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Abstract: Tauopathies are neurodegenerative diseases characterized by the pathological accumulation
of microtubule-associated protein tau (MAPT) in the form of neurofibrillary tangles and paired helical
filaments in neurons and glia, leading to brain cell death. These diseases include frontotemporal
dementia (FTD) and Alzheimer’s disease (AD) and can be sporadic or inherited when caused by
mutations in the MAPT gene. Despite an incredibly high socio-economic burden worldwide, there are
still no effective disease-modifying therapies, and few tau-focused experimental drugs have reached
clinical trials. One major hindrance for therapeutic development is the knowledge gap in molecular
mechanisms of tau-mediated neuronal toxicity and death. For the promise of precision medicine
for brain disorders to be fulfilled, it is necessary to integrate known genetic causes of disease,
i.e., MAPT mutations, with an understanding of the dysregulated molecular pathways that constitute
potential therapeutic targets. Here, the growing understanding of known and proposed mechanisms
of disease etiology will be reviewed, together with promising experimental tau-directed therapeutics,
such as recently developed tau degraders. Current challenges faced by the fields of tau research and
drug discovery will also be addressed.
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1. MAPT and Tauopathy Spectrum Disorders

Over a century after its first described case, Alzheimer’s disease (AD) is the most prevalent form of
tauopathy and the most common cause of dementia (~60–80% of cases), and its frequency of incidence is
rapidly increasing as the world’s population aged >65 continues to increase. Approximately 5.8 million
Americans lived with AD in 2019, and this is predicted to double by 2050 [1,2], together with a financial
burden predicted to increase from its current annual US $259 billion to more than $1 trillion by 2050.
This trend is predicted to be global unless means of delaying, preventing, or treating AD are found [1,3].

The microtubule-associated protein tau (MAPT) is a neuronal protein that regulates microtubule
stability and dynamics as well as axonal transport [4,5]. Tau binds to microtubules via repeat
microtubule-binding domains in the C-terminus, and this process is regulated by phosphorylation
of sites within and adjacent the binding region (Figure 1a,b) [6]. The N-terminal projection region
plays a role in signal transduction and membrane interactions (Figure 1a) [6]. Other tau physiological
functions include interaction with the plasma membrane and scaffold proteins, signal transduction,
DNA/RNA protection, and regulation of synaptic function [7,8]. In the human central nervous system
(CNS), six tau isoforms are expressed by alternative splicing of the MAPT exons 2, 3, and 10, of which
the longest isoform 2N4R tau (441 amino acids) contains two N-terminal inserts and four repeat
domains in the C-terminus region (Figure 1a) [9]. This process is developmentally regulated and
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specific to each brain region based on physiological function [10,11]. Exons 2 and 3 are translated into
the N1 and N2 domains, respectively, producing the 0N, 1N, and 2N tau isoforms of the N-terminal
projection region (Figure 1a). In the human adult brain, the 2N isoform is the least expressed
while the 1N isoform is the most abundant [10]. Exon 10 encodes the second microtubule-binding
repeat domain in the C-terminal region (Figure 1a). Inclusion of exon 10 leads to the expression
of three tau isoforms with four microtubule-binding domains (4R-Tau), whereas exclusion of exon
10 leads to expression of three isoforms of 3R-Tau [10,12]. These four repeat domains (R1–R4,
Figure 1a) are essential for tau ability to regulate stability of microtubules and support axonal transport.
For this reason, relative 3R/4R expression is also developmentally regulated. During the fetal stage,
3R-Tau (0N3R) is the main isoform present, allowing for dynamic axonal properties conducive to
synaptogenesis and formation of neural pathways, followed by postnatal expression of all isoforms.
In the adult brain, 4R-Tau binds more tightly to microtubules and the overall 3R/4R ratio is maintained
at 1:1 [10,11]. Despite its protein domains, tau’s native state defies the traditional ‘structure-function
paradigm’ by lacking a well-defined three-dimensional structure, being classified as an intrinsically
disordered protein. This is a characteristic of proteins that require rapid conformational changes
and structural plasticity but is also a characteristic of proteins with high propensity for misfolding
that play a role in the pathogenesis of neurodegenerative diseases [13,14]. Tau misfolding and
aggregation into highly ordered β-sheet-rich paired helical filaments (PHFs) that subsequently deposit
in the form of neurofibrillary tangles (NFTs) (Figure 1b) are implicated in a heterogeneous group
of aging-related neurodegenerative disorders referred to as tauopathies, which include Alzheimer’s
disease (AD), Pick’s disease (PiD), frontotemporal dementia (FTD), and progressive supranuclear palsy
(PSP) (Table 1) [15–29]. While many MAPT mutations increase tau’s propensity for aggregation and
toxicity, and are the cause of dominantly inherited tauopathies [30], the majority of tauopathies are
sporadic with variable clinical and pathological presentations [15]. Tauopathies are mainly considered
gain-of-function proteinopathies but, despite increasing understanding of tau physiology and role
in disease, the mechanisms of tau aggregation with disruption of molecular pathways leading to
neuronal death are still poorly understood [31–33]. Evidence indicates that native tau is highly soluble,
contains several charged and hydrophilic residues, and shows little tendency for aggregation. Thus,
for tau to become aggregation competent, it must undergo conformational and post-translational
modifications (PTMs) within and near the hexapeptide motifs in the C-terminal repeat domain
(Figure 1b,c) [34,35], which also makes 4R-Tau more aggregation prone [36,37]. Little is known about
the consequences of tau loss-of-function, but reduced binding of hyperphosphorylated tau to axonal
microtubules may alter their structure and/or function, disrupting axonal transport, driving synaptic
dysfunction and loss, and promoting neurotoxicity.
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Figure 1. Human microtubule associated protein Tau physiological function and in disease. (a) 
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isoforms, containing three (3R) or four (4R) microtubule (MT)-binding domains in the C-terminus, 

