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Abstract

Common statistical modeling methods do not necessarily produce the most relevant or inter-

pretable effect estimates to communicate risk. Overreliance on the odds ratio and relative

effect measures limit the potential impact of epidemiologic and public health research. We

created a straightforward R package, called riskCommunicator, to facilitate the presentation

of a variety of effect measures, including risk differences and ratios, number needed to

treat, incidence rate differences and ratios, and mean differences. The riskCommunicator

package uses g-computation with parametric regression models and bootstrapping for con-

fidence intervals to estimate effect measures in time-fixed data. We demonstrate the utility

of the package using data from the Framingham Heart Study to estimate the effect of preva-

lent diabetes on the 24-year risk of cardiovascular disease or death. The package promotes

the communication of public-health relevant effects and is accessible to a broad range of

epidemiologists and health researchers with little to no expertise in causal inference meth-

ods or advanced coding.

Background

The communication of disease risk and the effects of exposures and interventions on that risk

are core components of public health research and practice. Unfortunately, reporting of results

from epidemiologic studies both in the published scientific literature and to the public is often

confused by imprecise language, jargon, and incomplete reporting [1, 2]. While it may be easy

to rely on the default output from standard functions in statistical programs, common statisti-

cal methods estimate parameters that are often not the most informative. Epidemiologists and

the larger community of public health practitioners could benefit from easy-to-use tools to

facilitate the presentation of relevant effects.

Overreliance on the odds ratio [3–6] and more broadly on relative effect measures [7, 8] are

two examples of opportunities to improve the reporting and interpretability of epidemiologic

results. Efforts to increase the reporting of difference effect measures and risk ratios over odds

ratios are not new, and several solutions have been previously proposed, including changing
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the distribution of the response variable in generalized linear models (log-binomial, log-linear,

and Poisson regression to approximate log-binomial regression when the latter does not con-

verge [9]), standardization-based approaches [10], linear-expit regression [11], and ordinary

least-squares regression with transformed variables [12]. However, these models are not as effi-

cient as logistic regression, can have convergence problems, and may require robust variance

estimators [9, 13].

Parametric g-computation is an attractive alternative because of the flexibility to estimate a

variety of effect measures while relying on the preferable statistical properties of logistic regres-

sion for the parametric modeling. G-computation is conceptually equivalent to standardiza-

tion, and the use of parametric models allows for highly-dimensional data and continuous

covariates. G-computation has been applied to estimate risk differences and risk ratios from

logistic regression models previously [14–16].

Despite the availability of g-computation-based methods, these methods are rarely used to

estimate risk differences and risk ratios in standard time-fixed study designs. Recent applica-

tions of these methods have focused on complicated study designs, such as with longitudinal

data with time-varying confounding affected by prior exposure [17]. In these applications, the

methods are complex and difficult to understand and/or implement for the average data ana-

lyst. Coding requirements and computational limitations may also dissuade users from

attempting these methods. Recently available R packages [18, 19] and Statistical Analysis Sys-

tem (SAS) macros [20] are geared towards estimating these more complicated effects and may

be overwhelming to new users.

We aimed to create a straightforward R package, called riskCommunicator, to facilitate the

presentation of a variety of effect measures, including risk differences and ratios, number

needed to treat, incidence rate differences and ratios, and mean differences, using g-computa-

tion. To make the package accessible to a broad range of health researchers, our goal was to

design functions that were as easy to use as the standard logistic regression functions in R (e.g.

glm) and that would require little to no expertise in causal inference methods or advanced

coding.

Implementation

The riskCommunicator package uses g-computation [16, 17, 21, 22] with standard parametric

regression models and bootstrapping for confidence intervals to estimate effect measures in

the context of time-fixed exposure and outcome data. Broadly, the effects estimated are average

treatment effects (ATEs), estimated for difference measures with a binary exposure variable as:

φATE ¼
X

w

½EðY A ¼ 1;W ¼ wÞ � EðY A ¼ 0;W ¼ wÞ� � PrðW ¼ wÞ;jj

where Y is the outcome of interest, A is the exposure of interest, and W are covariates. In this

way, the effects are standardized to the joint distribution of covariates in the total study popu-

lation. Generalized linear models are used to estimate the counterfactual outcomes in the for-

mula above, allowing for continuous covariates W.

