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Abstract

An optimal clinical specimen for accurate detection of severe acute respiratory syn-

drome coronavirus 2 (SARS‐CoV‐2) by minimizing the usage of consumables and re-

duce hazard exposure to healthcare workers is an urgent priority. The diagnostic

performance of SARS‐CoV‐2 detection between healthcare worker‐collected naso-

pharyngeal and oropharyngeal (NP +OP) swabs and patient performed self‐collected
random saliva was assessed. Paired NP+OP swabs and random saliva were collected

and processed within 48 h of specimen collection from two cohort studies which

recruited 562 asymptomatic adult candidates. Real‐time reverse‐transcription poly-

merase chain reaction targeting Open reading frame 1a (ORF1a) and nucleocapsid (N)

genes was performed and the results were compared. Overall, 65 of 562 (28.1%)

candidates tested positive for COVID‐19 based on random saliva, NP +OP swabs, or

both testing techniques. The detection rate of SARS‐CoV‐2 was higher in random saliva

compared to NP+OP testing (92.3%; 60/65 vs. 73.8%; 48/65; p < .05). The estimated

sensitivity and specificity of random saliva were higher than NP+OP swabs (95.0; 99.9

vs. 72.2; 99.4). The Ct values of ORF1a and N genes were significantly lower in random

saliva compared to NP+OP swabs specimens. Our findings demonstrate that random

saliva is an alternative diagnostic specimen for the detection of SARS‐CoV‐2. Self‐
collected random oropharyngeal saliva is a valuable specimen that provides accurate

SARS‐CoV‐2 surveillance testing of a community.
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1 | INTRODUCTION

An outbreak of coronavirus disease (COVID‐19) caused by severe

acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) has been

spreading worldwide since late December 2019.1 The number of in-

fected SARS‐CoV‐2 cases worldwide has been rising dramatically de-

spite various control measures. Globally, as of October 17, 2020, there

have been 39,196,256 laboratory‐confirmed cases of COVID‐19,
including 1,101,298 deaths reported to the World Health

Organization (WHO).2

Detection of SARS‐CoV‐2 in a population is an urgent priority

for the prevention and containment of disease outbreaks in the

community. This is due to the nature of illness characteristics where

a large portion of the infected population is asymptomatic.3,4 Col-

lecting optimal clinical specimens for detection of SARS‐CoV‐2 is

central in controlling the pandemic.5

SAR‐CoV‐2 has been detected in various clinical specimens.6,7

The current standard SARS‐CoV‐2 testing for surveillance as re-

commended by WHO is solely depending on nasopharyngeal (NP)

and oropharyngeal (OP) swabs.8 However, these sampling techni-

ques have been proved to show relatively poor sensitivity and in-

consistent. Moreover, these sampling techniques are known for their

invasiveness and being patient unfriendly, which may limit com-

pliance for repeat testing and expose healthcare workers to the

detrimental virus or other pathogens.7,9,10

Saliva has been reported as a better alternative to NP+OP swabs

for detection of SARS‐CoV‐2.11–14 In our previous study, saliva has

been proved to have a better detection rate of SARS‐CoV‐2 among

COVID‐19 patients. Other than that, it is less invasive, patient‐
friendly, negates direct interaction of healthcare worker‐patient, and
cost‐efficient by easing the supply demands on swabs, personal

protective equipment (PPE), and manpower.15 However, there are

possible limitations in the previous study as study subjects were

COVID‐19 confirmed cases.

Therefore, in our current study, we evaluated SARS‐CoV‐2 de-

tection in paired NP +OP swabs and random saliva samples collected

from asymptomatic persons under surveillance of the mass screening

population.

2 | METHODS

We conducted a large‐scale two cohort screening study to assess the

comparability between nasopharyngeal and oropharyngeal (NP +OP)

swabs and self‐collected random deep throat saliva for detection of

SARS‐CoV‐2 via real‐time reverse‐transcription polymerase chain

reaction (qRT‐PCR) among asymptomatic individuals.

