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Abstract: Computer vision-based path planning can play a crucial role in numerous technologically
driven smart applications. Although various path planning methods have been proposed, limitations,
such as unreliable three-dimensional (3D) localization of objects in a workspace, time-consuming
computational processes, and limited two-dimensional workspaces, remain. Studies to address these
problems have achieved some success, but many of these problems persist. Therefore, in this study,
which is an extension of our previous paper, a novel path planning approach that combined computer
vision, Q-learning, and neural networks was developed to overcome these limitations. The proposed
computer vision-neural network algorithm was fed by two images from two views to obtain accurate
spatial coordinates of objects in real time. Next, Q-learning was used to determine a sequence of
simple actions: up, down, left, right, backward, and forward, from the start point to the target point
in a 3D workspace. Finally, a trained neural network was used to determine a sequence of joint
angles according to the identified actions. Simulation and experimental test results revealed that the
proposed combination of 3D object detection, an agent-environment interaction in the Q-learning
phase, and simple joint angle computation by trained neural networks considerably alleviated the
limitations of previous studies.

Keywords: path planning; Q-learning; neural network; YOLO algorithm; computer vision; robot
arm; target reaching; obstacle avoidance

1. Introduction

Intelligent robot arms can play a crucial role in automation. The extensive use of
industrial [1], surgical [2], and home robots [3] are examples of applications in which robot
arms have become indispensable. Many robot arms are synchronized to accomplish a
task by using a program or are remotely controlled by human operators. Intelligent robot
arms attached with numerous sensors and cameras have attracted considerable research
attention [4]. These robots have powerful onboard processors, high memory capacity, and
artificial intelligence (AI)-based algorithms. These features enable such robots to replicate
human capabilities. Intelligent robot arms gather information regarding their environment
to make decisions in real time.

Intelligent robot arms are also increasingly being used in numerous applications. For
instance, in smart cities [5], these kinds of robots are used to scan buildings and generate
automated three-dimensional (3D) reconstruction. In computer vision and computer graph-
ics, 3D reconstruction is used to detail the shape and appearance of physical objects, define
3D profiles, and determine the 3D coordinates of any point on the profile. Furthermore,
3D reconstruction has applications in many fields, such as medicine, free-viewpoint video
reconstruction, robotic mapping, city planning, gaming, virtual environments, virtual
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tourism, landslide inventory mapping, robot navigation, archaeology, augmented reality,
reverse engineering, motion capture, gesture recognition, and hand tracking [6].

In addition to 3D reconstruction, intelligent robot arms can play an essential role in
other applications. For example, in smart factories [7], intelligent robot arms can be used
in production, manufacturing, assembly, and packing in various industries. Moreover, in
smart hospitals, robot-assisted surgery allows doctors to perform many types of complex
procedures with higher precision, flexibility, and control than is possible with conventional
techniques. In smart homes, robot arms can assist people with disabilities, elderly individu-
als, and parents rearing children to considerably improve their quality of life. The accuracy,
speed, and efficiency of robot arms enable them to perform daily work effortlessly.

Although intelligent robot arms can be used in many industries, developing robotic
arm applications remains highly challenging. One crucial and difficult problem is to ensure
that robot arm path planning is accurate, safe, and efficient [8]. Path planning refers to
bringing the end-effector to the target without hitting obstacles. It depends on various
algorithms that dictate the motion of the robot arm, and determine how a robot arm
should approach, process, and orient itself for optimal productivity and collision avoidance.
Numerous computer vision-based path planning approaches were reviewed. Given that
the end-effector of robot arms is critical for achieving their goal, bringing the end-effector
to the desired location with obstacle avoidance is a key challenge for these robots.

This study aimed to overcome certain limitations of current computer vision-based
path planning of robot arms by using AI techniques to develop an intelligent robot arm
with high performance, safety, and speed.

To this end, although we tried to address those limitations in our previous paper [9],
some of them remain. This article that is, in fact, an extension of our previous study, tries to
address the limitations of prior work. In the previous study, we developed a novel hybrid
path planning method using Q-learning and neural networks. An action finding (active
approach) and angle finding (passive approach) were the two components of the hybrid
path planning system. The Q-learning algorithm was used in the active phase to determine
a series of simple movements, such as going up, down, left, and right to reach a target
cell in a two-dimensional (2D) grid workspace. In the passive phase, a neural network
is trained to determine the joint angles of the robot arm with respect to the observed
actions. According to our findings, this hybrid technique considerably improved the speed
and reduced the complexity of the operation of the system. However, this study had the
following limitations.