The package contains two main functions available to end users: gComp (the primary func-

tion) and pointEstimate (used internally within the gComp function, but provided to users in

case of complex dependencies among observations, e.g. nested clusters-within-clusters, where

a single cluster-level bootstrap resampling might not be optimal). pointEstimate computes a

point estimate by executing three steps of g-computation. First, a regression of the outcome on

the exposure and relevant covariates is fit using the provided dataset with a generalized linear

model. The underlying model distribution is based on the outcome type supplied by the user
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(see outcome.type in Table 1 for details). Next, using the estimated parameters from the

model, counterfactual outcomes are predicted for each observation in the data set under each

level of the exposure. Finally, the mean predicted value for each exposure regime across all

observations is calculated and used to estimate marginal difference and ratio effects. The

gComp function first estimates effects in the original data (using the pointEstimate function).

Then, bootstrap resampling of the original dataset is conducted, and the pointEstimate func-

tion is called on each resample in order to estimate accurate standard errors and provide a

95% confidence interval (CI). Confidence intervals are based on the 2.5th and 97.5th percentiles

of the bootstrap resampling results [23].

Most users will only need to call the gComp function to estimate the effects of interest.

Arguments to be supplied are listed in Table 1 (and examples of how to call the function

are provided below in the Results section and S1 Appendix). Users can supply individual

variable names for the exposure, outcome, and covariates, or can provide a model formula.

The gComp function (and also pointEstimate) does not allow for interaction terms, how-

ever subgroup analysis is possible by specifying the variable name in the dataset corre-

sponding to the subgroup classification, which automatically adds an interaction term

between the subgroup variable and the exposure to the model formula. Both functions also

allow for the specification of a categorical (in addition to binary) exposure. In cases of sin-

gle-level clustered data, the gComp function can conduct bootstrap resampling at the clus-

ter, instead of individual sample, level by specifying the variable identifying the cluster in

the clusterID argument.

Output of the gComp function is a list with several pieces of data, including parameter esti-

mates and 95% confidence intervals for the effect measures (e.g. for a binary outcome, this

would include risk difference, risk ratio, odds ratio, and number needed to treat). Confidence

intervals are not reported for the number needed to treat since methods to calculate them are

not standardized and they are challenging to interpret when the confidence interval for the

risk difference crosses the null [24, 25]. The number needed to treat should be used primarily

for communication. Additional output includes marginal mean predicted outcomes for each

exposure level. Users can visualize the distribution of parameter estimates over all bootstrap

resamples of the data by plotting the resulting data with the base R plot() call to the output of

the gComp function, which provides a quantile-quantile plot [26] and histogram of all parame-

ter estimates (see S1 Appendix).

Bootstrap resampling is necessary to estimate accurate 95% confidence intervals for the

population-standardized marginal effects obtained with g-computation, since the standard

errors for the coefficients from the underlying parametric model (covariate-conditional

effects) do not correspond to the parameters of interest [16, 22]. We recommend setting

the number of bootstrap resamples (R) to 1000 for the final analysis. However, this can

result in potentially long runtimes, depending on the computing power of the user’s com-

puter (>30min). Thus, exploratory analyses can be conducted with a lower number of

bootstraps (default is R = 200, which should compute on datasets of 5000–10000 observa-

tions in <60s).