and zero, one or two N-terminus domains. (b) Simplified representation of Tau function as a regulator 

of microtubule stability and dynamics in human neurons. Tau binding is regulated by 

phosphorylation via the concerted action of kinases and phosphatases. In disease Tau becomes 

hyperphosphorylated and no longer binds microtubules, contributing to axonal dysfunction. 

Together with post-translational modification, Tau misfolding drives oligomerization and 

aggregation into larger order insoluble fibrils such as NFTs and PHFs found in the somatodendritic 

space and processes of CNS neurons. (c) Tau undergoes extensive post-translational modification 

(PTMs), which are exacerbated in disease. Indicated in the 2N4R Tau isoform are the locations of 

highest PTM density, including phosphorylation, acetylation, O-GlcNAcylation and ubiquitination. 

Also indicated are sites of phosphorylation prevalent in tauopathies and key regulatory kinases. 

Figure 1. Human microtubule associated protein Tau physiological function and in disease. (a) Alternative
splicing of the MAPT gene leads to developmentally regulated expression of six Tau isoforms,
containing three (3R) or four (4R) microtubule (MT)-binding domains in the C-terminus, and zero,
one or two N-terminus domains. (b) Simplified representation of Tau function as a regulator of
microtubule stability and dynamics in human neurons. Tau binding is regulated by phosphorylation
via the concerted action of kinases and phosphatases. In disease Tau becomes hyperphosphorylated
and no longer binds microtubules, contributing to axonal dysfunction. Together with post-translational
modification, Tau misfolding drives oligomerization and aggregation into larger order insoluble
fibrils such as NFTs and PHFs found in the somatodendritic space and processes of CNS neurons.
(c) Tau undergoes extensive post-translational modification (PTMs), which are exacerbated in disease.
Indicated in the 2N4R Tau isoform are the locations of highest PTM density, including phosphorylation,
acetylation, O-GlcNAcylation and ubiquitination. Also indicated are sites of phosphorylation prevalent
in tauopathies and key regulatory kinases.
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Table 1. Summary and key features of primary and secondary tauopathies categorization.

Clinical Symptomology Tau Neuronal Pathology Glia Pathology Affected Brain Regions

Primary
Tauopathy

Pick’s disease (PiD)
Behavioral change, social

disinhibition, eating disorder,
absent/late parkinsonism.

3R
Round cytoplasmic

inclusions (Pick bodies),
rare NFTs.

Ramified astrocytes.

Dentate gyrus of the hippocampus,
frontal and temporal neocortical
layers II, IV. Frontal, insular and

anterior temporal cortices.