1. Although many applications require 3D movement, the scope of work was limited to
the 2D workspace.

2. Finding a start, an obstacle, and a target point through their colors may negatively
affect image processing accuracy depending on the ambient light. Obstacle detection
based on shapes would be preferable.

3. Because the KNN algorithm was used in this study, a start, an obstacle, and a target
cell were required to have distinct colors.

4. Only one obstacle could be located in the workspace unless distinct colors were used
for each obstacle.

Therefore, in this study, we extended the scope of our previously proposed method
from a 2D space to a 3D space and incorporated real-time object detection and localization
for real-world applications.

In this article, the proposed path planning method comprises three phases: (1) detect-
ing the spatial coordinates of a start, target, and obstacle object, (2) finding the optimal
path from a start to a target object while avoiding an obstacle object, and (3) calculating
the corresponding angles for the six joints of a robot arm. In the first stage, the spatial
coordinates of a start, target, and obstacle object were recognized in a 3D workspace using
a combined object detection technique and a neural network with two images captured
using two cameras from different views. This stage required a training process based on
the created dataset of the start, target, and obstacle shapes and their morphologies. In the
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next step, the Q-learning algorithm is used to determine the optimal actions in a gridded
3D workspace so that a robot arm could begin traveling from the start cell to the target cell
without collision with an obstacle. In a Q-learning algorithm, states are represented by cells
in a 3D workspace, and forward, backward, right, left, down, and up are defined as actions
of the robot arms. Finally, in the next step, a trained neural network is used to calculate
the angles for the six joints of a robot arm based on actions to place the end-effector in the
required location in 3D space. The use of a neural network for this stage greatly reduces
the calculation time and computing cost.

This approach exhibited high speed, low computational cost, and automated path
generation for various situations. A real-time object detection algorithm is obtained by
combining neural network and object detection. Furthermore, finding optimal actions by
Q-learning algorithm and calculating robot arm joint angles with trained neural networks
enabled us to create a precise, efficient, and fast method to address computer vision-based
path planning issues for real-life applications. The remainder of this paper is organized as
follows. In Section 2, the related works are presented. In Section 3, our novel computer
vision-based path planning technique is proposed. In Section 4, the experimental results
are presented and analyzed. In Section 5, the discussion is presented. Finally, in Section 6,
the conclusion is presented.

2. Related Works

Prior to the development of a new computer vision-based path planning approach,
numerous existing approaches were reviewed. Methods, such as probabilistic road map
(PRM), artificial potential field (APF), rapidly exploring random tree (RRT), and reinforce-
ment learning (RL)-based approaches, have been proposed. The most important of which
are as follows.