2.1 | Study design and population

A cross‐sectional two cohort diagnostic study was conducted on

candidates who were undergoing surveillance testing for SARS‐CoV‐2

in Pokok Sena detention center at Kota Setar District, Kedah between

October 3rd till October 10th, 2020 after detection of a new

COVID‐19 cluster in this center16 and among asymptomatic travelers

arriving at Kuala Lumpur International Airport (KLIA) throughout the

month of September 2020. The inclusion criteria for candidate

selection were: (i) those above 18 years old, (ii) able to obey

commands, and (iii) asymptomatic. Assent and written informed

consent were obtained from the study candidates.

Candidates’ sociodemographic and symptoms at the time of

sampling were collected. As a standard protocol, NP and OP

swabs from candidates were collected using sterile flocked swabs

and placed in a sterile tube containing viral transport medium

(VTM). Before that, candidates were briefed to provide self‐
collected random deep throat/oropharyngeal saliva by clearing

the throat into a sterile collection container. Briefly, candidates

were instructed to avoid food and water for 1 h during the col-

lection of 2 ml of deep throat saliva. The time span taken be-

tween random saliva and NP + OP swabs was approximately

2–3 h. Samples were stored at 4–8°C by packing in a polystyrene

box filled with ice cubes and the cold chain was maintained

throughout the transport to the central laboratory. Samples

collected from Pokok Sena district were transited at Makmal

Kesihatan Awam Ipoh (MKAI) by keeping them in a cold room for

approximately 1–2 h before transferred to a central laboratory,

within 6–9 h. However, samples from Kuala Lumpur International

Airport, KLIA were transferred to the central laboratory directly

within 3–4 h. Samples were processed and analyzed within 48 h

upon arrival at the research laboratory (Institute for Medical

Research).

2.2 | SARS‐COV‐2 detection via RT‐PCR assay

On arrival at the research lab, all clinical specimens were in-

activated at 65°C for 15 min in the Biosafety cabinet. Congealed or

viscous saliva specimens were diluted in 500 μl of normal saline.

Total nucleic acid extraction of 200 μl of VTM containing both NP

and OP swabs or 200 μl of saliva was performed using the Magna

Pure 96 system with the Magna Pure 96 DNA and Viral NA Small

Volume extraction kit (Roche Diagnostic GmBH). The extracted

RNA was then eluted in 50 μl of elution buffer. A known positive

sample from our routine screening was used as a substitute for

external positive control in every batch of extraction to ensure the

quality of RNA extraction. For SARS‐CoV‐2 RNA detection, 5 μl of

RNA template was tested using one‐step RT‐PCR of a DiaPlexQ™

Novel Coronavirus (2019‐nCoV) Detection Kit (Solgent Co., Ltd.),

which has been certified for in vitro diagnostic product use by In-

ternational Medical Device Regulators Forums (IMDRF) jurisdic-

tion. This kit uses probes and primers targeting the nucleocapsid

(N) gene and open reading frame 1a (ORF1a) gene of SARS‐CoV‐2
and PCRC gene as an internal control (IC). As we lacked a reliable

quantified positive control in our laboratory, we adopted the limit

of detection (LOD) as described in the kit instruction (Ct: 38.1 ± 1.3
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of NP and 36.2 ± 0.98 of sputum/saliva for 40 viral copies/ml).

Samples were classified as positive for SARS‐CoV‐2 when either

one or both gene primer‐probe sets were detected at a Ct value

of <40 as per kit's instruction.

