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Abstract: Shape-Memory Polymers (SMPs) can be stretched to large deformations and recover
induced strains when exposed to an appropriate stimulus, such as heat. This emerging class of
functional polymers has attracted much interest and found applications in medicine and engineering.
Nevertheless, prior to any application, their physical and mechanical properties must be thoroughly
studied and understood in order to make predictions or to design structures thereof. In this con-
tribution, the viscoelastic behavior of a polyether-based polyurethane (Estane) and its rate- and
temperature-dependent behavior have been studied experimentally and by the mean of simulations.
The model-inherent material parameters are identified with the assumption of the thermo-rheological
complexity. Here, the numerical results of uni-axial stress relaxations were compared with the associ-
ated experiments in conjucation with the Levenberg-Marquard optimization method to determine
the parameters of the Prony equation. The ability of the model to simulate the thermo-mechanical
properties of Estane was evaluated by data-rich experimental observations on tension and torsion in
various temperature ranges. Heterogeneous tests are included into the experimental program to
cover a broader spectrum of loading scenarios.

Keywords: finite viscoelasticity; parameter identification; modeling; functional materials; shape
memory effect; shape memory polymer; physical aging; swelling

1. Introduction

Understanding the thermochemical and thermomechanical coupling states in materi-
als is very important and necessary from various points of view, especially for designing
smart materials and estimating the durability of various industrial products. This research
area investigates the interaction of mechanical and chemical forces in metals and polymers,
as well as temperature dependent effects.

Among the various industrial materials, polymers are more sensitive to such mechani-
cal and chemical forces. This is due to their chemical structure and also their morphology.
Amorphous and semi-crystalline polymers can be easily filled with low molecular weight
compounds, such as water and other chemical solvents, when they come into contact with
them. This would lead to morphology changes and structural defects, as the polymer
chains would then be pulled apart by small molecules diffused into them. As a result, their
characteristic temperatures, such as the glass transition temperature (θg) or crystallization
temperature (θc), will change and their effective functional temperature range varies clearly.

One of the most sensitive materials to even small thermochemical and thermomechan-
ical coupling states are Shape-Memory-Polymers (SMPs). Shape-Memory Effect (SME)
is an ability of a SMP to be deformed and manipulated to a fixed temporary shape until
an appropriate trigger is utilized for transformation of temporary shape to a memorized
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original shape [1–3]. There are a variety of shape storage and triggering mechanisms for dif-
ferent polymer systems [4,5]. However, polymers with appropriate chemical structure and
morphology should be programmed and processed prior to triggering with, e.g., extrusion,
electro-spinning, or 3-D printing, in order to achieve the Shape-Memory (SM) capability [6].
The SME appears normally due to heating and deforming of the system above its transfor-
mation temperature (θsw), which could be glass transition (θg) or meting temperature (θm)
and subsequent cooling while the deformation is kept constant for solidification of chain
segments and shape-fixation. Next, this deformed SMP can be exposed to a temperature
above its θsw to transform its temporary shape to permanent shape. This cycle is called
Shape-Memory Creation Cycle (SMC) and could be repeated several times [7,8]. It should
be noted that any diffusion of low molecular weight compounds into the polymer matrix
would upset the thermochemical and thermomechanical coupling states in the materials
and lead to SMC failure.

Thermoplastic phase-segregated multi-block copolymers, like our investigated
polyether urethane Estane (Lubrizol, Ovele Westerlo, Belgium), are very interesting mate-
rials because of their mechanical stability and the capability of showing SME. Moreover,
their permanent shape can be easily achieved through common processing approaches.
However, computational modeling studies and predictive models are needed to design
and optimize their SM-properties prior to any technical application. In this content, con-
stitutive relations between the field variables, e.g., stress (σ), strain or stretch (ε or λ), and
temperature (θ), are of interest.

Elastic and hyperelastic behavior of SMPs can be studied by simple (static) tensile
testing, whereby their viscoelastic properties should be studied, e.g., by relaxation- or creep
experiments. Both of these properties can also be described by mathematical models. As
an example, the hyperelastic behavior of polymeric samples can be explained by strain-
invariant-based models, like the one of Mooney-Rivlin [9] or Yeoh [10], or by principle-
stretched-based models, like that of Ogden [11]. Marckmann et al. [12] proposed a thorough
comparison of twenty hyperelastic models for rubberlike materials and analyzed their
abilities to reproduce different types of loading conditions.

As a matter of course, choosing a correct mathematical model and precise determi-
nation of material parameters is very crucial as it has a significant impact on the accuracy
and reliability of the results. The usual way to find the parameters of a model is as fol-
lows: a series of proper and relevant experiments is performed and then by mathematical
describing the physical behavior in the test, the results of the experiments are fitted to
the mathematical model. Here, normally, simple methods, like stochastic techniques and
evolution strategies, optimization procedures for inherent parameter identification based
on the Nedler-Mead simplex algorithms, and other procedures, are employed [13–15].
Although no gradient information is needed in all these methods their performance is
poor. Therefore, sometimes multi-axial tests are performed employing complex sample
geometries and resulting inhomogeneities, which also have their own disadvantages since
the inverse calculations are computationally demanding [16–18].

Twizell et al. [19] used the optimization algorithm method of Levenberg-Marquardt
and determined the material constants of the Ogden model. Saleeb et al. [20] introduced
an issue of developing effective and robust schemes to implement a class of the Ogden
type hyperelastic constitutive models, for large strain analysis of rubber-like materials.