Ka et al. presented a vision-based assistive robot arm assistance algorithm for a JACO
robot in which a low-cost 3D depth-sensing camera and an improved inverse kinematic
algorithm were used to enable semiautonomous or autonomous JACO operation [10].
Rai et al. proposed an autonomous robotic framework for academic, vocational, and train-
ing purposes. They used two webcams that provided the top and side views to consider
the objects of various heights for positioning a robotic gripper at the center of the target [11].
Hsu et al. proposed a control design and implementation of an intelligent vehicle com-
bined with a robotic manipulator and computer vision [12]. Chen et al. demonstrated
the potential of combining augmented reality-based brain–computer interface and com-
puter vision to control robotic arms. They employed hue, saturation, and lightness space
(HSV) to provide the object’s position and color in the 2D workspace. The objects they
utilized were simply 2D disks with placements in a conventional gridding pattern [13].
Whang et al. used a popular object detection model, the faster R-CNN model, to detect
nails and screws in construction waste recycling robots. Their result shows that the model’s
mean average precision (AP) for nails and screws was 0.891. This precision was well in
their application [14]. Tebbe et al. demonstrated an innovative table tennis robot system
with high precision vision detection and rapid robot response. They used a multi-camera
calibration approach and iterative triangulation to reconstruct the 3D ball position with a
2.0 mm precision. They used classic image processing techniques and integrated color and
background thresholding to detect the flying ball with higher velocities in real-time [15].
Sadhu et al. proposed an improvised FA that involved the Q-learning framework within
itself for robot arms path planning. In this proposed Q-learning induced FA (QFA), the
optimal parameter values for each firefly of a population were learned by the Q-learning
strategy during the learning phase and applied thereafter during execution [16]. Wen et al.
presented a new obstacle avoidance algorithm based on deep deterministic policy gradient
(DDPG). Specifically, they proposed to use DDPG to plan the trajectory of a robot arm to
realize obstacle avoidance [17]. Zhang et al. proposed a path planning method based on
Q-learning for robot arm due to its simple and well-developed theory [18]. Huadong et al.
analyzed the characteristics of obstacle avoidance path planning to improve the efficiency
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and accuracy of obstacle avoidance path planning [19]. Das et al. proposed a novel method
of energy-efficient path planning of an industrial robot arm in a workspace with multi-
ple obstacles using differential evolution (DE) algorithm [20]. Raheem et al. analyzed
the shortest path and trajectory planning of a two-link robot arm with 2-DOF in the 2-D
static known environment [21]. Chang et al. presented an automatic path planning of
a six-axis robot for intelligent manufacturing based on network remote controlling and
simulation [22]. Sugiura et al. determined an optimal path by computing the gradient of an
equation using the APF method [23]. However, the algorithm may encounter local minima,
rather than the absolute minimum, and therefore the shortest path may not be identified,
as reported by Martínez et al. [24]. Kavraki et al. used Dijkstra’s algorithm to calculate the
shortest paths between nodes on a graph in the PRM method [25]. The path created by the
sampling-based approach may not be optimal because the resultant path mainly depends
on sample procedures, as reported by Hsu et al. [26]. Liu et al. reported that RRT can avoid
precise environmental modeling and reduce calculations [27]. However, the convergence
speed of motion planning is sluggish because of the random sampling and global uniform
sampling technique of rapidly expanding random trees in redundant spaces. Therefore,
producing the optimal path in a short period of time becomes challenging, as reported
by Karaman et al. [28]. Prianto et al. used the soft actor-critic (SAC) deep-learning-based
method for path planning. Because of the use of the entropy term in the goal function, the
SAC exhibits high exploration capabilities for path planning [29]. Panov et al. investigated
novel grid path planning with deep RL outcomes. Furthermore, they demonstrated the
robust learning ability of a neural Q-learning agent on tiny maps and achieved promising
results on new maps [30]. Low et al. suggested improved Q-learning and demonstrated
its efficacy through experimental investigations [31]. Yu et al. proposed a neural-network-
based path planning model for mobile robots based on hierarchical RL and compared this
model to other algorithms. The results revealed the smoothness of the planned path and
usable generalization in various scenarios by using an obstacle avoidance method based
on non-uniform rational B-splines (NURBS) for robot arms [32]. It was also found that the
NURBS method was highly effective for avoiding collisions [33].

These methods have distinct advantages and disadvantages. Certain methods have
irregular paths, require preplanning, determine a non-optimal path, obtain cubic graphs,
and are slow. Other methods have drawbacks, such as high complexity or are limited to
certain conditions. Because robot arm performance cannot be generalized, some robot arm
setups can become highly complex. The development of a novel path planning method that
identifies and solves these limitations is essential for improving robot arm performance
and production. The proposed approach meets this requirement with some advantages
that will be presented in the next sections.

3. Methods

The proposed procedure can be summarized as follows: (1) detecting the coordinates
of the bounding box of a start, target, and an obstacle by using an object detection algorithm.
Then, converting them to their spatial coordinates using a neural network, (2) determining
optimal actions using Q-learning, and (3) calculating the rotation angles of the joints of
a six-degree-of-freedom robot arm using a neural network. This section describes these
in detail.

3.1. Object Detection and Spatial Coordinates (Combined YOLO-Neural Networks 1)

In the first stage, the coordinates of the bounding boxes of a start, target, and obstacle
are obtained in the 3D space. These coordinates can be automatically determined for real-
time applications. In the proposed approach, an object detection algorithm and a neural
network were combined. In an object detection algorithm, both object recognition and
object localization in an image can be achieved. These algorithms can distinguish between
a start, an obstacle, and a target object, and extract their bounding box coordinates. Because
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we required 3D coordinates, we extracted XYZ coordinates using two cameras with two
planes, as displayed in Figure 1.
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Many object detection algorithms, including SqueezeDet, MobileNet, R-CNN, fast
R-CNN, mask R-CNN, single-shot detector, and you only look once (YOLO), have been
proposed [34–38]. An algorithm can be evaluated from several perspectives, such as speed
of detection and accuracy of identification. Speed is particularly important because targets
may constantly change, so target detection should be performed in real time, allowing
new paths to be computed. In [39], the accuracy and speed of various object detection
algorithms were compared. The results revealed that the YOLO algorithm is accurate and
operates at a high speed. Therefore, the YOLO algorithm was chosen.