Behavioral variant of
FTD (bvFTD)

Behavioral disinhibition, apathy,
empathy loss, compulsiveness,

executive and cognitive dysfunction.
3R > 4R Cytoplasmic NFTs, short

dystrophic neurites.

Orbitofrontal, dorsolateral
prefrontal, medial prefrontal

cortices. Subcortical brain nuclei.
Temporal-parietal lobes.

Progressive supranuclear
palsy (PSP)

Apathy, anxiety, sleep disturbance.
Spectrum from pure motor to pure

cognitive presentations.
4R NFTs, neuropile threads. Tufted astrocytes,

somatodendritic coiled bodies.

Subthalamic nucleus,
basal ganglia, brainstem.

Posterior mesencephalic cortex.

Corticobasal syndrome
(CBS)

Asymmetric motor symptoms,
apraxia, sensory impairment.

Spectrum from pure motor to pure
cognitive presentation.

4R

NFTs, neuropile threads,
ballooned neurons,

pleomorphic inclusions
(pre-tangles).

Annular clusters of short
fuzzy cell processes,

astrocytic Tau plaques,
argyrophilic inclusions.

Frontoparietal cortex, striatum,
substantia nigra.

Argyrophilic grain
disease (AGD)

Personality change, emotional
imbalance, memory failure. 4R

Argyrophilic grains,
dendritic straight filaments

and smooth tubules.

Thorn-shaped astrocytes,
coiled bodies.

Medial temporal lobe, entorhinal
cortex, hippocampus, amygdala.

Aging-related Tau
astrogliopathy (ARTAG) Cognitive decline. 4R - Thorn-shaped and

granular-fuzzy astrocytes.

Medial temporal lobe, lobar
(frontal, parietal, occipital, lateral
temporal), subcortical, brainstem.

Globular glial
tauopathy (GGT)

Behavior change, cognitive decline,
motor neuron

disease (Parkinsonism).
4R -

Globular inclusions in
astrocytes and

oligodendrocytes.

White matter, limbic and
isocortical regions. Hippocampus.

Primary progressive
aphasia (PPA)

Language deterioration, loss of
semantic memory. 3R, 4R NFTs, amyloid plaques Globular astrocytic inclusions. Anterior and temporal lobes,

parietal lobe. Frontoinsular cortex

Primary age-related
tauopathy (PART) Cognitive impairment. 3R, 4R NFTs, neuropile threads Medial temporal lobe. Medial temporal lobe.

Tangle-only dementia
(TOD) Late-onset dementia. 3R, 4R Intracellular PHFs, NFTs and

neuropil threads. Hippocampus.

Secondary
Tauopathy

Alzheimer’s disease (AD) Memory loss, cognitive dysfunction,
social behavior changes. 3R, 4R NFTs, neuropile threads,

neuritic plaques.
Entorhinal cortex, hippocampus,

cerebral cortex.

Chronic traumatic
encephalop-athy (CTE)

Memory loss, confusion,
personality/behavior changes.

Motor decline.
3R, 4R

P-Tau aggregates around
small vessels, TDP-43

cytoplasmic inclusions.

P-Tau aggregates around
small vessels.

Cortical sulci, isocortex layers
II–III, hippocampus,
subcortical nuclei.
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Diseases where tau has a direct and predominant causal effect on neurodegeneration are referred to
as ‘primary tauopathies’, which include progressive supranuclear palsy (PSP), corticobasal degeneration
(CBD), Pick’s disease (PiD), aging-related Tau astrogliopathy (ARTAG), argyrophilic grain disease
(AGD), primary age-related tauopathy (PART), and tangle-only dementia (TOD) (Table 1) [38,39].
Other amyloidosis that are also associated with the formation of tau inclusions, but where tau is not
the primary or unique pathological feature, such as AD and chronic traumatic encephalopathy (CTE),
are referred to as ‘secondary tauopathies’ (Table 1) [39,40]. The distinction between the two categories
does not imply that there is not an equally important role for tau in the pathophysiology and relevance
for tau-directed therapeutics. Although beyond the scope of this review, Table 1 summarizes key
aspects that highlight the complexity and diversity of disorders associated with tau pathology. To date,
there is no cure or disease-effective treatment that targets the cause of any tauopathy [41].