Constitutive relations for viscoelastic materials can be obtained from elastic and vis-
cous elements. In order to elucidate the viscoelastic and viscoplastic responses of polymers,
two hypotheses have been used: (I) the split of the free energy of the viscoelastic solid
into an equilibrium and non-equilibrium part and (II) the multiplicative decomposition
of the deformation gradient into an elastic and viscous part [21]. In this framework,
Huber et al. [22], proposed a rheological three-parameter model to describe the mechan-
ical behavior of materials in a limited range of small deformations and extended it to
large strains.
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Park and Schapery [23] used the Prony series to describe the relaxation and creep
behavior of a viscoelastic material. Diebels et al. [24] identified the elastic and viscoelastic
material parameters from constitutive equations by means of a Tikhonov regularization and
inspired an extra penalty term from the stress-strain relationships to expect better results.
Haupt et al. [25] used a relatively simple identification method based on the concept of
fractional calculus and obtain the model-inherent material parameters. Yoshida et al. [26]
suggested a constitutive model comprised of two elastoplastic and hyperelastic parts. The
elastoplastic part includes a strain-dependent isotropic hardening law and the hyperelastic
part incorporates the damage model. Amin et al. [27] introduced a hyperviscoelastic model
to explain the mechanical behavior of rubbers. Their model consists of a nonlinear viscous
coefficient to represent the rate dependent behavior and is validated through relevant tests
for compression and shear regimes.

The second method for determination of material constants involves the use of Finite
Element Methods (FEM). Some researchers simulated the experimental investigations with
Finite Element Analysis and so identified the material parameters. This method has the
advantage that (I) the complexitiy of heterogeneous problems are more in consideration
than in homogeneous analytic investigations, and (II) the obtained parameters are often
more accurate. As an example, Petera et al. used Finite Element Analysis for improvement
of viscometry results obtained by a cone-plate rheometer [28]. Ghoreishy [29] has also
benefited from Finite Element Method and determined the parameters of the Prony series
in a hyperviscoelastic material model.

Aside from the above mentioned methods, Huang et al. [30] used nanoindenta-
tion tests to measure the complex moduli of linearly viscoelastic materials through an
indentation process with a spherical indenter. Beake [31] has also utilized this novel test-
ing technique to investigate the creep behavior of thin semi-crystalline and amorphous
polymers. Experimental data were adapted to a logarithmic equation relating the frac-
tional increase in penetration depth during creep and predicted the extension and creep
ratio for different maximum loads. The influence of temperature on viscoelastic behav-
ior of SMPs is especially important. A polymer system is said to be thermo-rheological
simple if all relaxation times are affected by temperature in the same way. Thus, by
application of the Time-Temperature Superposition Principle (TTSP) and the Williams-
Landel-Ferry (WLF) equations, it is possible to emerge mastercurves using a reduced time
variables or shift factors to obtain a broader time (frequency) domain for the data of the
system [32]. In previous contributions, we have performed frequency sweep tests under
torsion and determined storage and loss shear moduli mastercurves and computed the
Prony constants for the tested material as solutions of a minimization problem for Tikhonov
functionals [33,34]. Pacheco et al. [35] proposed a methodology for characterization of ma-
terial parameters of thermo-rheologically and piezorheologically simple systems and deter-
mined the Prony series based on a mixed optimization technique of Genetic Algorithms and
Nonlinear Programming.

Nevertheless, based on our comprehensive experimental investigations [34], it is now
clear that considering Estane as a thermo-rheological simple material is a bad assumption.
We have shown that this presupposition leads to inadequate results. Therefore, a new
approach should be established to represent the temperature dependence of the viscoelastic
properties [36]. In the following contribution, we show that based on the presumption of
thermo-rheological complexity and finding the right material parameters through uni-axial
relaxation tests for finite strains, the functional properties can be very well simulated. Here,
the experimentally observed effects are exhibited by a finite viscoelastic and incompressible
material model and enhanced by new approach of temperature-dependency. The material
parameters are strategically identified by Levenberg-Marquardt algorithm, and results are
validated through stress relaxation experiments under torsion.
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2. Materials and Methods

In the following essay, a polyether-based thermoplastic polyurethane, commercially
available under the name of Estane (Lubrizol, Ovele Westerlo, Belgium), is used without
further purification. Estane is a block-copolymer, synthesized from Methylendiphenyliso-
cyanate (MDI) and 1,4- Butanediol with a polyether. The chemical structure of each reacting
components is depicted in Figure 1. For Estane, a number average molecular weight of
about 132 kg mol−1 was reported using gel permeation chromatography (GPC) [8].
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Figure 1. The chemical structure of Shape-Memory polyetherurethane Estane.

For sample preparation, Estane granules are processed using an injection molding
machine (Arburg Allrounder 270M 500–210, Lossburg, Germany) with an injection tem-
perature of about 204 ◦C and the outer temperature of the injection barrel of about 30 ◦C.
Furthermore, the samples are molded with an injection rate of 26 mm−1, an injection pres-
sure of 60 MPa and a holding pressure of 55 MPa for 15 s. After processing, the plates were
kept in a vacuum desiccator to keep them dry. At the end, prior to quasi-static experiments
and Dynamic Mechanical Thermal Analysis (DMTA), the samples are punched either to
rectangular samples or dumbbell-shaped specimens, using a manual knuckle joint press.

2.1. Dynamic Mechanical Thermal Analysis

Using rectangular samples with dimensions of W × H × L: 2 mm × 10 mm × 50 mm
(Figure 2), DMTA experiments were accomplished in torsion mode with a torque-controlled
rheometer and integrated Peltier-based temperature chamber (Anton Paar Physica MCR
702 Twin Drive plus CTD 180, Graz, Austria). A small uni-axial tensile force of around
0.5 N is applied to maintain the specimen under net tension. Thereupon, with a constant
heating rate of 0.25 ◦C min−1, temperature sweep tests with prescribed amplitude (0.01%)
and different constant frequencies ranging from 0.5 to 16 Hz were performed. Here,
the temperatures in the range of −20 to 120 ◦C could be adjusted and kept constant
with a precision of ±1◦C. Such experiments provide important insights into the effective
viscoelastic properties of the investigated material. For frequency sweep tests, samples have
been tensioned as before under isothermal conditions in a frequency range of [0.1–100] Hz.
Figure 2 demonstrates schematically the investigated rectangular sample under torsional
load as performed here. In an attempt of adequately characterize the temperature and the
time dependency of the material response, transient stress relaxation experiments were
performed. To conduct such quasi-static experiments, the dumbbell-shaped specimens
of the type DIN EN ISO 527-2 and dimensions of W × H × L: 2 × 4 × 75 mm3 (25 mm
parallel sample length) were pneumatically fixed along their stretching axis on the rig in
displacement-driven control mode.
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Figure 2. Experimental set-up for torsional loading (torque M) and investigated rectangular SM sample for thermo-
rheological experiments.