In YOLO, object detection is regarded as a regression problem involving spatially
separated bounding boxes and associated class probabilities. Full images are evaluated
once, and a single neural network predicts bounding boxes and class probabilities based
on those images alone. The use of a single network to monitor the detection process
allows the network to be tuned to obtain the best results. We mainly used one variant,
tiny-YOLOv4, and extracted the bounding boxes of a start, an obstacle, and the target to
find the approximate coordinates of the bounding boxes of all objects with perspective
correction (Figure 2). The cells within the bounding box of two perpendicular planes were
classified as objects; thus, the cells of objects in the 3D space were extracted.
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We used three objects to represent a start, an obstacle, and a target in this study. A
start, an obstacle, and a target object were represented by a sphere, a pyramid, and a cube,
respectively, as displayed in Figure 2. A dataset was created based on these three classes,
and photographs were labeled using the YOLO standard labeling method (where each
photograph is labeled with LabelImg, which is a free, open-source tool for graphically
labeling images). Table 1 presents the details of the dataset.

Table 1. Details of the dataset.

Shape Number of Data Class

Pyramid 200 0
Sphere 200 1
Cube 200 2

In this stage, the spatial coordinates of each detected object are determined. To this
end, we used a trained neural network to determine the X-, Y-, and Z-coordinates of these
three classes. The inputs of the neural network were the class of objects, the center, and the
sizes of the bounding boxes obtained by the YOLO algorithm.

A six-layer neural network topology with four hidden layers containing 16, 32, 64, and
16 neurons was used. The outputs were the spatial coordinates of the corresponding plates.
Figure 3 depicts the neural network architecture and the mean absolute error.
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It is worth mentioning that we cannot use a simple mathematical problem to transform
two 2D projected coordinates into a 3D coordinate. That is because many parameters
influence the final accuracy of coordinates in real-world applications. Some of these factors
are the focal length and distortion impact of the lens, camera sensor size, perspective effect,
and positioning items behind another. When the focal length effect is paired with the
perspective effect and the object is near the borders of an image, finding coordinates with
high precision is a difficult operation using traditional mathematical approaches. Rather
than a complex procedure, we proposed a combined YOLO-neural networks method to
identify the coordinates of objects in pixel-based space with two cameras (YOLO) and
convert the pixel-based space to 3D XYZ real-world coordinates (neural network). Using
this method, we were able to extract 3D coordinates with acceptable precision in various
positions of the objects. We could also reduce the detection time to roughly 0.04 s, allowing
us to employ this approach in real-time applications.

We transformed the dimensions of the 3D workspace from 50 × 50 × 50 cm to
8× 8× 8 discrete cells, as displayed in Figure 4. This conversion simplified and accelerated
the overall calculation process. According to the grid workspace and the bounding boxes
of the start, obstacle, and target, the corresponding start, obstacle, and target cells can be
identified. These labeled cells are used in the Q-learning algorithm, as explained in the
following section.
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3.2. Action Finding (Q-Learning)

An action-finding process provides immediate action and state in the Q-learning
technique of the cells after determining a start, an obstacle, and a target. In machine
learning, Q-learning is an off-policy technique that focuses on how intelligent agents
should function in a particular environment to optimize cumulative reward. An RL agent
engages with its environment in discrete time steps. At each point t, the agent receives
the current state s{t} and the reward r{t}. As soon as action a{t} has been selected, it is
conveyed to the environment. With each iteration, the environment changes to a new state
(s{t+1}), and the reward (r{t+1}) associated with the change is computed (for each iteration).
In RL, the projected total reward for the RL agent is maximized. This research utilized the
Q-learning technique to identify a straightforward sequence of forward, backward, up,
down, left, and right actions to maximize accumulated rewards. The method is inspired by
the “windy grid world” problem. We divided the 3D workspace into several cells based
on a designated resolution. As detailed in Sutton and Barto’s original “windy grid world”
problem [40], the main purpose was to travel from one cell to its adjacent cells until the
target cell was reached. The difference between this technique and the RL-based methods
mentioned in the background section is that in this method, a direct action is determined to
move from a cell (state) to its neighboring cells instead of finding a sequence of joint angles
for the same movement. This assumption simplifies and speeds up the action-finding
process. Using this approach, state space and action space can be expressed as follows:

S = {cell1, cell2, cell3, . . . , celln × m × l}. (1)

The overall width, length, and height are represented by n, m, and l, respectively.
The higher the required resolution is, the more cells will be needed. The total number of
members in the state space is n×m× l.

