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ABSTRACT

Our knowledge of lncRNA is very limited and discovering novel disease-related 
long non-coding RNA (lncRNA) has been a major research challenge in cancer studies. 
In this work, we developed an LncRNA Network-based Prioritization approach, named 
“LncNetP” based on the competing endogenous RNA (ceRNA) and disease phenotype 
association assumptions. Through application to 11 cancer types with 3089 common 
lncRNA and miRNA samples from the Cancer Genome Atlas (TCGA), our approach 
yielded an average area under the ROC curve (AUC) of 83.87%, with the highest AUC 
(95.22%) for renal cell carcinoma, by the leave-one-out cross validation strategy. 
Moreover, we demonstrated the excellent performance of our approach by evaluating 
the influencing factors including disease phenotype associations, known disease 
lncRNAs and the numbers of cancer types. Comparisons with previous methods 
further suggested the integrative importance of our approach. Taking hepatocellular 
carcinoma (LIHC) as a case study, we predicted four candidate lncRNA genes, RHPN1-
AS1, AC007389.1, LINC01116 and BMS1P20 that may serve as novel disease risk 
factors for disease diagnosis and prognosis. In summary, our lncRNA prioritization 
strategy can efficiently identify disease-related lncRNAs and help researchers better 
understand the important roles of lncRNAs in human cancers.
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INTRODUCTION

At least 90 % of the human genome is actively 
transcribed, while protein-coding gene only accounts for 
~2% of the genome sequences. The rest of transcripts are 
non-coding RNAs including microRNAs (miRNAs) and 
long non-coding RNAs (lncRNAs) [1–4]. Within them, 
miRNAs have been identified to play important roles 
in cancer initiation, progression and metastasis, some 
of which may serve as potential biomarkers for cancer 
diagnosis and prognosis [4]. Compared to miRNAs, 
lncRNAs, a class of non-protein coding transcripts that 
are longer than 200 nucleotides without protein-coding 
capacity, have been also identified to regulate key cellular 
processes in carcinogenesis [1–3]. Currently, more than 

12000 lncRNAs encoded in the human genome have 
been identified. Systematical studies revealed some 
“oncogenes” and “tumor suppressors” lncRNAs in cancer 
[5]. Despite much progress made by high-throughput 
biological techniques, the identification of cancer-related 
lncRNAs has remained a great challenge for researchers.

Towards this, several computational approaches 
have been developed to prioritize candidate disease 
lncRNAs and aim to improve the prediction performance 
in lncRNA prioritization [6–18]. For example, Yang et al. 
presented a propagation algorithm to uncover lncRNAs 
and disease associations through construction of a coding-
non-coding gene disease bipartite network. They applied 
the lncRNA prioritization approach to 103 diseases and 
achieved an Area under ROC curve (AUC) of 0.7881 by 
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leave-one-out cross validation [6]. In another study, Chen 
et al. presented a computational model, named LncRNA-
Disease Association inference (HGLDA), to predict 
lncRNA-disease associations by integrating miRNA-
disease associations and lncRNA-miRNA interactions and 
this approach obtained an AUC of 0.7621 in the leave-one-
out cross validation [7]. Considering the important roles of 
lncRNAs in complex diseases, prioritization of candidate 
disease lncRNAs could not only benefit the understanding 
the underlying disease mechanism at the lncRNA level, 
but also facilitate the identification of disease biomarkers 
for disease diagnosis, treatment and prognosis. Moreover, 
several studies have demonstrated that lncRNA-related 
competing endogenous RNA (ceRNA) patterns have 
been widely found in human diseases, especially in 
cancers [7, 8]. Based on biological experiments or RNA 
sequencing techniques, some studies have been proposed 
to identify potential lncRNA-related ceRNA interactions 
and further investigate their functions. Li and colleagues 
developed starBase v2.0 (http://starbase.sysu.edu.cn/) to 
systematically identify the ceRNA interaction networks 
from 108 CLIP-Seq (PAR-CLIP, HITS-CLIP, iCLIP, 
CLASH) data sets generated by 37 independent studies 
[19]. In another lncRNA-related ceRNA database, NPInter 
v3.0, interactions pertaining to ncRNAs were not only 
manually curated from scientific literature but also curated 
from high-throughput technologies. Additionally, lncRNA-
miRNA interactions from in silico predictions supported 
by AGO CLIP-seq data were also collected to estimate 
their potential ceRNA relationship [20]. Such ceRNA 
hypothesis-based studies provided valuable resources 
of relationships between lncRNAs with protein-coding 
genes, which can help infer lncRNA-disease associations 
in diverse human diseases by means of known disease 
knowledge. 