2.3 | Data processing and analysis

Data were analyzed for normality and descriptive statistics were

described as a number (%) for categorical variables and mean ±

standard deviation (SD) or median (interquartile range [IQR]) for

continuous variables. McNemar's test was used to compare the de-

tection rate for two sampling methods in terms of the number of

patients. The kappa statistic was used to assess the interrater re-

liability between two sampling methods. Ct values of concordance

results were compared using paired t‐test. The correlation of con-

cordance results was assessed by using the Pearson correlation

coefficient. A p < .05 was considered statistically significant. All sta-

tistical analysis was performed using Jamovi software Version

1.2.22.0.17

2.4 | The accuracy of the diagnostic test

Assuming the current standard test (NP +OP swabs) is of unknown

accuracy, invasive, and specialized personnel dependent, a Bayesian

Latent Class Model was used to estimate the true sensitivity and

specificity of each diagnostic method. Two tests in the two popula-

tions model were used. This statistical model was analyzed by using

an open‐access web‐based application “Modelling for Infectious

disease Center, MICE.”18 Noninformative prior distribution is used

for all parameters (beta distribution (0.5,0.5)) and probable ranges of

specificity of all diagnostic tests in the model are between 0.4 and 1.

Positive results of either test specimen (NP +OP swab) or random

saliva was assumed as a perfect gold standard.

3 | RESULTS

3.1 | Candidates demographics

Of the 660 candidates screened, 584 (88.5%) candidates consented

to the study. However, only 562 (85.2%) candidates were included in

the analysis (Figure 1). The reasons for exclusion were symptomatic

candidates (n = 22, 3.3%) and underage candidates (n = 76, 11.5%).

Paired samples of NP +OP swabs and saliva were collected from 562

candidates. One hundred‐seventy (30.2%) candidates were women.

The median (IQR) age was 33 (25–42) years. All candidates were

asymptomatic at the time of sampling. The demographic character-

istics of the studied candidates are shown (Table 1).

3.2 | Comparison of SARS‐CoV‐2 detection
between NP +OP swabs and random deep throat
saliva

Of 562 eligible candidates, 11.6% (65 of 562) of candidates tested

positive for SARS‐CoV‐2 either by NP +OP swab, random saliva, or

both. There was an overall significant substantial agreement be-

tween the two sampling methods (96.1%; 65 of 562, κ coefficient

0.78, 95% CI 0.69–0.87, p < .05). Among candidates with concordant

results, 66.2% (43 of 65) had the virus detected in both random

saliva and NP +OP swabs. However, 33.8% (22 of 65) candidates had

discordant results between random saliva and NP +OP swabs by

which 26.2% (17 of 65) candidates had the virus detected in random

saliva but not in NP +OP swabs and 7.7% (5 of 65) candidates had

the virus detected in NP +OP swabs but not in random saliva. The

detection rate of SARS‐CoV‐2 virus in random saliva was sig-

nificantly higher than of NP +OP swab (92.3%; 60/65 vs. 73.8%; 48/

65; p < .05). The PCRC gene (IC) was detectable in all specimens.

Data of the overall study are available in Table S3.

F IGURE 1 Screened and eligible candidates for the study

TABLE 1 Characteristic of studied candidates

Characteristic Results p value

Age (years), median (IQR)

Overall, n = 562 33 (25–42) <.05

COVID‐19, n = 65 31 (26–41)

Non‐COVID‐19, n = 497 33 (29–42)

Gender, male, n (%)

Overall 392 (69.8%) <.05

COVID‐19 59 (15.1%)

Non‐COVID‐19 333 (84.9%)

Abbreviations: COVID‐19, coronavirus disease 2019; IQR, interquartile

range.
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3.3 | Viral load comparison between NP +OP
swabs and random deep throat saliva

The median (IQR) Ct values of N and ORF1a genes were 30.6 ± 7.06

and 30.0 ± 6.86, respectively in NP +OP swabs, and 29.2 ± 7.87 and

28.5 ± 7.70, respectively, in random saliva. Among candidates with

concordant results, there was a significant average difference be-

tween Ct values of N and ORF1a genes of random saliva and NP +OP

swabs (tN‐gene = 5.07, p < .05; tORF1a‐gene = 5.39, p < .05). On average,

Ct values of N and ORF1a genes of saliva were 3.44 (95% CI,

2.07–4.81) and 3.45 (95% CI, 2.16–4.73) lower than NP +OP swabs.