Approved symptomatic therapeutics include acetylcholinesterase inhibitors and memantine for
AD to treat cognitive and behavioral symptoms, levodopa or dopamine agonists for FTD-associated
parkinsonism motor dysfunction, and antidepressants (e.g., selective serotonin reuptake inhibitors).
Current research has shown progress on different strategies to mitigate tau accumulation,
prevent aggregation, and promote clearance [41,42]. Growing evidence suggests that early Tau
PTMs, misfolding and oligomerization, impaired protein degradation, and Tau relocalization have
higher impact on toxicity than late-stage PHFs and NFTs. Based on this, multiple experimental
therapeutic approaches focus on targeting early forms of toxic tau and in promoting enhancement of
protein clearance. So far, the strategy showing the greatest progress as measured by advancement
into clinical trials is tau immunotherapy, where humanized tau antibodies have reached clinical trials
for AD, PSP, and PPA. Even so, a major roadblock for therapeutic development is the still incomplete
understanding of the molecular mechanisms and pathways involved in tau-mediated neuronal toxicity
and death, which constitute probable therapeutic targets. In an effort to connect the knowledge from
these two research fields, here we will review the current and ever-evolving understanding of the
mechanisms of tau pathogenicity and respective approaches to therapeutics development.

2. Molecular Mechanisms of Tau Pathology

There are two non-mutually exclusive principal models for the mechanism of tau-induced neuronal
pathology [43,44]. One model focuses on tau’s propensity for misfolding, oligomerization and fibril
formation, and toxic gain-of-function, which is exacerbated by tau PTMs and inefficient clearance
(Figure 2) [45,46]. The other model focuses on tau loss-of-function as a result of abnormal PTMs and
sequestration into aggregates, leading to disruption of axonal integrity and transport (Figure 2) [43,47].
Here, we will review several molecular mechanisms and protein modifications associated with
tau-mediated toxicity in the CNS, which represent potential therapeutic targets of tauopathy.
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Figure 2. Summary of proposed mechanisms of Tau pathogenicity and corresponding experimental
therapeutic approaches. Tau toxicity can be driven by loss-of-function leading to microtubule
depolymerization and axonal transport disruption; and it can be driven by gain-of-function of
aberrant Tau oligomers, aggregates and fibrils associated with neuronal toxicity, pathology spread and
ultimately death. Current development of therapeutic agents include reduction of MAPT expression by
ASOs (purple), small molecule (green) inhibitors of PTMs and aggregation, enhancement of Tau folding
and/or clearance mechanisms (brown), Tau-specific degraders (red) and anti-Tau immunotherapies
(blue). Solid arrows represent known and/or direct effects; dashed arrows represent indirect/proposed
mechanisms; flat-ended connections represent inhibitory effect.

2.1. Protein Post-Translational Modifications

Tau PTMs, such as phosphorylation, acetylation, ubiquitination, and SUMOylation regulate
Tau function and degradation, via temporal and regional regulation of the protein affinity for
microtubules [35,48]. Tau has more than 80 phosphorylation sites reported [47,49], 23 acetylation
sites [50–52], and several putative ubiquitination sites [45]. However, PTMs are also associated
with tau pathology (Figure 1c). Increases in tau negative charge by phosphorylation or removal
of the lysine positive charge by acetylation has a significant effect on tau dissociation from
microtubules [53] and increases its propensity for self-oligomerization and fibril formation, as evidenced
by hyperphosphorylated tau being the primary component of NFTs. Additionally, high MW soluble
P-tau species, but not fibrillary tau, have been referred to as “bioactive forms” that can be released by
neurons and taken up by neighboring cells, contributing to abnormal tau spreading and templated
misfolding [54].