To calibrate the displacement of the applied testing device with the local strains of the
samples at ambient conditions (out of the environmental chamber), an own custom-made
optical strain measurement system has been used. This leads to a one-to-one calibration
of local strains and global displacements of the test rig. To do so, we performed our
experiments on vertically positioned screw-driven electromechanical test frame Schenk-
Trebel RM 50 operated in displacement-driven control mode. Digital control of the test rig
and data acquisition was performed using the acquisition system DOLI EDC580 (DOLI
Elektronik GmbH, Münsingen, Germany) which is interfaced to the host software DOLI
“Test & Motion” (version 3.0) using a proprietary networking protocol. In particular, a
properly calibrated S-Type load cell was used during this work, namely, a large strain-
gouge-type load cell with a maximum application range of up to 500 N. The samples are
fixed along their longitudinal axis, where the bottom end is fixed stationary and the upper
end is moved during deformation. The motion of the upper end will be referred to as the
machine displacement U (mm). The load cell was attached to the upper clamp. Pneumatic
grips with a grip pressure of 5 bar are used to clamp the samples. The grips allow for a
force-controlled clamping. The grip faces are serrated and incorporated fences such that the
samples can be positioned at the same location and relative motion between sample and
grip face during deformation would be minimized. By using this custom-made real-time
optical extensometer, the principal stretches and the corresponding principal strains in
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longitudinal and transversal directions are quantified. This optical strain measurement is
a tool chain of image processing programs. Explicitly, a Charge-Coupled Device (CCD)-
type industrial camera with resolution of 1024 × 768 pixel is used to acquire gray-scale
raster-based images of the polymer sample during experiments. Mounted on a stepper-
motor-driven mechanical stage, the camera is moved with half of the velocity and in the
same direction of the machine traverse such that the relative motions between the center
of the sample and the camera are minimized. Prior to that, a circle-shaped mark with a
radius of r = 1.5 mm was painted on the center of the sample using laser-cut stencils and
proper printing marker. The printing color is chosen such that the contrast between sample
color and marking paint is as high as possible after gray-scale conversion. In this particular
case, black color was used on our transparent Estane. As the sample is stretched, an
initially circle-shaped mark will undergo a continuous affine transformation in accordance
to the motion of the samples’ geometry, such that, for any spatial configuration, the set
of points on the boundary of the mark, i.e., pixel data points, will satisfy the canonical
ellipse equation

(x− xt,0)
2

a2
t

+
(y− yt,0)

2

b2
t

= 1, (1)

with (xt,0, yt,0) denoting the center of the ellipse.
Then, in the absence of rotation, by determining the ellipse’s major and minor

axes (at and bt, respectively), which now coincide with the Cartesian axes, the princi-
pal stretches and strains could be determined. Here, an optimization of least-square type
using Equation (1) and the pixel data points of the boundary of ellipse is performed to
compute the parameters of interests.

Samples have been heated to the experimental temperature with a heating rate of
3 ◦C min−1. Once the temperature has been achieved, the specimens were equilibrated for
20 min and then deformed with a speed of 25 mm min−1 to a local maximum stretch of
λ = 2. This maximum stretch was kept constant for a holding time (relaxation time) of
thold = 90 min. The decay of stress over time was then investigated at different temperatures
ranging from 10 to 70 ◦C. Assuming a linear viscoelastic behavior and as long as no viscous
flow is presented, the stress will ultimately decrease to an equilibrium stress Seq, following
multiple superimposed relaxation processes. To determine material parameters for further
simulations, these experiments have been used explicitly.

2.2. Torsional Relaxation Experiments

There is no single experimental procedure which would permit to follow the viscoelas-
tic behavior of a polymer over the whole range of time and temperature. In the present
work, validation of identified material parameters and numerics considering theoretical
background from continuum mechanics is performed by stress relaxation experiments
under torsion.

To do so, rectangular samples with dimensions W × H × L: 2 mm × 4 mm × 50 mm
were bounded to the upper and lower clamps of the rheometer, respectively, and equili-
brated for 20 min at different experimental temperatures: θexp = 45, 60, 75, 90 and 105 ◦C.
Once the experimental temperature was reached, the samples were twisted up to a twist
angle of ϕ = 360◦ with the twist rate of ϕ̇ = 3.6◦/s. The torsional relaxation was then
performed by fixing the twist angle at isothermal conditions up to 2 h.

2.3. Thermal Expansion Coefficient Experiments

Complementary to DMTA and quasi-static experiments in uni-axial or torsional modes,
the thermal behavior of Estane and in particular its Coefficient of Thermal Expansions
(CTE) have been studied by thermal mechanical Analysis (TMA). The CTE was determined
by Thermal Mechanical Analyzer (TMA) Metler-Toledo TMA/SDTA 841 (Wien, Austria).
A 2-mm thick sample was placed between two thin quartz disks and positioned on the
TMA holder. Afterwards, a ball-point probe of thickness of 3 mm was positioned on the
top of the sample to ensure a uniform distribution of the exerted force over the entire probe
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surface. Then, a very small net force of about 0.02 N was implemented to maintain a good
contact between the sample and probe surface without deforming it. Finally, the probe was
three times heated from 5 to 140 ◦C and cooled down subsequently, whereby the third run
was used for data validation. It should be noted that the both first runs were performed to
eliminate any relaxation effects or eigenstresses of the specimen.

