10) codes are presented in Table 1, Model
1 [27]. Among the entire cohort, 80.3% of patients had a
score of 0, 11.8% had a score of 1, and 7.9% had a score
equal or greater than 2.
Predictive modeling for physician diagnostic (ICD-9)

codes.
We identified 442 physician diagnostic 3-digit codes

(using ICD-9-CA) recorded within 30 days following the
surgery date.
Stage 1: Given a large number of diagnostic codes

(possible predictors), the Random Forests approach was
used to identify a subset of 30 physician diagnostic codes
that best predicts SSIs. The best misclassification rate
was achieved by using 800 classification trees and 31
variables available for splitting at each tree node. The ac-
curacy of the Random Forests model was 94.7%. The

resulted SSI prediction model demonstrated PPV of
98%, NPV of 96%, and AUC of 0.82 (95% CI 0.81–0.83).
The accuracy of the model after a 10-fold cross-
validation was 94.1%. Figure 2 presents the top 30 im-
portant physician diagnostic (ICD-9) codes for predic-
tion of SSIs that have been identified using VIM.
Stage 2: The identified top 30 physician diagnostic

codes were input into the high-performance logistic re-
gression model to identify the best parsimonious model
for prediction of SSIs, using a stepwise selection ap-
proach. Table 1, Model 2 presents the final models of
nine physician diagnostic codes to identify SSIs (AUC
0.85, 95% CI 0.84–0.86).
Stage 3: Risk scores for the final model of physician

diagnostic codes are presented in Table 1, Model 2 [27].
Among the entire cohort, 77.8% of patients had a score
of 0, 7.7% had a score of 1, and 14.5% had a score equal
or greater than 2.

Predictive modeling for physician procedure claims
We identified 2543 physician procedure claims recorded
within 30 days following the surgery date. These codes
then were clustered into 610 three-digit codes that were
used for the further analyses.
Stage 1: Given a large number of physician procedure

codes (possible predictors), Random forests approach
was used to identify a subset of 30 physician procedure
claims that best predicts SSIs. The best misclassification
rate was achieved by using 1000 classification trees and
37 variables available for splitting at each tree node. The
accuracy of the Random Forests model was 94.8%. The
resulted SSI prediction model demonstrated PPV of
99%, NPV of 97%, and AUC of 0.82 (95% CI 0.81–0.83).
The accuracy of the model after a 10-fold cross-
validation was 94.4%. Figure 3 presents the top 30 phys-
ician procedure claims that have been identified using
the permutation VIM.
Stage 2: The identified top 30 physician procedure

claims were input into the high-performance logistic re-
gression model to identify the best parsimonious model
for prediction of SSIs. We used a stepwise variable
selection approach. Table 1, Model 3 presents the final
models of 14 physician procedure claims to identify SSIs
(AUC 0.84, 95% CI 0.83–0.85).
Stage 3: Risk scores for the final model of physician

procedure claims are presented in Table 1, Model 3 [27].
Among the entire cohort, 55.4% of patients had a score
of 0, 11.9% had a score of 1, and 44.6% had a score equal
or greater than 2.

Full model with total risk score of diagnostic and
procedure codes
In the derivation cohort, the total scores of hospitalization
diagnostic (ICD-10) codes, physician diagnostic (ICD-9)
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codes and physician procedure claims were included in
the logistic regression model and adjusted for potential
confounding factors, including surgical specialties, age,
sex, duration of surgery, emergency case, ASA class and
concurrent surgical procedures (Table 2).

The full model had excellent discrimination (AUC 0.91;
95% CI, 0.90–0.92) and calibration (H-L statistics, 4.53,
p = 0.402). The predicted probability threshold with the
optimal operating characteristics [32] (e.g., the square of
distance between the point (0, 1) on the upper left hand