Phosphorylation of tau at several Ser/Thr residues, including Ser262, Ser356, and Ser396, is detected
at basal levels and is likely relevant for the regulation of tau localization and binding to tubulin [55,56].
However, several other tau phospho-sites are absent during brain development or in cognitively
healthy adults but are found enriched in disease [57,58]. Phosphorylation of Ser422 is almost never
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detected in cognitively healthy adults or in the fetal brain [59] but is detected early in AD [60] and
shows high correlation with loss of cholinergic neurons and cognitive impairment [61]. Therefore,
protein kinases involved in the pathological phosphorylation of tau at Ser422 could represent promising
therapeutic targets. One example is the CNS-specific tau tubulin kinase TTBK1 that phosphorylates tau
at several phospho-epitopes, including Ser422 (Figure 1c) [62–64]. Perhaps one of the best-characterized
phospho-sites for tau is the Ser202/Thr205 (recognized by the AT8 antibody, Figure 1c), which drives
tau fibril formation and is used to assign Braak stage based on a high occurrence in NFTs and
high correlation with postmortem pathology [65]. In addition, phosphorylation at the C-terminus
Ser396/Ser404 (Figure 1c) is one of the earliest events in AD preceding the formation of tau fibrils [66].
Antibodies towards this epitope (e.g., PHF1) have been widely used to follow tau aggregation and NFT
formation. Additional phosphorylation sites include Ser208 in AD, which is found at 3x the normal
levels in CSF, affecting tau function and driving aggregation [67,68]. This phospho-epitope is also
found in the brain of PS19 (Tau-P301S) and rTg4510 (Tau-P301L) transgenic mouse models, in PSP
tufted astrocytes, and in CBD astrocytic plaques [67]. A recent study by Dujardin et al. [69] revealed
that the rate of AD progression is correlated with specific tau phospho-epitopes, namely Thr231/Ser235
and Ser262 (Figure 1c), which also correlate with tau seeding activity. Several kinases and phosphatases
have been shown to regulate tau phosphorylation in physiological and disease contexts, and an
imbalance in kinase/phosphatase activity is believed to contribute to the accumulation of P-Tau
in disease. This has been extensively reviewed by others [70,71]. Briefly, tau kinases include
proline-directed glycogen synthase kinase-3 (GSK-3), cyclin-dependent kinase 5 (CDK5), and 5′

adenosine monophosphate-activated protein kinase (AMPK); non-proline-directed kinases casein
kinase 1 (CK1), microtubule affinity-regulating kinases (MARKs), and cyclic AMP-dependent protein
kinase A (PKA); tyrosine kinase FYN; and Tau tubulin kinase TTBK1 [72]. Tau phosphatases include
protein phosphatase-1, -2A, and -5 (PP1, PP2A, PP5, respectively). In transgenic mouse models,
reduced PP2A activity and a parallel increase in CDK5/GSK3 activity cause early onset of tau
hyperphosphorylation and accumulation [73,74].

In neurites, phosphorylation and ubiquitination of tau NFTs are found at comparable proportions
and in proximal sites. While tau ubiquitination is a fundamental PTM that promotes tau targeting
for degradation, ubiquitinated tau has also been shown to accumulate in both early and intermediate
stages of disease. In the AD brain, mapping of aggregated tau ubiquitination identified 28 Lys residues,
reported to be associated with tau conformational changes and increased phosphorylation [45,75].
A more intact conformation of the N-terminus of tau seems to facilitate ubiquitination, whereas late
truncated and more compressed misfolding of the N-terminus may not be permissive to ubiquitination,
suggesting that ubiquitination occurs at stages of disease when tau is either full length or only truncated
at Asp421 (by caspase 3). Thus, the timing of tau ubiquitination, and changes in conformation and
proteolytic processing are markers of the evolution of tau pathology in AD. Nevertheless, tau can adopt
different conformations is different tauopathies, which will influence the pattern of ubiquitination,
particularly for residues along the proline-rich region (Lys163, Lys180, Lys190, Lys224, Lys228, Lys234,
Lys240) [75]. While current analysis methods can detect tau ubiquitination, they cannot definitively
distinguish between mono- or poly-ubiquitination, or the type of polyubiquitin linkage (Lys6, Lys11,
Lys27, Lys33, Lys48, and Lys63) associated with tau conformational changes and NFT formation [76].
Progress in this area of research will be relevant to also determine how the process of tau proteolysis
by the proteasome or autophagy is affected by aberrant tau ubiquitination in disease.