2.4. Finite Strain Maxwell-Zener Model

First, let us consider a specific version of the finite strain Maxwell-Zener model, which
is an essential part of the constitutive model used in this study. Although a great amount
of different formulations has been proposed for the Maxwell-Zener model, the preference
is given to the multiplicative approach, due to numerous advantages (cf. Reference [37]).
The multiplicative Maxwell model is covered as a special case by the viscoplasticity model
presented by Simo and Miehe [38]. Interestingly, the Simo and Miehe model can be
obtained in a number of different ways, using constitutive assumptions, which may seem
unrelated [39–42]. In the current study, we employ the standard Lagrangian version of the
Simo and Miehe model. We follow the presentation given by Lion [43]. For simplicity,
thermostatic conditions are assumed here, where the temperature is assumed given. A
thermodynamically consistent generalization to a fully coupled thermo-mechanical state
can be carried out [44]. Let F(x, t) be the deformation gradient mapping a line element dX
of the reference configuration to the line element dx of the current configuration. We start
with the multiplicative split of the deformation gradient F into an elastic part F̂e and the
inelastic part Fi

F = F̂e · Fi. (2)

In the context of large strain viscoelasticity, this split is known as the Sidoroff decomposi-
tion [45]. Next, we consider the right Cauchy-Green tensor C and its inelastic counterpart
Ci, both operating on the reference configuration:

C := FT · F and Ci := FT
i · Fi. (3)

The Helmholtz free energy per unit mass is assumed to be of neo-Hookean type [46]

ψ = ψ(C · Ci
−1) =

µ

2 ρR

(
tr
[
C Ci

−1
]
− 3
)
, A := (det(A))−1/3 A, (4)

where µ stands for the shear modulus, ρR is the mass density in the reference configuration,
tr(·) is the trace operator, and (·) denotes the unimodular part of a tensor. According to
the Coleman-Noll procedure, the 2nd Piola-Kirchhoff stress tensor S̃ is computed through

S̃ = 2 ρR
∂ψ(C · Ci

−1)

∂C
∣∣
Ci=const = µ C−1 · (C · C−1

i )D. (5)

The evolution equation for Ci takes the form

Ċi =
1
η

(
C · S̃

)D · Ci =
µ

η

(
C · C−1

i
)D · Ci =

2
τ

(
C · C−1

i
)D · Ci, (6)

where η stands for viscosity, and τ = 2η/µ is the inherent relaxation time. The initial
conditions at time instance t0 are specified as

Ci|t=t0 = C0
i . (7)

The model Equations (5) and (6) are objective, thermodynamically consistent, and
w-invariant (For a general definition of the w-invariance the reader is referred to Refer-
ence [47]). The model exhibits a fading memory behavior. More precisely, the exact solution
is exponentially stable with respect to small perturbations of the initial data [48]. The exact
solution exhibits the following important geometrical property
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Ci(t) ∈M if C0
i ∈M, (8)

where the manifold M constitutes the set of symmetric unimodular tensors

M :=
{

A ∈ Sym : detA = 1
}

.

In the following modifications, the relaxation time may depend on the temperature:
τ = τ(θ). It follows from (8) that Ci remains positive definite if C0

i > 0.

2.5. Generalized Viscoelasticity

Now, we proceed to a model of generalized viscoelasticity, known as generalized
Maxwell model (also known as Wiechert or Maxwell-Zener model) [49]. The corresponding
rheological interpretation contains a spring element (Hookean body) and n Maxwell bodies;
see Figure 3b. All the Maxwell bodies are connected in parallel. The Hookean body is
used to represent the equilibrium stresses and the Maxwell bodies are introduced to
capture viscous effects. The total free energy is given by a sum of isotropic functions (cf.
Reference [50])

ψ = ψeq(C) +
n

∑
m=1

ψov,m(C · C−1
i,m). (9)

Here, ψeq is the equilibrated part of the free energy stored in the spring element and
ψov,m is the energy of the mth Maxwell body, which corresponds to the non-equilibrated
part. The equilibrium spring is modeled by the neo-Hookean ansatz reinforced by a
volumetric contribution (cf. Reference [51])

ρRψeq(C) =
µeq

2 ρR

(
trC− 3

)
+

k
50
(
(detC)5/2 + (detC)−5/2 − 2

)
. (10)

Here, µeq represents the shear modulus of the material in the equilibrium state and k
stands for the bulk modulus. Each of the Maxwell bodies is modeled by
Equations (5) and (6) presented in the previous subsection. Thus, the Helmholtz free
energy for the mth Maxwell body is given by a potential of the neo-Hookean type

ρRψov,m = ρRψov,m(C · C−1
i,k ) =

µm

2
(
tr
[
C · C−1

i,m

]
− 3
)
, m = 1, 2, ..., n.

Here, µm ≥ 0 is the shear modulus of the mth element and Ci,m is the corresponding
inelastic tensor of right Cauchy-Green type. The evolution of each of these variables is
governed by equations of type (6), which takes the form

Ċi,m =
2

τm

(
C · C−1

i,m
)D · Ci,m, Ci,m|t=t0 = C0

i,m, (11)

where τm ≥ 0 is a material parameter related to the relaxation time, and C0
i,m is the initial

value.
Equation (9) implies that the overall second Piola-Kirchhoff stress S̃ is given by the

sum

S̃ = S̃eq +
n

∑
m=1

S̃ov,m, where (12)

S̃eq = µeq

{
C−1 · CD

}
+

k
10

{
(det C)5/2 − (det C)−5/2

}
· C−1, (13)

S̃ov,m = µm C−1 ·
(
C · C−1

i,m
)D, m = 1, 2, ..., n. (14)
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b)

a)

τ 1i

µeq

µ1
i

µ2
i

µ3
i

τ 3i

τni µn
i

Fi

F

µn
iτni

τ 2i

Fe

Figure 3. (a) Rheological model of the Maxwell body and (b) Representation of the rheological model
for a generalized Maxwell (Maxwell-Zener) body with n Maxwell branches connected in parallel for
description of the viscoelastic properties of Estane.

The generalized viscoelasticity model inherits some properties of the Simo and Miehe
formulation of the Maxwell model, discussed in the previous subsection. In particular, it
is objective and thermodynamically consistent; it also exhibits fading memory. The exact
solution of the evolution equations exhibits the geometric properties of type (8): Ci,m ∈M
for all m = 1, 2, ..., n. In general, the relaxation times τm depend on temperature θ. To
explain this dependency, one should assume the system as either thermo-rheological simple
or complex. As explained before, in the case of thermo-rheologically simple materials, the
Time-Temperature Superposition Principle (TTSP) can be used (see Section 3.2):

τm = aj
T τ

(r)
m , m = 1, 2, ..., n, (15)
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where τ(r)m are the relaxation times at the reference temperature θref.
As will be shown in the following, modeling of Estane as a thermo-rheological complex

material leads to much better results. The specific dependency of relaxation times upon
temperatures will be discussed in Section 3.2.1.