A = { Up, Down, Le f t, Right, Forward, Backward} (2)

In this study, the action space has six members, namely forward, backward, up, down,
left, and right, as shown by Equation (2). The state space and the action space are small,
and an algorithmic model can be easily developed for the interaction of a robot arm within
this reduced environment. This technique can drastically reduce the execution time of an
algorithm and simultaneously decrease its complexity.

Before commencing the Q-learning process to discover the optimum path, the locations
of the start, target, and obstacle were identified. These three positions were randomly
arranged in each test in the workspace. In this technique, the 3D workspace was a portion
of the total workspace available in front of the robot arm.
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We selected forward, backward, up, down, left, and right as the total action space.
Although the number of actions can be increased, the computing cost increases. Additional
improvements in terms of resolution, defined as the magnitude of the end-effector motion in
each step, may exponentially increase the search space, which increases the computational
burden. However, reducing the actions may lead to path discovery failure. Hence, there is
a trade-off between speed and efficiency on the one hand and the probability of success
on the other. The time required to run the Q-learning code is directly proportional to the
number of cells. Therefore, establishing an appropriate resolution and speed for a specific
application considering the dimensions of the robot arm and objects is critical. We used a
3D grid workspace of 8× 8× 8 cells (states) for this study, considering the sizes of the three
objects and the speed of path planning. Therefore, this design implied a total of 512 cells
(states) in which the end-effector could be placed. The start, target, and obstacle points were
located within these cells. The Q-learning method was then used to determine the optimum
actions from the start to the target cell under various reward and penalty scenarios.

Seijen revealed that in a “windy grid world” problem, Q-learning outperformed other
algorithms, such as SARSA, to obtain the highest accumulated reward [41]. Therefore,
we used Q-learning as the RL algorithm in the action-finding phase in this study. In this
algorithm, if the robot arm successfully reaches the target cell, it earns a reward of 50 points.
By contrast, if it reaches an obstacle cell, the agent receives a penalty of −100 points.
Subsequently, all further acts result in a penalty of −1 point. The goal of the agent is simply
to maximize its score. In the Q-learning algorithm, first, the best sequence of actions from
the start cell to the target cell with avoidance of the obstacle cell is performed. A 3D grid
workspace was set up as follows in this study:

• In an 8 × 8 × 8 3D grid workspace, six possible actions, namely forward, backward,
up, down, left, and right, were considered.

• An agent starts from a randomly located start state and receives a reward of 50 points
for reaching a randomly located target state.

• An agent receives a penalty of −100 points for reaching a randomly located obstacle cell.
• All other actions cause a penalty of −1 point.

This action-finding section created a 3D matrix of the robot arm’s most rewarding
actions in each cell. These best actions can be followed from a start cell to a target cell
to create the best actions or optimal path sequence. In the next section, we describe the
conversion of these actions to angles that rotate the joints of a robot arm.

3.3. 6-DOF Angle Finding (Neural Networks 2)

In the final stage, we need to transform the sequence of actions into a sequence of joint
angles. One way is the use of inverse kinematics (IK). The idea behind IK is to calculate the
joint angles of the robot arm for a given position of the end-effector. The joint configurations
needed for each intermediate time step along the trajectory are calculated. However, using
IK in each step makes the method extremely slow. Another way is the use of a trained
neural network. The neural network does not need to be trained every time; instead,
it is trained only one time, and this trained neural network is used every time during
path planning.