Package code was written in R version 4.1.2 [27], and the package was built in RStudio [28]

using devtools and roxygen2 to generate and populate the package documentation [29, 30].

riskCommunicator is open-source and freely available on GitHub (https://github.com/

jgrembi/riskCommunicator) and Comprehensive R Archive Network (https://CRAN.R-

project.org/package=riskCommunicator). Dependencies include the boot [31], dplyr [32],

ggplot2 [33], gridExtra [34], magritter [35], MASS [36], purr [37], rlang [38]r, stats [27], tidyr

[39], and tidyselect [40] R packages.
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Table 1. Arguments supplied to the gComp function in the riskCommunicator package.

Argument Description

data (Required) A data.frame or tibble containing variables for Y, X, and Z or with variables matching

the model variables specified in a user-supplied formula. Data set should also contain variables for

the optional subgroup and offset, if they are specified.

outcome.type (Required) Character argument to describe the outcome type. Acceptable responses, and the

corresponding error distribution and link function used in the glm, include:

binary

(Default) A binomial distribution with link = ‘logit’ is used. Function returns the risk

difference, risk ratio, odds ratio, and number needed to treat/harm.

count

A Poisson distribution with link = ‘log’ is used. Function returns the incidence rate difference

and incidence rate ratio.

count_nb

A negative binomial distribution with link = ‘log’ is used, where the theta parameter is

estimated internally; ideal for over-dispersed count data. Function returns the incidence rate

difference and incidence rate ratio.

rate

A Poisson distribution with link = ‘log’ is used; ideal for events/person-time outcomes.

Function returns the incidence rate difference and incidence rate ratio.

rate_nb

A negative binomial distribution with link = ‘log’ is used, where the theta parameter is

estimated internally; ideal for over-dispersed events/person-time outcomes. Function returns the

incidence rate difference and incidence rate ratio.

continuous

A gaussian distribution with link = ‘identity’ is used. Function returns the mean difference.

formula (Optional) Default NULL (i.e. argument is optional). An object of class “formula” (or one that can

be coerced to that class) which provides the complete model formula, similar to the formula for the

glm function in R (e.g. ‘Y ~ X + Z1 + Z2 + Z3’). Can be supplied as a character or formula object. If

no formula is provided, Y and X must be provided.

Y (Optional) Default NULL (i.e. argument is optional). Character argument which specifies the

outcome variable. Can optionally provide a formula instead of Y and X variables.

X (Optional) Default NULL (i.e. argument is optional). Character argument which specifies the

exposure variable (or treatment group assignment), which can be binary, categorical, or

continuous. This variable can be supplied as a factor variable (for binary or categorical exposures)

or a continuous variable. For binary/categorical exposures, X should be supplied as a factor with

the lowest level set to the desired referent. Numeric variables are accepted, but will be centered.

Character variables are not accepted and will throw an error. Can optionally provide a formula

instead of Y and X variables.

Z (Optional) Default NULL (i.e. argument is optional). List or single character vector which specifies

the names of covariates or other variables to adjust for in the glm function. All variables should

either be factors, continuous, or coded 0/1 (i.e. not character variables). Does not allow interaction

terms.

subgroup (Optional) Default NULL (i.e. argument is optional). Character argument that indicates subgroups

for stratified analysis. Effects will be reported for each category of the subgroup variable. Variable

will be automatically converted to a factor if not already.

offset (Optional, only applicable for rate/count outcomes) Default NULL (i.e. argument is optional).

Character argument which specifies the person-time denominator for rate outcomes to be included

as an offset in the Poisson regression model. Numeric variable should be on the linear scale;

function will take natural log before including in the model.

rate.multiplier (Optional, only applicable for rate/count outcomes) Default 1. Numeric variable signifying the

person-time value to use in predictions; the offset variable will be set to this when predicting under

the counterfactual conditions. This value should be set to the person-time denominator desired for

the rate difference measure and must be inputted in the units of the original offset variable (e.g. if

the offset variable is in days and the desired rate difference is the rate per 100 person-years, rate.

multiplier should be inputted as 365.25�100).