2.6. Numerical Implementation

For simplicity, we consider here only the processes with a prescribed temperature.
By τm, denote the corresponding relaxation times. Let us consider a typical time step
tn 7→ tn+1, ∆t := tn+1 − tn > 0. Assume that the right Cauchy-Green tensor at tn+1 equals
n+1C. Within the context of a displacement-based finite element method, n+1C is known
at each point of the Gauss integration. Let the previous values of the inelastic Cauchy-
Green tensor for different Maxwell branches be equal to nCi,m. Our goal is to integrate the
evolution Equation (11) within the time step. Since, in many applications, the time step
size ∆t may be very large compared to some of the relaxation times τm, an implicit time
stepping is needed. For the Simo-Miehe version of the Maxwell model with the energy
storage of neo-Hookean type, an explicit update formula was presented in Reference [52].
In our notation, it reads

n+1Ci,m = nCi,m + 2
∆t
τm

n+1C, m = 1, 2, ..., n. (16)

Although this formula corresponds to an implicit discretization, it is iteration free. It can
be used for large time steps, if needed. In particular, n+1Ci,m → n+1C as ∆t

τm
→ ∞. A non-

iterational generalization of this formula to cover the energy storage of the Mooney-Rivlin
type is presented in Reference [53].

The corresponding numerical scheme is first order accurate; it exactly preserves the
geometric property n+1Ci,m ∈M even for very large time steps. The exact preservation of
the incompressibility, in turn, suppresses the accumulation of the numerical error [48]. Since
n+1C is known, the evolution equations for the different Maxwell branches are integrated
separately. After the current values n+1Ci,m have been found, the overall stress is computed
according to (12)–(14). The presented algorithm is implemented into the commercial finite
element code MSC.MARC, employing the user subroutine HYPELA2. Obviously, any
alternative forms of the equilibrium elastic potential ψeq can be implemented without
essential changes of the presented procedure.

3. Results
3.1. Investigation of the Influence of Temperature on Rheological Properties
3.1.1. DMTA—Temperature Sweep Tests

As previously emphasized, the viscoelastic properties of a material which are time
and temperature dependent can be distinguished from thermo-rheological experiments.
The depiction of significant changes in morphology of a polymer can be highlighted as its
feature and, thus, well suitable for analysis of rheological properties of polymers.

In order to study the thermo-rheological properties of Estane, temperature sweep
tests and frequency sweep tests have to be conducted. The storage- (µ′) and loss shear
moduli (µ”) of Estane are determined by temperature sweep tests at constant frequencies
of: 0.5, 1, 4, 16 Hz with a strain amplitude of γ0 = 0.01% over a specified temperature
domain. Complementary, helpful data of the complex viscosity (η∗) can also be computed
in torsion-controlled mode as depicted in Figure 4d. These measurements are specially
informative and important in the study of viscoelastic behavior of SMPs and a determinant
part of the technique for establishing relaxation transitions. Thereon, precious insights
concerning the morphology and structure of the material can be derived.

The results of temperature sweep tests are illustrated in Figure 4a. Here, the tempera-
ture sweep tests have been conducted for different frequencies ranging from 0.5 to 16 Hz.
It is clear that the storage modulus µ′ of Estane decreases gradually with temperature. This
decrease of µ′ with respect to temperature has a Boltzmann form, typical for physically
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cross-linked materials [54] as the investigated polymer. The inflection point of the function
can be interpreted as θg. It can be observed that an increase in applied frequency shifts the
inflection point of the µ′ − θ curve to higher temperatures. This means a broad transition
range of the sample. However, the reduction of storage modulus (µ′) at higher frequencies
is less pronounced. Another characteristic temperature which can be observed in these
graphs is located at temperatures higher than θg and is only distinctly observable in tests
with lower frequencies. This temperature is assigned for another relaxation inside the
polymer chains due to molecular heterogeneities of the polymer. Samples subjected to
higher frequencies do not have enough time to represent this relaxation.
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Figure 4. (a–d): Comprehensive thermo-rheological characterization of Estane during temperature sweep test from 50 to
110 ◦C with different frequencies ranging from 0.5 to 16 Hz.

In addition to storage modulus, the storage compliance J′ as a function of temperature
for different frequencies have been demonstrated for Estane in Figure 4b. The progress
of storage compliance J′ with temperature can be considered as the mirrored pathway of
storage modulus with different scales. The storage compliance J′ increases gradually with
respect to temperature until it reaches its maximum and then changes linearly.

As illustrated in Figure 4c, the θg range can be determined from the plot of the loss
factor tan δ = µ′′/µ′ versus temperature for different frequencies. Here, three spans can
be recognized out of two plateau regions in two temperature ranges from 0 to 40 ◦C and
from 60 to 105 ◦C with an obvious maximum at near 55 ◦C for ω = 1 Hz. This peak can
be assigned to the θg of the existing hard and soft domains. As can be observed, the peak
values and the corresponding temperatures are also properly recognizable for all other
frequencies. However, a little decrease in the maximum and a small shift towards higher
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temperatures for tan δ can be seen for higher frequencies. Physical interpretability of the
loss factor is given here due to the observation that in contrast to the glassy state plateau,
and the rubbery state plateau is characterized by higher energy dissipation [54].

Additionally, in torsion-controlled experiments, where a defined torque is applied,
and the resulting strain is measured, the complex shear compliance (J∗) is quantified. J∗ is
the inverse of reciprocal of the complex shear modulus and describes the strain retardation,
since the sample needs a defined duration, a so-called retardation time, to migrate from the
original configuration to the desired strain, which happens after applying the stress.