In this study, an angle-finding process is performed by using a trained neural network
to obtain the joint angles of each specified action in a particular cell. We trained a neural
network for angle finding using RoboDK software because RoboDK can provide a 3D model
of our robot arm. Because the joint angles required to move the end-effector of a robot
arm in each direction are dependent on the present state of the end-effector, the current
cell must be considered by the neural network at each stage of the process. Therefore, the
neural network must be fed with the indices of the row, column, and height of the cell
as well as the action that has been selected as inputs. The outputs of the neural network
should be the joint angles that supply the location of the next cell corresponding to the
action. Notably, because the input must be in numerical form, actions such as up, down,
left, right, forward, and backward are labeled numerically as 1, 2, 3, 4, 5, and 6, respectively.
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Furthermore, the number of outputs is proportional to the degrees of freedom (DOF) of the
robot arm. The number of outputs in the robot arm in this research, with six joints, was
therefore six.

We used a five-layer neural network topology with three hidden layers containing 4,
10, and 6 neurons. The number of hidden layers and neurons was determined empirically
through trial and error during the training processes. Four inputs, namely the row, column,
and height indices of a current cell, as well as an action to be performed, were considered.
The robot arm used in this study, a model IRB 1600 with a 1.45 m arm length, had six DOF.
The rectified linear unit (ReLU) is the activation function for input and output neurons
because it is the most often implemented function and is not complex.

σReLU(x) = max{0, x} (3)

First, we collected datasets to train a neural network according to the designed struc-
ture by collecting precise data with an end-effector placed in various grid cells. We con-
sidered six neighboring cells of the central cell, where the end-effector was located, to be
six data points. These six cells were those orthogonal to the central cell, and reachable
by moving up, down, left, right, backward, or forward. We collected 3072 data points for
neural network training. Of these data points, 90% were used in the learning process, and
the rest were used in the testing and validation process. These data points were sufficient
to train a neural network properly with an 8 × 8 × 8 grid workspace. Because the research
used 512 cells (8× 8× 8 grid), 3072 moves were possible, and each operation in a cell could
be performed in six directions. Thus, we used the entire set of information. Because the
dataset was sufficiently large to include all cell movements, the dataset was considered
adequate. Six possible outcomes were possible when the robot was in cells on the edge of
the workspace. The robot ignored actions to move outside the workspace.

Initially, we trained a neural network with weights with random values. The output
value was then calculated for each training sample. The weights were then updated using a
backpropagation method and a gradient descent process. This procedure was repeated until
the weights reached their optimal levels and the error ranges were within the permitted
limits. Figure 5 depicts the neural network architecture and the mean absolute error.
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A multilayer perceptron with a ReLU activation function first proposed by Paul
Werbos [42] was used in this study. In this approach, a neural network is trained only once
and then used for determining angles. A lengthy training period is thus reduced to a single
step before path planning. The trained neural network required only a few seconds for use
and could be used repeatedly.

The proposed computer vision-based path planning method can be summarized as follows:

1. Capturing a snapshot of the 3D workspace with the two cameras;
2. Detecting a start, target, and obstacle cell using the YOLO object-detection algorithm
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3. Obtaining the spatial coordinates of three objects using the first neural networks;
4. Using the Q-learning method to determine an optimal route from a starting point to a

target point while avoiding obstacle collision.
5. Finding the joint angles of the discovered actions using the trained neural network;
6. Implementation in the actual or simulated world of the acquired joint angle sequence

on the robot arm.

As displayed in Figure 6, we used a simple and fast technique in each phase of our
process to provide an efficient path planning process. The use of low-quality images for
the first stage could considerably speed up the picture analysis process because a start, an
obstacle, and a target object shape could be identified from low-resolution photographs
by using the algorithm. First, an object-detection method was used for object localization
because it is one of the most accurate and rapid algorithms. Next, a trained neural network
was used to obtain the spatial coordinates of these objects. We used the Q-learning algo-
rithm to determine basic actions and determine the route with the highest reward. Next,
the rapid conversion action of an experienced neural network was used for determining
joint angles. In the next section, we discuss our testing of the effectiveness of the proposed
method through simulation.
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3.4. Simulation

To ensure that any proposed method is safe and provides desired results, simulation
is essential before experimental implementation. First, we developed a 3D workspace by
randomly locating a sphere, pyramid, and cube as a start, obstacle, and target object by
using VPython, a library that allows users to create objects, such as spheres, cones, and
other forms in 3D space. Two pictures displaying two views, namely the top and side views,
were obtained. These two pictures are the inputs of the object-detection module. This
module was configured to detect three classes of objects, namely a sphere, a pyramid, and
a cube, in addition to finding the center of the bounding boxes as well as their dimensions.