Moreover, disease phenotype associations (namely 
disease phenotype similarities) enable improving the 
limitation that lacks sufficient disease knowledge, 
which have been successfully applied in prioritization of 
candidate disease miRNAs or genes [21, 22]. Recently, 
disease phenotype association-based computational 
approaches for prioritizing disease-specific non-coding 
RNAs have also emerged [9–13, 21, 23]. Such studies 
suggested that diseases with phenotypic similarity tend 
to show more close relations and their relevant RNA 
molecules often interact with each other in the interaction 
networks or form the similar physical or functional 
modules. Therefore, combination of knowledge from 
multiple diseases can provide additional clues for a 
specific disease. Even for those diseases without any 
known disease information, other associated diseases can 
be used to capture their potential disease molecules. 

Therefore, we combined the ceRNA theory and the 
disease phenotype association assumption to propose a 
systematical lncRNA prioritization approach “LncNetP”. 

Through interrogation of RNA-seq datasets from TCGA 
(https://cancergenome.nih.gov/), we constructed lncRNA 
interaction networks for 11 cancer types. Utilizing known 
disease lncRNAs as seeds, we used random walk with 
restart (RWR) approach to prioritize candidate disease 
lncRNAs for each cancer type and integration of all 
prioritization results by the disease phenotype associations 
(Figure 1). The average AUC score of prioritization 
results across 11 cancer types is 83.87%, with the highest 
AUC being 95.22% for renal cell carcinoma. Our results 
show that through the integration of disease phenotype 
associations, the lncRNA prioritization performance can 
be improved, especially for some diseases with few or 
without known disease lncRNAs.

RESULTS

Systematic identification of lncRNA associations 
using the ceRNA assumption

For 11 cancer types, we obtained matched 
miRNA and lncRNA sequencing data that detected 
by IlluminaHiSeq miRNASeq and IlluminaHiSeq 
RNASeqV2 platforms, respectively, from TCGA database, 
including Bladder urothelial carcinoma (BLCA), Breast 
invasive carcinoma (BRCA), Cervical squamous cell 
carcinoma and endocervical adenocarcinoma (CESC), 
Kidney renal clear cell carcinoma (KIRC), Brain lower 
grade glioma (LGG), Liver hepatocellular carcinoma 
(LIHC), Lung adenocarcinoma (LUAD), Prostate 
adenocarcinoma (PRAD), Stomach adenocarcinoma 
(STAD), Thyroid carcinoma (THCA) and Uterine corpus 
endometrioid carcinoma (UCEC). A total of 3089 disease 
samples were contained (Supplementary Table 1). 