3.1.2. Thermal Expansion Experiments

With TMA, one can determine the amount of thermal strains. This is also important
for modeling purposes especially when the structural relxations for glass forming polymers
should be incorporated. Besides DMTA analysis, the coefficients of thermal expansion can
be calculated below and above θg. Figure 5 illustrates the relative changes in specimen
length relative to initial length after heating with respect to inverse temperature. In
addition to this, in the offset of Figure 5, the results of thermal expansion experiments
for the temperature range of 5 to 140 ◦C are depicted. Our experimental results show
that the thermal strains of Estane diminish as the temperature decreases. The steepness
of thermal coefficient changes at the point of θg, which builds up a kink shape in the
middle of the graph. Below θg, a thermal coefficient of 1.27 × 10−6 ◦C and above θg, a
thermal coefficient of 4.86 × 10−6 ◦C have been discovered. The obtained θg of the CTE
experiment is distinctly higher than the θg of DMTA experiment. A similar founding was
also reported by Westbrook and Qi over acrylate-based polymer networks [55]. It should be
noted that, since determination of θg is very method-dependent, a one-to-one comparison
is not possible.

1 4 0 1 2 0 1 0 0 8 0 6 0 4 0 2 0 0
1 . 0 0 0
1 . 0 0 5
1 . 0 1 0
1 . 0 1 5
1 . 0 2 0
1 . 0 2 5
1 . 0 3 0
1 . 0 3 5
1 . 0 4 0

L·L
0-1  [-]

�  [ ° C ]

� g T M A  =  8 0 ° C

Figure 5. Evolution of thermal strains of Estane samples during cooling from 120 to 0 ◦C. A piece-
wise linear function is fitted to the recorded thermal expansion data. The results are averaged out of
three test runs.

3.1.3. Torsional Stress Relaxation Experiments

In analogy to large strain uni-axial tensions, torsion experiments give rise to large
isochoric deformations. Even at low or moderate strains, such experiments involve in-
elastic distortions, which are auspicious for thermoplastic elastomers with very limited
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elastic regions [56]. Therefore, before any simulational studies and for an appropriate
characterization of our polymers system stress relaxation experiments were carried out in
torsion mode in addition to DMTA experiments. Here, the samples were twisted and kept
constrained at different twist angles, whereby their relaxation profiles were obtained as
torque-time (M− t) curves. Such stress relaxation experiments were explicitly performed
for different twist angles as follows: ϕ = 45, 90, 360 and 450◦, at distinct temperatures of 65,
80, 90, 105 ◦C, as reported in Section 2.3.

Since the qualitative stress relaxation responses of the samples for different deflection
angles are similar, in Figure 6, the characteristic stress relaxation curves for Estane deformed
up to ϕ = 45◦ are only depicted at different programming temperatures. In Figure 6, the
time t = 0 corresponds to the start of the stress relaxation. At a twisting rate of ϕ̇ = 3.6◦/s,
the samples have been twisted to ϕ = 45◦ and the ϕ-value was kept constant for 4 h. Here,
the influence of temperature on mechanical properties of the samples is noticeable. With
an increase in the programming temperature, polymer samples become more flexible and
less torque is needed for deformation. This is a consequence of an increase in the kinetics
energy of every single polymer chains, which results in an increase in existing free volume.
From the results illustrated in Figure 6, one can conclude that, during the experimental
time, none of the samples relax to zero, and a small amount of stresses remain in polymers,
that relax with much slower time.

Figure 6. Stress relaxtion experiments for Estane deformed up to ϕ = 45◦ at different temperatures as
torque-time (M− t) graph.

Intriguingly, at θ = 80◦, the needed torque for torsion is higher than that for θ = 65◦.
This would be a hint for a kind of thermal stiffening which needs further experimental
investigations. This has also been observed for all other deflection angles as depicted in
Figure 7.

In this picture, the maximum amount of the torques needed to twist the samples up
to different deflection angles and temperatures are illustrated. It should be mentioned
that, as expected, the maximum amount of torque needed to twist the samples increase
with an increase in the amount of deflection angle. However, for a torsion of ϕ = 450◦,
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the torque needed for deformation of the samples reduces, and about 10% less torque
is needed in comparison to ϕ = 360◦ at a temperature of θ = 80 ◦C. It is assumed that
during large amount of entropic and less amount of enthalpic deformation processes, some
intermolecular forces, like London dispersion forces and H-bonds, which strongly depend
on atomic distances, are broken during a plastic deformation.

0

10

50
60
70
80
90

100
110

 [°C]

M
 [m

N
·m

-1
]   = 45 °

  = 90 °
  = 360 °
  = 450 °

65 80 90 105

Figure 7. Evolution of maximum torque needed to deform Estane up to different twist angles at
distinct programming temperatures.

Finally, in Figure 8, the kinetics of stress relaxations of different deflection angles are
depicted in semi-logarithmic form in relative units. According to the results represented in
Figure 8, samples twisted to lower deflection angles not only are relaxed faster but also
much higher amount of the torques is recovered. As the samples deformed up to ϕ = 45◦

recover more than 50% of their torque in only 100 s, samples twisted to ϕ = 450◦ recover
only 40% of their torque.

Figure 8. Evolution of the torque in relative units to deform the samples up to different deflection
angles during relaxation at θprog

◦C.
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3.2. Identification of Material Parameters
3.2.1. Assumption of Thermo-Rheological Simplicity

Since DMTA experiments can only be reported for a limited range of frequency
and temperature domain, they are insufficient for a complete description of polymer’s
viscoelasticity. In order to overcome this problem and to follow the long term viscoelastic
behavior of polymers, for thermo-rheological simple materials, the TTSP is exerted. To
apply the TTSP, one should perform frequency sweep tests at different temperatures. Then,
the storage and loss moduli for one temperature is chosen as reference, and other results
are shifted to right or left to obtain continuous mastercurves

µ′(aj
T ω, θ) = µ′(ω, θref),

µ′′(aj
T ω, θ) = µ′′(ω, θref).