Fig. 1 Description of top 30 hospitalization diagnostic (ICD-10) codes to identify SSIs. T81 – Operative complication (infection, hemorrhage, etc.);
C54 – Malignant neoplasm of specified part of uterus; K65 – Peritonitis; B96 - Other bacterial agents as the cause of diseases classified elsewhere;
K83 – Biliary duct infection, obstruction, perforation, or fistulation; Y83 - Surgical operation/procedures as the cause of abnormal reaction of the
patient/or later complication; C51 - Malignant neoplasms of female genital organs; Y83 - Surgical operation/procedures as the cause of abnormal
reaction of the patient/complication; C51 - Malignant neoplasms of female genital organs; K75 - Abscess of liver; L27 - Dermatitis and eczema;
B95 - Streptococcus and staphylococcus as the cause of diseases; K42 - Umbilical hernia; A04 - Other bacterial intestinal infections; M71 – Bursal
abscess, cyst, infection; N39 - Other disorders of urinary system; D05 - Carcinoma in situ of breast; C21 - Malignant neoplasm of anus and anal
canal; T85 - Complications of internal prosthetic devices, implants and grafts; K26 - Duodenal ulcer; N43 - Other disorders of prostate; C25 -
Malignant neoplasm of pancreas; A49 - Bacterial infection of unspecified site; K35 - Acute appendicitis; K92 - Other diseases of digestive system;
K63 – Other diseases of intestine; K55 - Vascular disorders of intestine; G00 - Bacterial meningitis, unspecified; Y60 - Unintentional cut, puncture,
perforation or haemorrhage during surgical and medical care; D62 - Acute posthaemorrhagic anemia; J80 - Acute respiratory distress syndrome
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corner of ROC space and any point on ROC curve) was a
predicted risk of 4% (sensitivity, 83.4%; specificity, 89.2%;
PPV, 34.2%; and NPV, 99.1%). In the internal validation
cohort, the full model remained strongly discriminative
(AUC 0.89, 95% CI 0.88–0.90) and well calibrated (H-L
statistics, 6.47, p = 0.487) (Fig. 4).

Discussion
We used a 3-stage predictive modeling approach to de-
rive and internally validate models to predict SSIs within

30 days after surgical procedure. To the best of our
knowledge, this is the first study that used Machine
Learning approaches to develop efficient algorithms for
identifying SSIs within 30 days after surgery by use of
health administrative data. The key finding of our study
is that the risk of SSIs can be reliably estimated using
routinely collected administrative data, including phys-
ician procedure claims, hospital (ICD-10) and physician
(ICD-9) diagnostic codes. Our study results demonstrate
high performance of the Random Forests algorithm for

Table 1 The best parsimonious models for prediction of SSIs

Model 1. The best parsimonious model of hospitalization diagnostic (ICD 10) codes

Effect *AOR, 95% CI Risk point

T81- Operative complication (infection, hemorrhage, etc.) 6.40 (5.08–8.01) 2

K65 - Peritonitis 5.87 (3.88–7.88) 1

B96 - Other bacterial agents causing infections 2.56 (1.84–3.47) 1

K83 - Biliary duct infection, obstruction, perforation 6.32 (4.42–8.01) 3

Y83 - Surgical operation/procedures as the cause of abnormal reaction of the patient/ or later complication 2.46 (1.97–3.07) 1

B95 – Streptococcus/ staphylococcus as the cause of diseases 3.25 (2.17–4.87) 1

Model 2. The best parsimonious model of physician diagnostic (ICD 9) codes

Effect AOR, 95% CI Risk point

686 - Pyoderma, pyogenic granuloma, other local infections 8.13 (6.50–9.20) 3

682- Cellulitis, abscess 4.70 (3.57–6.10) 2

998 - Other complications of procedures 5.68 (4.77–6.78) 2

556 - Ulcerative colitis 8.60 (6.31–9.18) 3

685 - Pilonidal cyst with fistula, abscess 2.69 (1.52–3.76) 2

560 - Intestinal obstruction without mention of hernia 2.97 (2.19–4.01) 2

154 - Malignant neoplasm of rectum, rectosigmoid junction 4.37 (3.29–5.17) 2

599 - Other disorders of urethra and urinary tract 2.04 (1.55–2.62) 1

153 - Malignant neoplasm of colon 2.71 (2.02–3.22) 1

Model 3. The best parsimonious model of physician procedure claims

Effect AOR, 95% CI Risk point

Z59 - Digestive system surgical procedure: colon/biliary tract 7.38 (6.08–9.09) 4

C46 - Infectious disease: hospital consult/assessment 5.77 (4.66–7.43) 3

Z10 - Skin/subcutaneous tissue: incision of abscess or hematoma 7.88 (6.04–8.67) 3

C03 - General surgery: hospital consult/assessment 3.45 (2.86–4.19) 2

H15 - Family practice: assessment on weekend 2.33 (1.80–3.01) 2

S16 - Digestive system surgical procedures: intestine 1.98 (1.48–2.52) 1

C20 - Obstetrics and gynecology assessment/consult 2.25 (1.66–3.05) 2

Z08 - Debridement of wound(s) and/or ulcer(s) 4.01 (2.83–5.56) 3

S21 - Digestive system surgical procedures: colon/rectum 2.65 (1.91–3.62) 2

R06 - Skin/subcutaneous tissue: free island flaps 4.64 (2.58–6.36) 3

C13 - Internal medicine: hospital assessment/consult 1.96 (1.52–2.36) 1

H13 - Family practice: assessment/consult on weekdays 2.85 (2.18–3.52) 2

C21 – Pain management: limited consultations 1.84 (1.55–2.10) 1

R11- Operations of the breast: incision, excision, repair 2.81 (1.02–3.41) 3
*AOR, 95% CI = Adjusted Odds Ratio, 95% Confidence Interval
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prediction of SSIs without pre-selection of possible pre-
dictors given a small number of cases. We derived a
relatively small set of variables to identify postoperative
SSIs, including 6 hospital diagnostic codes, 9 physician
diagnostic codes, and 14 physician procedure claims.
Several studies have examined the use of administrative