(Continued)
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Results

We demonstrate the utility of riskCommunicator using the teaching data set from the Fra-

mingham Heart Study [41], a prospective cohort study of cardiovascular disease conducted in

Framingham, Massachusetts. The use of these data for the purposes of this package were

approved on 11 March 2019 (request #7161) by National Institutes of Health/National Heart,

Lung, and Blood Institute. These data were altered prior to receipt by the authors to ensure an

anonymous dataset that protects patient confidentiality. This project was deemed by the Insti-

tutional Review Board at Emory University to not be research with human subjects and there-

fore did not require IRB review or consent from participants. The following analysis was

conducted among 4,240 participants who conducted a baseline exam and were free of preva-

lent coronary heart disease when they entered the study in 1956. Participants were followed

for 24 years for the combined outcome of cardiovascular disease or death due to any cause. A

reproducible workflow of the analyses presented below is included as Supporting Information

(S1 Appendix) and is additionally available as one of the two vignettes highlighting the full

range of analyses that are available with riskCommunicator on Comprehensive R Archive Net-

work (CRAN) and GitHub (https://github.com/jgrembi/riskCommunicator).

A relatively straightforward research aim for these data would be to estimate the effect of

having prevalent diabetes at the beginning of the study on the 24-year risk of cardiovascular

disease or death, adjusting for the potential confounders, including patient’s age, sex, body

mass index, smoking status (current smoker or not), and prevalence of hypertension. For a

binary outcome, riskCommunicator estimates the risk difference, risk ratio, odds ratio, and

number needed to treat. The output of the gComp function for this analysis as follows reports

the strong effect of diabetes on cardiovascular disease and mortality (Table 2):

library(riskCommunicator)

library(tidyverse)

Table 1. (Continued)

Argument Description

exposure.

scalar

(Optional, only applicable for continuous exposure) Default 1. Numeric value to scale effects with a

continuous exposure. This option facilitates reporting effects for an interpretable contrast (i.e.

magnitude of difference) within the continuous exposure. For example, if the continuous exposure

is age in years, a multiplier of 10 would result in estimates per 10-year increase in age rather than

per a 1-year increase in age.

exposure.

center

(Optional, only applicable for continuous exposure) Default TRUE. Logical or numeric value to

center a continuous exposure. This option facilitates reporting effects at the mean value of the

exposure variable, and allows for a mean value to be provided directly to the function in cases

where bootstrap resampling is being conducted and a standardized centering value should be used

across all bootstraps. See note below on continuous exposure variables for additional details.

R (Optional) Default 200. The number of data resamples to be conducted to produce the bootstrap

confidence interval of the estimate.

clusterID (Optional) Default NULL (i.e. argument is optional). Character argument which specifies the

variable name for the unique identifier for clusters. This option specifies that clustering should be

accounted for in the calculation of confidence intervals. The clusterID will be used as the level for

resampling in the bootstrap procedure.

parallel (Optional) Default “no.” The type of parallel operation to be used. Available options (besides the

default of no parallel processing) include “multicore” (not available for Windows) or “snow.” This

argument is passed directly to boot. See note about setting seeds and parallel computing.

ncpus (Optional, only used if parallel is set to “multicore” or “snow”) Default 1. Integer argument for the

number of CPUs available for parallel processing/ number of parallel operations to be used. This

argument is passed directly to boot.

https://doi.org/10.1371/journal.pone.0265368.t001
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data(cvdd)

set.seed(1298)

binary.res <- gComp(data = cvdd, Y = "cvd_dth", X = "DIABETES",
Z = c("AGE", "SEX", "BMI", "CURSMOKE", "PREVHYP"), outcome.type
= "binary", R = 1000)

The absolute 24-year risk of cardiovascular disease or death due to any cause was 29% (95%