Both Ct values of random saliva and NP +OP swabs were moderately

and positively correlated (rN‐gene = 0.80, p < .05; rORF1a‐gene = 0.82,

p < .05). Data on concordant samples available in Tables S5 and S6.

3.4 | The accuracy of diagnostic tests by Bayesian
latent class model (LCM)

The sensitivity of NP +OP swab and random saliva were 72.2% (95%

credible interval, 60.0–82.6) and 95.0% (95% credible interval,

83.8–100), respectively. Meanwhile, the specificity of NP +OP swab

and random saliva was 99.4% (95% credible interval, 98.2–100) and

99.9% (95% credible interval, 98.9–100), respectively. The

prevalence estimated by Bayesian LCM of the Pokok Sena outbreak

population and KLIA traveler population were 28.0 (95% CI,

22.1–34.7) and 1.2 (95% CI, 0.4–2.9), respectively (Table S4). Table 2

describes the statistical and Bayesian latent class model findings.

4 | DISCUSSION

Rapid detection of asymptomatic carriers is central in controlling and

mitigating the global pandemic. Collecting an optimal clinical speci-

men that offers a high positivity rate and minimizes the risk of viral

transmission to healthcare workers as well as a cost‐effective
method in resource‐limited settings are indeed in demand in the

current pandemic.5,19 This study assessed the detection rate of

SARS‐CoV‐2 by qRT‐PCR using NP +OP swabs as recommended by

the interim guideline and random saliva specimens in the surveillance

of asymptomatic candidates.20

Our results demonstrated the value of testing random saliva as a

noninvasive and easily obtained specimen for detection of SARS‐CoV‐2
in mass screening. Overall, our results showed a high detection rate of

the virus in random saliva with comparable performance to the current

standard technique of collecting NP+OP swabs. A significant sub-

stantial agreement and κ coefficient were observed between these two

sampling methods suggesting high concordance between results

(p < .05), as shown in earlier studies.14,21 This finding differs from our

previous study15 which focused on asymptomatic positive COVID‐19
cases and had lower concordance due to the study design.

Previous studies comparing the viral load between NP +OP and

saliva specimens report paradoxical results. A few studies have de-

monstrated that viral load in saliva is higher in comparison to NP+OP

swabs,11,15 while others have reported equivalent viral load between

these two specimens.12,13 Nonetheless, a few studies have demon-

strated that saliva is less sensitive in comparison to NP+OP

sampling.22,23 Our findings among the concordance showed that on

average the viral load in saliva is higher than the standard sampling

technique. In addition to that, our results were not affected by changing

early morning saliva to random saliva as compared to our previous

study.15 However, we presume the discrepancy between studies per-

formed in other countries is possibly due to distinct sampling techni-

ques, detection kit, study population, and prevalence of the disease.

Nevertheless, 1/3 (32.2%) of the studied candidates showed dis-

cordant results for detection of SARS‐CoV‐2. Of which 17 of the stu-

died candidates had their random saliva test positive for SARS‐CoV‐2
while their NP+OPS were negative. These could be due to the prop-

erty of saliva which acts as inhibitor for RNA decomposition.24 It is also

possible that nasopharyngeal debris (including virus RNA) drained into

the oropharynx and mixed with saliva or the salivary gland, the tongue

and oropharyngeal mucosa being an entry point for the virus to re-

plicate as described by Azzi et al.25 On the other hand, we had five

candidates who were positive for SARS‐CoV‐2 by NP+OP but tested

negative for saliva. Of these five NP +OP specimens, the average

Ct value of ORF1a and N genes were 31.9 ± 6.03 and 32.5 ± 7.23, re-

spectively. However, the Ct value of these genes in random saliva were

TABLE 2 Kappa coefficient (κ), agreement (%), McNemar test,
prevalence, sensitivities, and specificities estimated by assuming
either NP +OP swabs or random saliva as a perfect gold standard