Through mapping miRNAs and lncRNAs to 
GENCODE [2] and miRBase [24] databases, 1034 
mature miRNAs and 12727 lncRNAs were obtained. 
Subsequently, we calculated miRNA-lncRNA co-
expression relations by Pearson correlation coefficient 
(PCC) and retained the significant miRNA-lncRNA 
relationships with false discovery rate (FDR) less than 0.05 
(Benjamini and Hochberg correction). To further increase 
the credibility between lncRNAs and miRNAs, we 
combined lncRNA and miRNA interaction pairs derived 
from starBaseV2.0 [19] and NPInter [20] databases, 
which involved 10169 lncRNA-miRNA interactions. 
To further check the ratios of lncRNA-miRNA pairs 
having the same biological functions, we carried out the 
enrichment analysis between GO gene sets from MSigDB 
(http://software.broadinstitute.org/gsea/msigdb/) and 
lncRNAs’ co-expressed genes and miRNA target genes 
from miRTarBase (http://mirtarbase.mbc.nctu.edu.tw/php/
index.php) by a hypergeometric test. Then, miRNA and 
lncRNA pairs with significant relationships (Benjamini-
Hochberg correction, p ≤ 0.05) for each GO term were 
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recorded as pairs with the same biological functions. For 
the top 10% of lncRNAs in the candidate lncRNA lists of 
hepatocellular carcinoma (LIHC), breast cancer (BRCA) 
and prostate cancer (PRAD), we found 39.11% (24371 
out of 62319), 41.76% (26368 out of 63118) and 45.37% 
(28656 out of 63167) miRNA-lncRNA pairs with the same 
biological functions, respectively (Benjamini-Hochberg 
correction, p ≤ 0.05, Supplementary Table 2). The results 
further supported the fundamental assumption of our 
proposed method.

Finally, a hypergeometric test was performed to 
excavate significant lncRNA-lncRNA competing pairs 
based on the hypothesis that lncRNA pairs share the same 
miRNA response elements (MREs), which would have the 
same or similar biological functions.

Prioritization of candidate disease lncRNAs 
through combining disease-specific lncRNA 
networks and disease phenotype associations

Based on the ‘guilt-by-association’ hypothesis that 
disease-related lncRNAs with similar expression have the 
same or similar functions, we systematically prioritized 

candidate disease lncRNAs based on the disease-
specific lncRNA networks. Hence, a disease-specific 
lncRNA network for a given cancer type was constructed 
according to the lncRNA-lncRNA relations. Each edge 
in the lncRNA network was weighted by the function of  
–log10 

P-value, in which P-value represents the significance of 
functional similarity between two lncRNAs in the specific 
cancer type. Subsequently, eleven lncRNA networks were 
constructed and relevant network topology characteristics 
were summarized in Supplementary Table 3.

The random walk with restart (RWR) approach 
was then used to prioritize candidate disease lncRNAs 
by the known disease lncRNAs from the Lnc2Cancer 
[25] database (http://www.bio-bigdata.net/lnc2cancer/) 
in each cancer type (see Methods). As a result, eleven 
candidate lncRNA lists representing the prioritization 
results of eleven cancer types were obtained. Based on 
the assumption that diverse diseases with phenotype 
associations show similar molecular mechanisms, we 
integrated all disease lncRNA prioritization lists by using 
the disease phenotype associations to quantify the links 
between candidate disease lncRNAs and cancers. We 
obtained all disease phenotype similarity scores from 

Figure 1: The workflow of LncNetP. (A) Identification of significant lncRNA-lncRNA interactions according to miRNAs with 
ceRNA relations. (B) Construction of cancer-specific lncRNA networks associated with different disease phenotypes. (C) Candidate 
disease lncRNA prioritization by integration of disease phenotype associations.
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the ‘HPOSim’ package and extracted the phenotype 
association scores for the 11 cancer types. Finally, all 
candidate disease lncRNAs were ranked across their 
corresponding integrated prediction scores (For details, 
please see Figure 1).

Evaluation of the performance by the leave-one-
out-cross validation

Furthermore, the leave-one-out cross-validation 
(LOOCV) strategy was then carried out to test the 
performance of our lncRNA prioritization approach based 
on experimentally verified disease-lncRNA associations 
from the Lnc2Cancer database. The average score of the 
area under the receiver operating characteristic (ROC) 
curve (AUC) yielded by our lncRNA prioritization 
approach was 83.87% (Figure 2A and 2B), strongly 
supporting that our approach has good prioritization 
performance in prioritization of candidate disease 
lncRNAs. Notably, 75 known disease lncRNAs in eleven 
cancer types were ranked in the top 30% in all candidate 
disease lncRNA lists. In particular, known disease 
lncRNAs, MEG3 and MALAT1, frequently occurred in 
9 and 10 cancer types in the top 10% of candidate disease 
lncRNA lists, respectively.