(17)

Here, θref and aj
T denote the reference temperature and the horizontal shift factor,

respectively. Horizontal shift factor is linked to the chosen θref according to WLF equation

aj
T(θ) = exp

{
− C1(θ − θref)

C2 + θ − θref

}
, (18)

where C1 and C2 are material parameters. In Figure 9a, the measured storage moduli
of Estane at different temperatures ranging over [5–100] ◦C (in steps of every 5 ◦C) are
depicted in the range of unreduced angular frequencies [10−2–102] rad s−1. With these
data and resulted loss moduli (not shown here), the corresponding mastercurves of µ′

and µ′′ shifted to θref = 50 ◦C are achieved and depicted in Figure 9b. For data shown in
this picture, C1 and C2 have been identified and listed in Table 1, together with calculated
storage- and bulk modulus for Estane.

Table 1. Williams-Landel-Ferry (WLF) constants for Estane.

µeq [MPa] k [MPa] C1 C2 θref [◦C]

7.020 700 8 18 50

As can be seen from Figure 9b, the chosen temperature increment is sufficient so that
with the material parameters derived from WLF equation, a particularly fine continuous
mastercurve could be obtained.

Now, the time-dependent behavior of thermo-viscoelastic model can be described
by fitting the right material parameters. Since polymer relaxation occurs with a spectrum
of relaxations, normally a generalized Maxwell-Zener model is utilized, as a suitable
constitutive framework for thermo-rheologically simple polymers with n superimposed
relaxation processes. To find the true material parameters, two procedures are generally
applied if and only if the system is thermo-rheologically simple. The first one is based
on linearizion of finite-strain model to construct a corresponding small-strain viscoelastic
model with a continuous relaxation spectrum as proposed by Haupt et al. [57] and further
developed by others [58]. The second approach is based on determination of Maxwell-
model parameters according to obtained experimental DMTA experiments and resulted
mastercurve [56].

Here, in an attempt to accurately represent the continuous viscoelastic spectrum as
measured using DMTA, the second approach is employed. To do so, n = 19 discrete
nonequilibrium Maxwell elements are taken into account and the constitutive behavior of
the Maxwell element is defined by Prony series coefficients, optimized by the Tikhonov
regularization method [59]

µ′(ω, θ) = µeq +
N

∑
m=1

µ
j
m

ω2 τ2
m,j(θ)

1 + ω2 τ2
m,j(θ)

, (19)
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µ”(ω, θ) =
N

∑
m=1

µ
j
m

ωτm,j(θ)

1 + ω2 τ2
m,j(θ)

. (20)

The resulted storage- and loss modulus mastercurves for the reference temperature
θref = 50 ◦C are shown in Figure 9b, and a suitable series of relaxation times τm,j and

relaxation moduli µ
j
m are defined

µ(t) = µeq +
N

∑
m=1

µ
j
m(θ) · exp

(
− t
τm,j(θ)

)
. (21)
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Figure 9. (a) Storage modulus as a function of frequency at different isothermal conditions obtained
from Dynamic Mechanical Thermal Analysis (DMTA) experiments and (b) mastercurves of storage
(µ′) and loss moduli (µ′′) shifted to a reference temperature of θref = 50◦. The solid line in the insert
show the calculated shift factors obtained from WLF approximation.



Materials 2021, 14, 2049 17 of 24

Here, µeq, µm, and τm(θ) are the equilibrium modulus, the overall modulus of the jth
Maxwell unit, and its relaxation times, respectively. The best fitting Prony coefficients are
listed in Table 2. It should be noted that the elastic shear modulus of the neo-Hookean
equilibrium element is evaluated in the limit lim ω→0 µ′(aj

T ω) as µeq = 7.020. However, the
absolute value is not decisive for most modeling purposes, since the material response is
dominated by viscous stresses.

Table 2. Generalized Maxwell model relaxation times τm,j and associated shear moduli µ
j
m consider-

ing thermo-rheological simplicity for Estane.

Material
Parameter 1 2 3 4 5

µj [MPa] 8.495 × 101 7.954 × 101 7.414 × 101 6.874 × 101 6.334 × 101

τj [s] 1.000 × 10−9 5.995 × 10−9 3.594 × 10−8 2.154 × 10−7 1.291×10−6

Material
Parameter 6 7 8 9 10

µj [MPa] 5.7947 × 101 5.254 × 101 4.713 × 101 4.168 × 101 3.602 × 101

τj [s] 7.743 × 10−6 4.641 × 10−5 2.782 × 10−4 1.668 × 10−3 1.000 ×10−2

Material
Parameter 11 12 13 14 15

µj [MPa] 2.932 × 101 2.106 × 101 1.399 × 101 9.998 × 100 8.412 × 100

τj [s] 5.995 × 10−2 3.594 × 10−1 2.154 × 100 1.291 × 101 7.743 × 101

Material
Parameter 16 17 18 19

µj [MPa] 7.613 × 100 6.331 × 100 4.651 × 100 2.823 × 100

τj [s] 4.641 × 102 2.782 × 103 1.668 × 104 1.000 × 105

3.2.2. Assumption of Thermo-Rheological Complexity

Another strategical procedure applied to identify the material parameters is supported
by the assumption of thermo-rheological complexity of Estane. The thermo-rheological
complexity, in contrast to thermo-rheological simplicity means that all relaxation times are
influenced by temperature in a different way. This deliberated methodology is based on
four steps. First, the introduced material model is adopted to the mechanical behavior of
Estane at the lowest temperature. This is because the relaxation behavior at this temperature
is highly pronounced. It should be noted that the relaxation tests have been performed in
the range of [10–80] ◦C and must not be exceeded in the modeling experiments. Second, it
is supposed that the shear moduli of the Maxwell branches depend on temperature in the
same way as the relaxation times do. This means

τ
j
i(θ) = τ

j
0 aj(θ) and µ

j
i(θ) = µ

j
0 aj(θ). (22)

Third, the constitutive Equations (12)–(14) are fitted to the experimental relaxation
curve at θ = 10 ◦C and so are Prony series coefficients determined. For this purpose, first
the number of dissipative branches has to be estimated and then for each Maxwell unit,
its own shift factor aj(θ) must be specified. It is well documented that up to two Maxwell
units per time decade are required to adequately represent the viscoelastic behavior of
the material. Here, six Maxwell branches have been chosen. The material parameters are
identified by Levenberg-Marquardt algorithm and are listed in Table 3.
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Table 3. Identified material parameters based on finite strain relaxation tests at θ = 10 ◦C.