data to identify postoperative SSIs [6–10]. Our study
findings are consistent with these studies [6, 10]. van
Walraven et al. [6], for example, found that administrative
data, including hospital diagnostic, emergency department

visit codes and physician procedure claims, can be effect-
ively used to identify postoperative patients with a low risk
of having SSIs within 30 days of their surgical procedure.
In particular, the predictive probability threshold with the
optimal characteristics was a predicted risk of 5% (sensi-
tivity, 82.1%, specificity, 85.6%, PPV, 27.7%). Additionally,
Sands et al. found that [9] automated medical and claim
records together can be used to screen for post discharge
SSIs, but the method they used identified only 10% of
procedures as possible infections.

Fig. 2 Description of the top 30 physician diagnostic (ICD-9) codes to identify SSIs. 686 - Pyoderma, pyogenic granuloma, other local skin
infections; 682 - Cellulitis, abscess; 998 - Other complications of procedures, not elsewhere classified; 556 - Ulcerative colitis; 685 - Pilonidal cyst or
abscess; 739 - Nonallopathic lesions, not elsewhere classified; 332 - Parkinson’s disease; 599 - Other disorders of urethra and urinary tract; 192 -
Malignant neoplasm of other and unspecified parts of nervous system; 257 - Testicular dysfunction; 603 – Hydrocele; 560 - Intestinal obstruction
without mention of hernia; 608 - Other disorders of male genital organs; 170 - Malignant neoplasm of bone and articular cartilage; 154 -
Malignant neoplasm of rectum, rectosigmoid junction and anus; 821 - Fracture of femur; 075- Infectious mononucleosis, glandular fever; 917-
Superficial injury of foot and toe(s); 788 - Symptoms involving urinary system; 153 – Malignant neoplasm of large intestine - excluding rectum;
372 - Conjunctiva disorders (e.g., conjunctivitis, pterygium); 845 – Sprains and strains of ankle and foot; 591 – Hydronephrosis; 184 - Malignant
neoplasm of vagina, vulva, other female genital organs; 156 - Malignant neoplasm of gallbladder and extra hepatic bile ducts; 290 - Senile
dementia, presenile dementia; 569- Other disorders of intestine; 646 - Other complications of pregnancy (e.g., vulvitis, vaginitis, cervicitis, pyelitis,
cystitis); 437- Other and ill-defined cerebrovascular disease; 346 - Other diseases of central nervous system (e.g., brain abscess, narcolepsy, motor
neuron disease, syringomyelia)

Petrosyan et al. BMC Medical Research Methodology          (2021) 21:179 Page 7 of 11



The approach used in our study added a new contri-
bution to the existing literature by incorporating much
larger set of features as compared with the previous
studies. It was possible to include all available diagnostic
or procedure codes to identify SSIs in this study, because

Random Forests approach is generally unaffected by the
addition of irrelevant features and is robust to collinear-
ity due to the use of subsets of random variables for tree
splits. All the features included in this study were ob-
tained from routinely collected data, and given the