CI: 20, 40) higher among subjects with diabetes at baseline compared to subjects without dia-

betes at baseline. The relative 24-year risk was 70% (95% CI: 48, 97) higher. Because the inci-

dence of the outcome was high (41.8% experiencing cardiovascular disease or death due to any

cause over 24 years), the odds ratio (4.55) does not approximate the risk ratio and rather is

highly inflated compared to the risk ratio (1.70). This is a clear example where the odds ratio

may be misleading since the odds ratio is commonly misinterpreted as a risk ratio. Further-

more, the relative effect may be interpreted as much larger than the absolute effect, even

though the absolute risk difference more closely corresponds to the expected additional num-

ber of cases due to diabetes. For public health communication, the number needed to treat

derived from the risk difference (1/risk difference) provides an easily interpreted estimate of

the magnitude of effect. We would expect that only 4 additional persons would need to have

diabetes at baseline to observe an increase in the number of cases of cardiovascular disease or

death by 1 over 24 years of follow-up.

The 95% CIs obtained from the riskCommunicator package represent population-stan-

dardized marginal effects obtained with g-computation. We can check that the bootstrap

results are normally distributed by plotting the output of the gComp function with the follow-

ing command, which results in Fig 1:

plot(binary.res)

The histograms show the different effect estimates obtained by each bootstrap resampling of

the data and should be normally distributed if the model is correctly specified. Q-Q plots help

to verify that the bootstrap values are normally distributed by comparing the actual distribu-

tion of bootstrap values against a theoretical normal distribution of values centered at

mean = 0. If the estimates are normally distributed, the plotted estimates (black circles) should

overlay the diagonal red dashed line.

We may also be interested in the effect of diabetes on the rate of cardiovascular disease or

death, incorporating person-time at risk. If the Framingham Heart Study were an open cohort

Table 2. Effect of prevalent diabetes at the beginning of the study on the 24-year risk of cardiovascular disease or death among 4,240 participants in the Framing-

ham Heart Study.

riskCommunicator Standard regression models�

Effect measure Marginal effect estimate† (95% CI) Covariate-conditional effect estimate† (95% CI)

Risk difference 0.29 (0.20, 0.39) N/A‡

Risk ratio 1.70 (1.48, 1.97) 1.49 (1.33, 1.66)

Odds ratio 4.55 (2.77, 9.09) 4.55 (2.66, 7.78)

Number needed to treat 3.48 N/A‡

�Log-linear regression for the risk difference, Poisson approximation of log-binomial regression with robust variance for the risk ratio, logistic regression for the odds

ratio with Wald-based confidence intervals.

†Adjusted for patient’s age, sex, body mass index (BMI), smoking status (current smoker or not), and prevalence of hypertension.

‡Log-linear model did not converge.

https://doi.org/10.1371/journal.pone.0265368.t002
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with variable follow-up time, rate-based effects would be more appropriate than risk-based

measures, which assume a constant follow-up period. In addition, we may be interested in

effects stratified by a potential effect measure modifier, such as participant sex. riskCommuni-

cator can estimate the incidence rate difference and incidence rate ratio by sex for this analysis

(Fig 2). As the person-time variable has units of days, rates are reported per 100 person-years

by using the rate.multiplier option.

cvdd.t <- cvdd %>%

dplyr::mutate(cvd_dth = as.numeric(as.character(cvd_dth)),

timeout = as.numeric(timeout))

set.seed(6534)

rate.res <- gComp(data = cvdd.t,

Y = "cvd_dth",

X = "DIABETES",

Z = c("AGE", "SEX", "BMI", "CURSMOKE", "PREVHYP"),

outcome.type = "rate",

rate.multiplier = 365.25�100,

offset = "timeout",

R = 1000)

rate.res.subgroup <- gComp(data = cvdd.t, Y = "cvd_dth", X =
"DIABETES", Z = c("AGE", "SEX", "BMI", "CURSMOKE", "PREVHYP"),

Fig 1. Histograms and quantile-quantile (Q-Q) plots of bootstrap iterations (R = 1000) obtained from the binary.