Material
Parameter 1 2 3 4 5 6

µj [MPa] 74.47 7.45 3.27 3.32 4.18 7.08
τj [s] 130.13 4.91 849.46 604.72 2,297,500 3,617,300

Finally, the identified relaxation times τm,j of the Maxwell elements are accepted as
constants for all other temperatures. To determine the shift functions (aj(θ)), the identified
shear moduli at a temperature of 80 ◦C is now assumed to be the upper bound and the
shear moduli µj(θ) at the other temperatures are progressively determined by fitting the
modeling results to experiments. Figures 10 and 11 show the simulations and experiments
using the determined parameters µj(θ) with constant relaxation times τm,j. In order to
determine the shift functions aj(θ), the identified material parameters µj(θ) are plotted
over the absolute temperature θ. A standardization with respect to the initial values µj(θ)
permits the conclusion that material can be modeled by choosing a separate function aj(θ)
for each Maxwell element. Although, it is also quite suitable to set the same function
aj(θ) = aj(θ) for all Maxwell elements. Concerning the temperature of 10 ◦C, the shift
function has to be equal to 1, and, for higher temperatures, it has to decrease so that,
for µj(θ), a value near zero can be reached. This circumstances are illustrated best over
an exponential approach, which is reminiscent of the Arrhenius equation [32]. In the
illustrations of Figure 12, the exponential approaches are represented for the 6 Maxwell
elements due to the data from Figures 10 and 11.
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Figure 10. (a–d): Comparison of computational and experimental stress relaxation tests with different isothermal tempera-
tures under θg.
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Figure 11. (a–d): Comparison of computational and experimental stress relaxation tests with different isothermal tempera-
tures above θg.
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Figure 12. (a–f): Identification of the shift functions aj(θ) for the set of six Maxwell branches.

3.3. Validation of the Model

In order to validate the finite strain material model, two torsion tests are considered
here. The experiments are carried out at different temperatures and involve finite strains.
A rectangular beam sample with dimensions L × W × H = 50 mm × 2 mm × 5 mm
is clamped at one end as shown in the left hand side of Figure 13. The opposite end is
assumed to be rigid. The elongation of the beam is not restrained. The twist of the beam is
explicitly prescribed as a function of time. Within the first 300 s, the twist angle increases
linearly from 0 to 2π rad, after that the twist is held constant.

The torsion tests are numerically simulated with the Finite Element Method (FEM)
using the software package MSC.MARC. Toward that end, an FEM mesh containing
800 elements of class hex20 with a quadratic interpolation is utilized (see Figure 13 (left)).
The required Prony series coefficients are obtained from the assumption of thermo-
rheological simplicity. Simulations are performed for two different temperatures; WLF
coefficients are taken from Table 1. The experimental data and corresponding FEM results
are plotted in Figure 14. In this figure, the relaxation stage which follows the active loading
is clearly visible. As can be seen, the assumption of the thermo-rheological simplicity
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enables sufficiently accurate simulations even in the essentially heterogeneous case of beam
torsion. Since the temperature interval is relatively small, the identified set of parameters
provides a very good accuracy in the considered range of strain rates.

a) b)

Figure 13. (a): Geometry of the beam sample and the Finite Element Method (FEM) mesh in its initial (undeformed)
configuration and (b): The shape of the sample twisted up to 360◦ at t = 300 s.
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Figure 14. Experimental and simulated torque-time (M− t) graphs for torsion tests at two different programming tempera-
tures θ = 70 ◦C and θ = 90 ◦C.

4. Discussion and Conclusions

Apart from the accuracy and flexibility, the geometrically nonlinear approach of Simo
and Miehe is highly practical. Owing to the explicit update Equation (16), the time stepping
is robust and efficient. This computational efficiency becomes important when dealing
with large-scale FEM simulations: Depending on the number of finite elements, stress
integration points per each element, time steps, and the average number of iterations,
the number of calls of the material subroutine ranges up to 1010. If the model contains
20 Maxwell branches, this means 2 × 1011 calls of the Maxwell material’s subroutine.
Another advantage of the implemented non-iterational time-stepping method is the exact
preservation of the incompressibility condition. For such algorithms, the accumulation
of the numerical error is suppressed even when working with large time steps and strain
increments [48].

From the theoretical standpoint, the model is thermodynamically consistent, objective
and free from spurious shear oscillations. The stress response exhibits a pure split into
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volumetric and deviatoric parts [37], which is useful when modeling incompressbile or
nearly incompressible materials. Interestingly, both thermo-rheological simple and complex
approaches yield similar numerical schemes. The main difference lies in calibration and
validation of the modeling assumptions, as well as their applicability domains.

A relatively large number of rheological Maxwell units is implemented to represent
the relaxation behavior over a broad range of temperatures and strain rates. To solve
this problem, fractional time rates are usually implemented [2], at a cost of more complex
numerical methods. However, a simpler way to reduce the number of Maxwell branches is
to incorporate stress-dependent viscosities [1].

The main conclusion of this study is that in a certain range of temperature, strain, and
strain rate Estane behaves as a thermo-rheological simple material, which can be described
by a generalized finite strain Maxwell-Zener model.

When modeling Estane as a thermo-rheological complex medium, a pragmatic ap-
proach is advocated, assuming temperature-dependent shear moduli; see Equation (22).
This temperature-dependence can occasionaly violate the 2nd law of thermodyamics.
Therefore, the model should be restricted to a specific range of strains and temperatures.
The development of an accurate material model which a priori satisfies the 2nd law of
thermodynamics still remains an open problem. A promising line of research is to incor-
porate a chemical potential ψchem into the additive decomposition of the free energy (9).
Thus, the evolution of the stiffness (Equation (22)) can be brought into compliance with the
energy balance.
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