For the next step, note that the outputs of the object detection (YOLO) algorithm were
the inputs of the first neural network. Therefore, it has five inputs, namely (1) the class
of an object, (2) the X- and (3) the Y- (or the Y- and the Z)-coordinates of the center of the
bounding box, (4) the width, and (5) the length of the bounding box. It has two outputs,
the X- and the Y- (or the Y and the Z) coordinates of an object in a spatial coordinate system.
The coordinates of the center of the bounding box differ from the coordinates of the object
in a spatial coordinate system because of the use of perspective pictures.

These spatial coordinates are then converted to a start, obstacle, and target cell. These
cells are the inputs of the Q-learning algorithm, which finds the optimal path from the
start cell to the target cell. In this simulation, we placed an obstacle object between the
start and target objects to evaluate the performance of the Q-learning algorithm in terms of
obstacle avoidance.

Next, the outputs of the Q-learning algorithm, including a list of actions and cell
indexes, were used as inputs for the second neural network. Thus, four inputs, including
the X-, Y-, Z-coordinates of the current cell and its corresponding actions, existed in this
neural network. The outputs were six joint angles that indicated the next cell of the optimal
path. Next, the end-effector of a robot arm in a RoboDK simulator started moving from a
start cell and followed the generated optimal path according to the obtained sequence of
joint angles. Figure 7 displays the results of the simulation.
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4. Experiment Results

We tested the proposed method in a physical environment and verified its validity.
The experimental setup (Figure 8) included a 6-DOF robot arm, two cameras, a computer, a
3D workspace, and three objects that represent a start, obstacle, and target point.
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Figure 8. Experimental setup: cameras, robot arm, workspace, sphere (start), pyramid (obstacle),
cube (target).

The test setup was similar to the simulated environment. The similarity was to enable
comparison between the test results and simulation results. We installed two cameras
and a robot arm, as was done in the simulation. Furthermore, a sphere (a start object), a
pyramid (an obstacle object), and a cube (a target object) were placed in locations identical
to those in the simulation. To ensure the physical test conditions were identical to those of
the simulation, the specifications of the lens used in our cameras were identical to those of
the virtual lens used in the simulation. Because of this similarity, the method presented in
this article could be validated if physical robot test results were identical to the simulation
result from the RoboDK software.

We placed a sphere (a start object) at the low-left corner, a pyramid (an obstacle object)
in the middle, and a cube (a target object) at the upper-right corner of the 3D workspace.
As displayed in Figure 9, the end-effector of the robot arm precisely followed the generated
path, which was consistent with the results of the simulation test. Thus, the results of this
physical test revealed that the proposed method exhibited satisfactory performance.

The results show that the robot follows the path well. This path was actually the best
actions (optimal polices) of each cell (state) obtained by the Q-learning algorithm. When
the Q-learning is running, it tries to find the best action that the agent can do in each state
through interaction with the environment. Therefore, in each state, there is an action that is
considered optimal action. In other words, the optimal policy is a 3D matrix (8 × 8 × 8)
whose elements are a letter such as “U”, “D”, “L”, “R”, “B”, “F” that represent Up, Down,
Left, Right, Backward, Forward respectively. Figure 10, displays the optimal policy of our
test. The letter “G” and “O” (is not found in the Figure 10) represent Goal (or Target) and
Obstacle cell.
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What is very important is that the same optimal policy matrix can be used for each
start point if the location of the target and obstacle remains fixed. The extracted path from
the Q-learning results for our test is {F,F,F,F,R,F,F,F,D,R,R,D,D,D,D,D,D,R,R,R,R,G}. This
sequence of optimal actions begins from the start cell in which the sphere is placed. If we
change the location of the sphere, we do not require to run Q-learning again; we can use
the same optimal policy matrix to find a new sequence of actions from the new start cell.
This make the path generation more straightforward and fast.