res output for each effect measure. NOTE: All ratio values are plotted as natural log of the actual estimate.

https://doi.org/10.1371/journal.pone.0265368.g001
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subgroup = "SEX", outcome.type = "rate", rate.multiplier =
365.25�100, offset = "timeout", R = 1000)

There is evidence for effect modification on the additive scale. The absolute rate of cardio-

vascular disease or death due to any cause is 2.49 cases/100 person-years (95% CI: 1.34, 4.06)

higher among males with diabetes compared to males without diabetes. In contrast, the effect

among women is smaller: the absolute rate of cardiovascular disease or death is 1.92 cases/100

person-years (95% CI: 1.00, 3.32) higher among females with diabetes compared to females

without diabetes. The relative effects suggest effect modification in the opposite direction on

the multiplicative scale, such that the effect of diabetes is stronger among females compared to

males. This difference is observed because the baseline rate of cardiovascular disease and death

without diabetes is higher among males (2.77 cases/100 person-years) than females (1.64

cases/100 person-years), such that with the relative effect, the greater absolute effect among

males is diluted by their higher baseline risk.

The overall incidence rate ratio in the total study population (1.91, 95% CI: 1.60, 2.29)

can be estimated using the same code as above without the subgroup option. As expected,

the incidence rate ratio is further from the null than the risk ratio, but closer to the null than

the odds ratio (Table 1). This relationship among the magnitudes of these effect measures is

expected due to their mathematical properties, and specifically the differences in the

Fig 2. Effect of having prevalent diabetes at the beginning of the study on the 24-year risk of cardiovascular disease or death overall and stratified by sex among

4,240 participants in the Framingham Heart Study. A) Incidence rate ratio. B) Incidence rate difference. riskCommunicator was used to obtain marginal effect

estimates (purple) and Poisson regression was used to obtain covariate-conditional estimates (green; not available for incidence rate difference). All models were

adjusted for patient’s age, sex, body mass index, smoking status (current smoker or not), and prevalence of hypertension. Each point represents the point estimate and

error bars show the 95% CI.

https://doi.org/10.1371/journal.pone.0265368.g002
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denominators of risk (total population), rates (person-time at risk), and odds (non-cases at

the end of follow-up).

The estimation of these effects with standard regression models is not trivial. To estimate

the risk difference and risk ratio, we used log-binomial and log-linear regression, respectively.

However, in these data, both models fail to converge, and the Poisson approximation with

robust variance was necessary to estimate the risk ratio. The risk ratio estimate from g-compu-

tation (confidence limit ratio: 1.33) had slightly lower precision compared to the estimate from

Poisson regression with robust variance (confidence limit ratio: 1.25). Minor differences in the

magnitude of the estimates can be attributed to the difference between the covariate-condi-

tional effects (as estimated by Poisson regression) and the marginal effects (as estimated by

riskCommunicator; Table 2). Poisson regression could also be used to estimate the incidence

rate ratios, resulting in equivalent magnitudes of estimates as those from riskCommunicator,

but slightly less precision. Adjusted incidence rate differences are not easy to estimate using

standard regression models, but are readily available from riskCommunicator.

Finally, an additional useful output of the package is the estimation of marginal mean pre-

dicted outcomes for each exposure level. These predicted means are standardized over the

observed values of covariates included in the model, and therefore are not specific to set values

of the covariates. This difference is a major advantage over the usual predict function in R, and

similar functions in other statistical programs such as the lsmeans statement in Statistical

Analysis System (SAS), which can only predict outcomes at specific values of the other

covariates.

Conclusions

riskCommunicator facilitates the presentation of a wide range of effect measures with a simple

user experience, similar to running a linear regression model in R. For binary outcomes, effects

are modeled using logistic regression, which preserves the preferable statistical qualities usually

associated with odds ratios and applies them to the estimation of risk ratios and risk differ-

ences. The package also facilitates the presentation of incidence rate differences, which are dif-

ficult to obtain with standard generalized linear models. Finally, the package supports

assessment of additive effect measure modification by reporting difference effects, which is

important since contradictory evidence for effect modification between the additive and multi-

plicative scales is common. While effect modification on the additive scale can be more rele-

vant to public health [42, 43], it is often harder to estimate with standard regression models

[44, 45].