Cohort study

Pokok Sena

detention

centre (n = 210)

Airport

travelers (n = 352)

Total positive case, (n) 59 6

Kappa coefficient, κ (p) 0.75 (p < .05) 0.66, (p < .05)

Agreement, (%) 91.0 99.1

McNemar test, (p) <.05 .564

Prevalence by Bayesian

LCM, (95% credible

interval)

28.0 (22.1–34.7) 1.2 (0.4–2.9)

Nasopharygneal and oropharyngeal swabs (NP +OP swabs) (95%

credible interval):

(i) Sensitivity 72.2 (60.0–82.6)

(ii) Specificity 99.4 (98.2–100)

(iii) PPV 93.9 (82.6–99.7)

(iv) NPV 96.6 (94.6–98.0)

Random saliva (95% credible interval):

(i) Sensitivity 95.0 (83.8–100)

(ii) Specificity 99.9 (98.9–100)

(iii) PPV 98.9 (91.0–100)

(iv) NPV 99.4 (97.8–100)
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out of range for the kit's interpretation. This could further be explained

by dilution effect of normal saline to the saliva as the samples were

congeal and viscous during extraction process. We presume the Ct va-

lue of these samples as described in our study are possibly affected by

dilutional effect, which may add up to false‐negative results.

Previous studies reported the paradoxical sensitivity of saliva

over nasopharyngeal swab for detection of SARS‐CoV‐2.26,27 These

problems were due to disease misclassification by the imperfect gold

standard. However, the airport cohort was inadequate to confirm

random saliva as a better alternative than NP +OP swabs due to

lower prevalence among KLIA travelers. In contrast, the sensitivity

and specificity values estimated by our study are unbiased because

they are based on the true status of candidates predicted by the

Bayesian LCM. The true sensitivity of random saliva for detecting

SARS‐CoV‐2 estimated by Bayesian LCM was 95.0% which is higher

than 72.2% estimated for NP +OP swabs. In addition, the Bayesian

LCM also estimated that the true specificity of random saliva was

higher than NP +OP swabs similarly to Isao et al.21

Other than sharing diagnostic benefits, self‐collected random saliva

has significant advantages over NP+OP swabs mainly in the setting of

mass screening. Self‐collected random saliva is noninvasive which may

enhance recruitment of individuals for community surveillance, requires

no trained personnel for collection, able to scale down nosocomial

hazards by negating the need for direct healthcare worker‐patient
interaction and cost effective by easing the supply demands on swabs,

PPE, and manpower. Overall, in the long run, as the current pandemic,

saliva abates the demands on swabs and PPE,28 reduces plastic

pollution as a result of COVID‐19 pandemic29 and reduces the burnout

rate of healthcare workers which ensures optimal patient care.30

4.1 | Limitation of this study

In this study, we only recruited adult candidates, therefore, further

evaluation should be conducted in the pediatric population. Sec-

ondly, the spectrum of the disease ranges from asymptomatic to

severely ill patients but our study only focused on homogenously

composed asymptomatic carriers. This is due to our priority of iden-

tifying asymptomatic carriers that is in parallel with the prevention

and containment of disease outbreaks in the communities. Thirdly,

the random saliva collected were not screened microscopically to

evaluate the quality of saliva. Lastly, the Ct value in this study por-

trays a trend in viral load but not the viral copies per ml as we lacked

a reliable quantified positive control in our laboratory.

5 | SUMMARY AND CONCLUSION

Random deep throat/oropharyngeal saliva is an alternative for na-

sopharyngeal and oropharyngeal swab for detection of SARS‐CoV‐2
via qRT‐PCR assay as it has a better sensitivity and detection rate.

Self‐collected random deep throat saliva provides accurate results

for the diagnosis of COVID‐19 and could enable surveillance testing.
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