Evaluation of the robustness of lncRNA 
prioritization approach

We suspected that some factors, including disease 
phenotype associations, known disease lncRNAs and the 

number of disease studies, could influence the performance 
of our lncRNA prioritization approach. Therefore, it was 
necessary and important to evaluate their contributions to 
the performance in our lncRNA prioritization approach.

Disease phenotype associations

Eleven disease phenotype associations were used to 
characterize relationships between diseases and provide 
the promise to elucidate the pathogenesis mechanisms 
of diseases in the crosstalk pattern. For evaluation 
of the importance of disease phenotype associations, 
we prioritized candidate disease lncRNAs in diverse 
cancer types without utilizing any disease phenotype 
associations. The average AUC based on known disease 
lncRNAs from Lnc2Cancer was 61.93%, lower than 
the AUC score (83.87%) with the inclusion of disease 
phenotype associations (Figure 3A). Notably, the AUC 
score for KIRC dropped from 95.2% to 64.4%, which 
suggested that the disease phenotype association enables 
to greatly complement the incomplete information of 
some diseases. In addition, we evaluated the efficiency 
of disease phenotype associations by random selections 
of disease phenotype associations with 1000 repetitions 
and we found the average AUC score (69.22%) of 1000 
prioritization results was lower than the primary result of 
83.87% (Figure 3A). 

To further assess the prediction power of our 
approach, we performed the prioritization of candidate 
disease lncRNAs for each cancer type only dependent 
on disease lncRNAs of other cancers. Surprisingly, the 

Figure 2: Evaluation of the performance of LncNetP. (A) The ROC curves of lncRNA prioritization results. (B) Top 10% ranks 
of known disease lncRNAs after prioritization.
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yielded average AUC was 82.61%, supporting that our 
lncRNA prioritization approach has superior performance 
in predicting of potential risk lncRNAs (Supplementary 
Figure 1A), even for some diseases with little or without 
known disease information.

The number of cancer types

Disease phenotype associations characterize the 
similarity of diseases in a cross-talk pattern and can 
efficiently assists to improve the performance of our 
lncRNA prioritization approach, especially for disease 
with few or without known disease lncRNAs. Hence, we 
sought to assess whether integration of more caner types 
can improve the performance of our lncRNA prioritization 
approach. Towards this, we randomly selected 3, 5, 7 and 
9 cancer types from the original eleven cancer types and 
re-computed prioritization scores for candidate disease 
lncRNAs. We found that upon increasing the number 
of cancer types for analysis, the average AUC scores 
were increased from 69.45% to 81.64% (Supplementary 
Figure 1B). Together, utilization of more diseases with 
their phenotype associations can facilitate to improve the 
performance of lncRNA prioritization.

The number of known disease lncRNAs

Intuitively, our lncRNA prioritization approach 
may rely upon the number of known disease lncRNAs. 
Thus, it is necessary to evaluate the influence of known 
disease lncRNAs to our approach. Through random 
selections of the same number of non-disease associated 
lncRNAs as causal lncRNAs for each cancer type, new 
predication scores for all candidate disease lncRNAs of 
eleven cancer types were re-calculated and evaluated by 
LOOCV as described above. Owing to the lack of the non-
disease lncRNA set, we generated a non-disease lncRNA 

set containing 12196 lncRNAs based on known disease 
lncRNAs from the Lnc2Cancer database. Equal numbers 
of non-disease lncRNAs for each cancer type were 
randomly selected 1000 times and used for prioritization. 
We obtained an average AUC score of 50.11% that was 
significantly lower than the primary prioritization results 
based on known disease lncRNAs (Figure 3A).