Another important point is that in the Q-learning algorithm, there is an optimal
episode limit. When the episode limit is too high, it takes a long time for an agent to become
an experienced one. However, reducing the episode limit may lead to gaining not enough
experience by the agent, which means it cannot find the best actions for states. Hence, there
is a trade-off between speed on the one hand and gaining enough experience on the other.
In this test, the optimal episode limit is equal to 2000, which guarantees speed and enough
experience. This number was achieved through trial and error. In the next section, we
discuss our method in general and give some suggestions for its improvement.
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5. Discussion

In this section, we discuss the proposed method’s strengths and weaknesses. To this
end, first, we compare our method with other methods in terms of speed which is a crucial
feature in real-time path planning. To compare this method with other path planning
methods, we refer to our previous study [9]. In that paper, we compared the speed of
running time in our hybrid path planning method and other conventional path planning
methods such as RL-based, APF, PRM, and RRT. In order to compare them, we ran a simple
code of each method on the same computer to compute its running time. As we reported,
our hybrid method required less running time to do the path planning process under the
same conditions, which means it is faster than traditional methods due to using separate
active and passive approaches. This comparison is discussed in detail in the previous work
and can be referred to for more information.

In addition to strengths, this study has some limitations that should be taken into account
in future studies. These limitations and our suggestions are presented in the following.

1. Although we tested the method using a physical robot arm, the physical setup was
not exactly identical to the simulation because levitating multiple objects in the air and
the middle of the workspace is difficult due to the use of fixtures and wood structures.
Certain parts of a robot arm, such as the end-effector, may collide with fixtures.
Therefore, in the future, the feasibility of using augmented reality (AR) for virtual
test setup in physical robot tests should be considered. Furthermore, the efficacy
of using a virtual sphere, pyramid, and cube instead of using physical objects that
require fixtures should be evaluated. Such augmented tests can considerably reduce
expenses and facilitate the rapid implementation of complex settings. Moreover, a
more comprehensive analysis is possible than in an experimental test.

2. In future studies, trained deep Q-learning can also be incorporated into the proposed
method to learn additional possible pathfinding to increase the speed of the action
finding section. To use a deep Q-learning technique, a large dataset is required, which
is currently not possible. This approach can drastically reduce the inference time, but
concerns regarding high computing costs remain.

3. We used two cameras in two views which made our method less practical, especially
for those applications that need a portable robot arm. One suggestion is that we use a
single perspective picture taken by deep cameras then generate a path.

4. Our invention just takes shots at the beginning and a robot moves following a gen-
erated path. In order to be a realistic application, it should take many pictures
(one per sec) and re-generate a path. Therefore, the system could be an intelligent
real-time system.

5. We used a combined object detection-neural network method to calculate its spatial co-
ordinates. It is suggested using 3D reconstruction methods to calculate objects’ position.

6. To make the method more practical, further study may use actual objects such as a
cup, pen, monitor, book, etc.

In the end, in order to make the proposed method more useful and practical, a list of
useful applications is mentioned.

• It could be used for a harvesting robot to collect fruits from trees avoid obstacles.
• It could be used for a recycling robot to pick up bottles, cans, batteries, or other

particular objects in a recycling factory in real-time.
• It could be used for warehouse robots to pick selected items from shelves or totes and

place them into shipping containers to fulfill orders.
• It could be used for assembly line robots to pick components and place them at an

appropriate location.

6. Conclusions

A novel computer vision approach was proposed for effective path planning by
combining Q-learning and neural networks for robot arms. In the proposed approach,
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computer vision and neural networks were combined to obtain accurate spatial locations of
a start, an obstacle, and a target object in real time. In the 3D workspace, a sphere, a pyramid,
and a cube were used to represent the start, obstacle, and target points, respectively.
Two images from two views were inputted into a trained YOLO algorithm to detect
the aforementioned items and find bounding boxes for each detected object. A trained
neural network converted the bounding boxes into spatial coordinates. Next, a Q-learning
algorithm determined the optimal sequence of actions in a 3D workspace from a start
cell to a target cell and simultaneously avoided obstacles. Next, a trained neural network
converted the identified actions to the corresponding joint angles. Because the neural
networks were trained before the path planning process, the method was fast. We tested
this computer vision-based path planning algorithm through simulation and experimental
methods. The results revealed that this research overcame the limitations of our previous
research [9].

Future research directions are suggested as follows. First, the feasibility of using
augmented reality (AR) for virtual test setup in physical robot tests could be considered.
Second, the use of a trained deep Q-learning can also be considered to increase the speed
of the action finding section. Third, the use of a single perspective picture taken by deep
cameras could be considered to avoid using two cameras. Forth, instead of using pictures
only one time, a live video can be used to make the method more real-time. Fifth, the use
of 3D reconstruction methods to calculate objects’ positions could be considered. Sixth, the
use of actual objects such as a cup, pen, monitor, book, etc. could be considered to make
the method more practical.
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