Fig. 3 Description of the top 30 physician procedure claims to identify SSIs. Z59 - Digestive system surgical procedure; C46 - Infectious disease -
non-emergency hospital in-patient services: assessment/ consultation; Z10 - Integumentary system surgical procedures: incision of abscess/
haematoma; K07 - Family practice/geriatrics acute and chronic home care supervision; K99 - Emergency department – special visit premium; C03
- General surgery, non- emergency hospital in-patient services-assessment, visits, consultations; A35 - Urology -consultations/ assessment; S16 -
Digestive system surgical procedures; H15 - Family practice & practice in general - weekend and holidays: assessment/care; C64 - General thoracic
surgery - non-emergency hospital in-patient services: consultation assessment; H12 - Family practice & practice in general - nights assessment
and car; C12- Non-emergency hospital in-patient services: Subsequent visits by the MRP; R11- Integumentary system surgical procedures:
operations of the breast; E08 - Hospital and institutional consultations/assessments by MRP; C20 - Obstetrics and gynecology - non-emergency
hospital in-patient services; Z08 - Debridement of wound(s) and/or ulcer(s) extending into subcutaneous tissue, tendon, ligament, bursa and/or
bone; G55- Diagnostic and therapeutic procedures, critical care; S21- Digestive system surgical procedures: rectum; S65 - Male genital surgical
procedures; Z74 – Respiratory surgical procedures; R62- Musculoskeletal system surgical procedures – amputation; A20 - Obstetrics and
gynecology - assessment or consultation; Z22 - Musculoskeletal system surgical procedures; R06 - Myocutaneous, myogenous or fascia-cutaneous
flaps, neurovascular island transfer, transplantation of free island skin and subcutaneous flap; A24 - Otolaryngology – assessment/ consultation;
C13 - Internal and occupational medicine: non- emergency hospital in-patient services; C01 - Non-emergency hospital in-patient services,
subsequent visits by the MRP; H13 - Family practice & practice in general –weekdays, evenings: assessment/care; C21 – Consultations/visits
anaesthesia -non-emergency hospital in-patient services
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Table 2 Full model of total risk scores for hospitalization diagnostic (ICD-10) codes, physician diagnostic (ICD-9) codes and physician
procedure claims, adjusted for the study covariates

Effect Adjusted Odds Ratio 95% Confidence interval

Hospitalization diagnostic score 2.12 1.91–2.20

Physician diagnostic score 1.88 1.75–2.02

Physician procedure score 1.45 1.31–1.56

Age < 65 years 1.74 1.40–2.16

Log-operation duration, min 1.52 1.30–1 .72

Surgical specialty

General surgery 1.60 1.20–2.15

Gynecology 1.19 0.80–1.76

Orthopedics 0.77 0.53–1.11

Plastics 2.37 1.59–3.51

Vascular 1.75 1.12–2.68

Other Reference Reference

Female 1.18 0.96–1 .47

Concurrent surgical procedures

1 1.05 0.67–1.63

2+ 1.09 0.67–1.75

0 Reference Reference

ASA class

I 0.87 0.75–1.33

II 1.21 0.80–1.80

III 1.10 0.66–1.76

IV 0.32 0.04–1.03

V Reference Reference

Emergent case 0.99 0.79–1.20

Fig. 4 Receiver Operator Characteristics Curve (ROC curve) and *calibration plot for the full model with risk scores for hospitalization diagnostic (ICD-
10) codes, physician diagnostic (ICD-9) codes, and physician procedure claims, adjusted for the **study covariates, in the validation cohort. *In the
calibration plot, the observed percentage of patients having an SSI within 30 days of surgery is plotted against the predicted SSI risk from the SSI risk
model (horizontal axis). **Study covariates: surgical specialties, age, sex, duration of surgery, emergency case, ASA class, concurrent surgical procedures
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complex etiology of SSIs, there might be variables that
would be overlooked if we used a narrower search strat-
egy guided by a priori clinical expectations. It would be
inappropriate to interpret the identified diagnostic or
procedure codes as either causes or consequences of
SSIs. Random Forests allows us to select variables that
are influencing prediction given a small sample sizes and
the extremely small ratio of samples to variable (large
“p” and small “n”). If the identified important variables
are consistent with clinical knowledge, there will be
more confidence in the derived model as a decision
support tool.
Several aspects of our study should be carefully con-

sidered. First, our study contained no information about
outpatient antibiotic treatments because the Ontario
health administrative data used for the study captures
medication use for people over the age of 65 and who
are on social assistance. Also, we did not include infor-
mation about laboratory tests, because the Ontario
health administrative data captures information only on
outpatient laboratory tests, while laboratory tests per-
formed during hospitalization are most important in
predicting SSIs. Thus, information about antibiotic use
and laboratory test could substantially improve SSI iden-
tification. Second, our study and model captured SSIs
that occurred within 30 days after surgical procedure, so
any SSI that occurred outside of this timeframe would
have been missed. Third, our study was conducted in a
single teaching hospital, providing about 90% of the
major surgical operations in a catchment area of 1.2 mil-
lion people. Therefore, external validation is necessary to
measure model’s utility in other hospitals and geo-
graphic regions. Finally, the coding systems used in the
province of Ontario might not be available in other ju-
risdictions. Therefore, some modifications might be re-
quired before using our models in other health regions.

Conclusion
This study shows that health administrative data could
be effectively used in identifying SSIs. Machine learning
approaches have shown a high degree of accuracy in pre-
dicting postoperative SSIs and can integrate and utilize a
large amount of administrative data. The results of our
study are useful in advancing current and future efforts to
use administrative data for patient safety surveillance and
improvement. Further research should examine the use of
machine learning approaches to identify SSIs, stratified by
the specific types of surgical procedures.
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