Comparison with other lncRNA approaches

In addition, we compared our approach LncNetP 
with other lncRNA prioritization methods, which utilized 
the assumption that disease-related lncRNAs tend to show 
high functional associations. For example, the expression 
similarity (ExpSim) algorithm is based on a computational 
framework to accomplish lncRNA prioritization by 
combining human lncRNA expression profiles, gene 
expression profiles, and human disease-associated gene 
data [13]. In another study, the hypergeometric test 
(HyperTest) algorithm was proposed to infer disease 
lncRNA and disease-miRNA associations by evaluating 
the significance of common targets [7, 10]. Furthermore, 
the model of LncRNA Functional Similarity Calculation 
based on the information of MiRNA (LFSCM) was 
developed to calculate lncRNA functional similarity by 
combining disease semantic similarity, miRNA-disease 
associations and lncRNA-miRNA interactions [7]. We 
compared our lncRNA prioritization approach with these 
lncRNA prioritization approaches including HyperTest, 
LFSCM, ExpSim and improved ExpSim (named 
ExpSimDPA, which additionally integrated disease 
phenotype associations). The LOOCV analysis was then 
performed and AUC values generated by the above four 
lncRNA prioritization approaches were 61.93%, 73.7%, 
58.59% and 80.2%, respectively. As a comparison, 
LncNetP has the highest AUC value (83.87%) in the 

Figure 3: Evaluation of the robustness of LncNetP. (A) Evaluation by randomly selecting disease phenotype associations with 
1000 repetitions, excluding disease phenotype associations, and randomly selecting known disease lncRNAs with 1000 times. (B) The 
comparison results of LncNetP with HyperTest, LFSCM, Expsim and ExpsimDPA.
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LOOCV analysis (Figure 3B). The analysis results showed 
the outstanding performance of LncNetP. 

Case studies

Liver hepatocellular carcinoma (LIHC) is a highly 
aggressive cancer, with the third leading cause of cancer 
mortality worldwide [26]. Taking LIHC as a case study, we 
used our lncRNA prioritization approach to identify and 
prioritize disease-related lncRNAs. Through evaluation by 
LOOCV, we found 6 out of 7 known disease lncRNAs, 
including ENSG00000130600 (H19), ENSG00000251562 
(MALAT1), ENSG00000228630 (HOTAIR), ENS 
G00000251164 (HULC), ENSG00000099869 (IGF2-AS) 
and ENSG00000176840 (MIR7-3HG) ranked in the top 10 
of the candidate list. To further validate the LIHC-related 
lncRNAs identified by our approach were high-confidence, 
we also chose the top 10% lncRNAs and investigated their 
potentially biological functions by function enrichment 
analysis of their associated genes as described in Method 
using the DAVID (https://david.ncifcrf.gov/, Benjamini 
test, p = 0.05) (Figure 4A). We found that these lncRNA-
related genes were significantly enriched in LIHC-related 
GO terms and KEGG pathways. The GO terms include 
“G1/S transition of mitotic cell cycle”, “cellular response 
to amino acid stimulus”, “collagen catabolic process”, 
“cell division” and “negative regulation of translation”. 
while the KEGG enrichment analysis results contain 
“Chronic myeloid leukemia”, “Bladder cancer”, “PI3K−

Akt signaling pathway”, “Pathways in cancer”, “MAPK 
signaling pathway”, “Proteoglycans in cancer”, “Cell 
cycle”, “p53 signaling pathway”.