It is important to highlight that the g-computation approach produces marginal rather than

covariate-conditional effect estimates. In a multivariable model, the effect estimates derived

directly from the covariate coefficients are covariate-conditional, interpreted as the associa-

tions given constant values of the other variables (or informally, “holding all other variables

constant”) [42]. Covariate-conditional effects are difficult to interpret for non-collapsible effect

measures like the odds ratio [46]. Therefore, the reporting of marginal effects, in which the

effect is standardized over the covariate distribution of the total study population, may be pref-

erable in many cases. The marginal effect is interpreted as the average treatment effect in the

total population and is the primary effect of interest in randomized trials and in many observa-

tional settings where causal inference is the goal [47].

One potential limitation to the g-computation approach is the use of bootstrap for the con-

fidence intervals. Bootstrapping is conservative compared to closed form solutions for the vari-

ance (e.g. those used to estimate Wald confidence intervals), such that the confidence intervals

from bootstrapping can be slightly wider than alternatives. However, in the examples above,
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precision improved for the rate ratios. In addition, the precision loss is often not extreme

when it occurs, and bootstrapped confidence intervals are more appropriate when the distribu-

tional assumptions or approximations of the parameter, such as the normal approximation to

the binomial distribution employed with Wald-based confidence intervals, may not be valid

[42]. By using percentiles of the simulated distribution of estimates from the bootstrap, one

can avoid the need to calculate the standard deviation of estimates under the normal distribu-

tion assumption [48]. The use of bootstrap allows for flexibility to estimate many effects with

the same framework, including allowing for clustering with bootstrap at the cluster level.

The g-computation approach can also be limited in settings with a continuous exposure

variable. For example, for a binary outcome, because the underlying parametric model is logis-

tic regression, the risks will be estimated to be linear on the log-odds (logit) scale, such that the

odds ratio for any one unit increase in the continuous variable is constant. However, the risks

will not be linear on the linear (risk difference) or log (risk ratio) scales, such that these param-

eters will not be constant across the range of the continuous exposure. The g-computation

approach requires setting one specific exposure contrast within the range of the continuous

exposure. Therefore, users should be aware that the risk difference, risk ratio, number needed

to treat (for a binary outcome) and the incidence rate difference (for a rate/count outcome)

reported do not necessarily apply across the entire range of the continuous exposure. We miti-

gate this issue by reporting the estimates for a relevant contrast within the exposure variable by

first centering the variable at the mean and allowing users to specify a scaling factor for the

contrast.

While other software packages are available to conduct more complex analyses with the g-

computation approach, riskCommunicator has been designed to be more accessible to the

average data analyst. For example, the GFORMULA macro for SAS [20] and the gfoRmula

package in R [18] are targeted to longitudinal data with time-varying covariates. The qgcomp

package combines g-computation with weighted quantile sum regression to estimate the

effects of mixtures [49]. The tmle3 package in R includes g-computation but is designed to

enable a more comprehensive set of analyses to estimate Targeted Minimum Loss-Based Esti-

mation (TMLE) parameters [19], which requires advanced training even for doctoral-level epi-

demiologists. The focus of riskCommunicator alternatively is on facilitating the presentation

of relevant and interpretable effect measures in relatively simple time-fixed settings. The appli-

cation of g-computation in these more traditional settings can help overcome the gap for less

experienced users between traditional regression modeling-based methods and the g-methods,

which are at the vanguard of epidemiologic methods development [50]. More importantly,

riskCommunicator can facilitate the communication of effects of exposures and interventions

and ultimately further the public health impact of epidemiologic and statistical research.
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