In addition, we also predicted some candidate 
lncRNAs within them that have the most probability to 
be independent prognostic factors for LIHC survival. 
A univariate Cox proportional hazards regression 
analysis was performed to test whether the expression 
level of lncRNAs in the top 10% was significantly 
associated with survival of LIHC patients. Consequently, 
four survival-related lncRNAs including ENSG00 
000254389 (RHPN1-AS1), ENSG00000204929 (AC0743 
91.1), ENSG00000163364 (LINC01116) and ENSG000 
00236850 (BMS1P20) were found and some of them 
were significantly correlated with the pathogenesis, 
development and metastasis of cancers (Figure 4B). 
RHPN1 antisense RNA 1 (RHPN1-AS1) knockdown 
significantly inhibited uveal melanoma (UM) cell 
proliferation and migration in vitro and in vivo. Liu et al. 
suggested that RHPN1-AS1 may serve as a candidate 
prognostic biomarker and target for new therapies in 
malignant UM [27]. LINC01116 was overexpressed in 
several cancers, and was transcriptionally repressed after 
Sulforaphane (SFN) treatment. The results from Beaver 
et al. supported an oncogenic function for LINC01116 in 
PC-3 cells when it was disrupted through the CRISPR/
CAS9 method and confirmed knockdown of LINC01116 
with siRNA decreased proliferation of prostate cancer cells 
[28]. In addition, Chung et al. found the overexpressed 

Figure 4: The prioritization results in the case study of LIHC. (A) The GO and KEGG enrichment analysis results for top 10% 
lncRNAs of LIHC. (B) Survival analysis results of four candidate lncRNAs.
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BMS1P20 may play potential functions in anaplastic 
large-cell lymphoma (ALCL) progression. They measured 
the expression levels of BMS1P20 in three cell lines by 
qRT-PCR and analyzed differences using a Kruskal-Wallis 
test (P < 0.05).

Besides of LIHC, additional two case studies, 
prostate cancer (PRAD) and breast cancer (BRCA), were 
also used to predict and identify disease-related lncRNAs. 
Twelve and six known disease related lncRNAs, such as 
ENSG00000251562 (MALAT1), ENSG00000130600 
(H19), ENSG00000245532 (NEAT1), ENSG00000214548 
(MEG3) and ENSG00000225937 (PCA3), were identified 
within the top 10% of the candidate disease lncRNA 
lists in PRAD and BRCA, respectively. Functional 
enrichment analysis showed that the top 10% of candidate 
lncRNAs for these two cancers were significantly 
enriched in many BRCA-related and PRAD-related GO 
functions and KEGG pathways (Supplementary Figures 
2 and 3). Meanwhile, five survival-related lncRNAs in 
BRCA including ENSG00000238197 (PAXBP1-AS1), 
ENSG00000264515 (CTC-525D6.1), ENSG00000228327 
(RP11-206L10.2), ENSG00000239407 (LL0XNC01-
237H1.2) and ENSG00000238009 (RP11-34P13.7), 
and two survival-related lncRNAs in PRAD including  
ENSG00000272849 (RP11-347I19.8) and ENSG000 
00238045 (AC009133.12), were found, with strong 
correlations with the metastasis of BRCA and PRAD 
(Supplementary Figures 2 and 3). Our findings 
suggested that these potential lncRNAs may promote 
the development of cancers and could serve as novel 
prognostic markers.

DISCUSSION

Integration of different biological datasets for 
the accurate prediction of disease-related lncRNAs has 
become a critical challenge for understanding disease 
mechanisms. Fortunately, disease phenotype associations 
provide potential opportunities to supplement the 
incomplete information of known disease lncRNAs 
in a cross manner. The ceRNA relationships enable to 
create links of lncRNAs with a large number of protein-
coding genes. Based on disease phenotype associations 
and ceRNA relationships, we therefore developed a 
computational pipeline through integration of large-scale 
RNA-seq datasets to systematically identify and prioritize 
candidate disease lncRNAs in the pan-cancer data set. 
And we found the combined application can indeed jointly 
improve the prediction power for prioritization.

According to the ceRNA hypothesis, high 
confidential lncRNA-miRNA relationships were obtained 
through the integration of co-expression relations from 
RNA-seq data from a specific cancer type and experientially 
verified relations from starBaseV2.0 and NPInter. Through 
the hypergeometric test, significant associations in each 
lncRNA pair according to their associated miRNA sets were 

generated, which ensures the rational construction of the 
disease-specific lncRNA network. Furthermore, a prediction 
score for each node in the lncRNA network assigned by 
the RWR approach based on known disease lncRNAs also 
efficiently guarantees the accuracy of identification of the 
associations between candidate lncRNAs and diseases. 
On the other hand, since the incomplete information of 
known disease lncRNAs exists in cancers, the assumption 
of disease phenotype associations therefore plays the 
crucial roles in integrating different disease phenotype so 
as to benefit the systematic identification of disease-related 
lncRNAs and facilitate in-depth understanding of their 
pathogenesis in human cancers. We manually checked 
the predicted lncRNA lists and found that several novel 
candidate disease lncRNAs in the top rank were newly 
verified by relevant databases or in recent experimental 
studies, which showed that they have high probabilities of 
being bona fide disease-related lncRNAs.

There are several limitations in our lncRNA 
prioritization approach. Firstly, relatively strict thresholds 
were set for the satisfaction of identifying high confidential 
lncRNA pairs with ceRNA relations. Some cancer types 
without matched lncRNA and miRNA expression data 
are not suitable for our lncRNA prioritization approach. 
Secondly, our lncRNA prioritization approach was restricted 
to disease phenotypes provided by‘HPOSim’ package. 
The disease phenotype similarity only characterizes the 
disease phenotype associations for human diseases without 
considering their corresponding subtypes. Finally, because 
of the limitation in evaluation of approach by LOOCV, 
some cancer types with only one to two known disease 
lncRNAs were not suitable for the lncRNA prioritization 
by our approach despite of the good prediction performance 
generated by our lncRNA prioritization.

In summary, we presented an integrated lncRNA 
prioritization approach for systematically prioritizing 
candidate disease lncRNAs associated with human disease. 
This approach can be used to facilitate the identification of 
disease-related lncRNAs and to increase the understanding 
of lncRNA-mediated pathogenesis. Using our approach, 
we performed overall prioritization of the candidate 
disease lncRNAs for eleven cancer types, which provided 
testable hypotheses to guide further experiments.

MATERIALS AND METHODS

LncRNA and miRNA sequencing data

All available cancer-related lncRNA and miRNA 
sequencing data, detected by miRNA-Seq (IlluminaHiSeq 
miRNASeq) and RNA-seq (IlluminaHiSeq RNASeqV2) 
sequencing platforms, were obtained from TANRIC (http://
ibl.mdanderson.org/tanric/_design/basic/index.html) and 
FIREHOSE (http://gdac.broadinstitute.org/) (Supplementary 
Table 1). To comprehensively annotate human lncRNA 
and miRNA for further analysis, we collected 12727 
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lncRNAs and their corresponding annotation information 
from GENCODE, which combines the HAVANA manual 
annotation and Ensembl automatic annotation pipelines. 
Mature miRNA information was obtained from miRBase 
(release 21) that consists of 1034 mature miRNAs. All known 
disease lncRNAs were collected from Lnc2Cancer (http://
www.bio-bigdata.net/lnc2cancer/).

Identification of potential ceRNA interactions

To obtain the high confidential ceRNA relationships 
between lncRNAs and miRNAs, we extracted experimentally 
verified lncRNA-miRNA pairs from starBaseV2.0 and 
NPInter (http://www.bioinfo.org/NPInter/) [V3.0]. Totally, 
10169 miRNA-lncRNA pairs containing 1663 lncRNAs and 
246 miRNAs were obtained. To further identify lncRNA-
miRNA pairs occurred in a specific cancer type, miRNA-
lncRNA pairs with significant co-expression relationships 
(Pearson correlation coefficient analysis, FDR ≤ 0.05) were 
selected and used to the following analysis. For efficient 
identification of the significant interactions between lncRNAa 
and lncRNAb, a hypergeometric test was carried out for each 
lncRNA interaction pair by: 

0
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K N K
t M t
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N
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=

−  
  −  = −

 
 
 

∑

N represents the total number of lncRNAs in the 
human genome. K and M represent the numbers of miRNAs 
respectively associated with lncRNAa and lncRNAb .And 
x represents the common number of miRNAs shared the 
common MREs with the lncRNAa and lncRNAb. A multiple 
test correction using the Benjamini–Hochberg procedure 
was then performed and used to confirm the potential 
lncRNA-lncRNA interaction relations. 

Construction of disease-specific lncRNA 
networks

After acquisition of disease-specific lncRNA-lncRNA 
relations in a specific cancer type, the corresponding 
lncRNA network was constructed. In the lncRNA network, 
nodes denoted lncRNAs and edges were weighted by 

-
10log P value−  to characterize relationships between two 

lncRNAs. Subsequently, cancer-specific lncRNA networks 
of eleven cancer types were generated and used to prioritize 
candidate disease lncRNAs (Figure 1).

Prioritization of candidate disease lncRNAs 
through integration of disease phenotype 
associations

For each cancer type, we prioritized candidate 
disease lncRNAs s based on the corresponding cancer-

specific lncRNA network and applied RWR propagation 
approach to calculate prediction scores for candidate 
disease lncRNAs.

Given a query cancer type i (Figure 1), taking 
the known disease lncRNAs of this cancer type as seed 
nodes, we utilized RWR approach to compute prediction 
scores for each node in the lncRNA network. Based on 
the assumption that diverse diseases with phenotype 
associations show similar molecular mechanisms, we 
further combined disease phenotype similarity scores 
with the prediction scores of lncRNAs into a unique 
prioritization score Sij  by:

1
P *

N

ik ij jk
j

S s
=

=∑
Where Pij represents the disease phenotype similarity 

score between cancer type i and j, and Sjk represents the 
corresponding prediction score for candidate lncRNA K  
in cancer type j (Figure 1). Disease phenotype similarity 
scores were derived from the “HPOSim” package. After 
prioritization, candidate disease lncRNAs were ranked by 
the prediction scores.

Evaluation of the robustness and the integration 
importance of our prioritization approach

We evaluated the performance of our prioritization 
approach by known disease lncRNAs using ROC curve 
analysis, and the leave-one-out cross-validation (LOOCV) 
was carried out to assess the prioritization performance. 
Known causal lncRNAs were extracted from the Lnc2Cancer 
database, which contains 1057 manually curated associations 
between 531 lncRNAs and 86 human cancers.

To evaluate the robustness and the integration 
importance of our lncRNA prioritization approach, 
we accepted the evaluation strategies by leaving out or 
permuting relevant influence factors, included disease 
phenotype associations, the number of cancer types and 
known disease lncRNAs, and interrogated the changes 
in the prioritization results. Finally, we assessed the 
prediction performance of our prioritization approach in 
identifying disease-related lncRNAs for each cancer type 
by only using other disease information.

LncRNA functional enrichment analysis

Functional enrichment analysis for the associated 
genes of the top 10% of lncRNAs in three case studies 
was performed by using the DAVID (https://david.ncifcrf.
gov/). We obtained the experimentally verified miRNA-
lncRNA relationships from starBase and NPInter, and 
lncRNA-gene co-expression relationships (PCC ≥ 0.4) 
generated by TCGA data. To obtain more credible 
lncRNA-gene relationships, we integrated miRNA and 
gene regulations from the RegNetwork database [29] 
and retrieved lncRNA and gene pairs that were regulated 
by the same miRNA and had the co-expressed relations. 
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These lncRNA-gene pairs were used for the lncRNA 
functional enrichment analysis.

The above processing was implemented using the 
R software.
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