Physiological tau acetylation is mediated by the p300/CREB-binding protein (CBP) HAT, and some
studies have also reported that tau has intrinsic acetyltransferase activity [50,52,77,78]. Acetylation of
tau inhibits binding to microtubules, increasing microtubule dynamics [79], and occurs in sites that can
potentially compete with ubiquitination and affect tau degradation propensity (Figure 1c). In disease,
tau hyper-acetylation is considered a major contributing factor to tau pathogenicity [80], and is found
predominantly increased on the microtubule-binding regions (Lys174, Lys274, Lys280, Lys281) by
p300, which is also elevated in disease [50,77]. Acetylation of tau can increase the propensity for
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oligomerization and aggregation, particularly in P-Tau, and can promote neuronal toxicity by interfering
with microtubule assembly and neuronal plasticity, obstructing AMPA receptor trafficking and synapse
potentiation [50,81,82]. Acetylated tau has served as a marker for pathology in vivo and as a diagnostic
biomarker for AD [52]. Importantly, some studies have also reported that hyper- vs. hypo-acetylation
of particular tau Lys residues can modulate tau clearance and NFT assembly [51,78]. For instance,
acetylation of Lys259/353IGS motifs was found to be protective by inhibiting the phosphorylation of
nearby Ser residues that otherwise would promote aggregation [78]. This is an important observation
that highlights the importance of balance and competition between PTMs in rendering tau pathogenic.
Tau Lys274 acetylation is one of the most described in disease, but its effect at the molecular level is not
yet clear.

Proteolysis is another protein modification that can substantially increase tau aggregation
propensity, toxicity, and transcellular propagation, and therefore disease progression. Tau truncation
together with abnormal phosphorylation can induce conformational changes and misfolding of
the N-terminus [83–85], and the truncated fragments can seed aggregation or spread between
neurons. Tau proteolytic fragments are found in the CSF and plasma of tauopathy patients,
and are now considered novel disease progression biomarkers [86]. As such, modulation of tau
proteolysis is a potential therapeutic strategy aimed at selectively blocking tau proteases that generate
disease-associated fragments. On the other hand, tau proteolysis can play a beneficial role from
the perspective of increased processing and protein clearance. A detailed overview of known tau
proteases and role in disease can be found elsewhere [86]. Briefly, the two most studied tau cleavage
sites are at the C-terminus: one at Asp421 cleaved by caspase-3, and the other at Glu391 cleaved by
an unknown enzyme [87–89]. Caspase-3 cleavage at Asp421-Ser422 results in the production of the
NTF Tau-421 (or Tau-C) fragment found in many tauopathies, which is highly aggregation prone.
The caspase-6-generated fragment at Asp402-Thr403 results in the production of the NTF Tau-402,
which has been used as a CSF biomarker for AD. Increased caspase-6 is found in aging, and in sporadic
and familial forms of AD. Calpain-1 and calpain-2 have also been reported to cleave tau at Lys44-Glu45
and Arg230-Thr231, respectively, but with opposite consequences for the fragments produced on
synaptic function disruption and neuronal toxicity. In mice, the calpain-2-generated Arg230-Thr231 tau
fragment impaired anterograde and retrograde organelle transport, induced synaptic loss, and caused
profound hippocampal pyramidal cell death. Cathepsin D has also been shown to cleave tau at several
residues and is a lysosomal proteolysis enzyme that contributes to tau clearance via autophagy. Finally,
the puromycin-sensitive aminopeptidase (PSA) is a predominantly cytoplasmic neuronal enzyme
enriched in the brain, identified as a genetic modifier of tau-associated toxicity in model systems,
and found to be increased in FTD patient brains, so far suggesting a neuro-protective role in tauopathy
and other proteinopathies [90].

2.2. Tau Misfolding and Phase Transition

Recent breakthroughs in the resolution of disease-associated tau conformations and fibrils have
made evident that distinct conformers of monomeric misfolded tau can assemble into aggregates
and hydrogen-bonded protofilaments that are packed in different ways to form fibrils that originate
unique molecular signatures for each tauopathy, frequently referred to as disease-specific strains [91,92].
Growing evidence shows that brains from different individuals with the same tauopathy reveal the
same tau strains, and therefore each disease is characterized by its own unique tau fold [91,93,94].
Tau isoform composition, PTMs, and interactions with cofactors determine which structures are formed
in the brain, which are different from in vitro tau aggregates. Notably, insoluble tau isolated from FTD
brains is rarely composed of a single conformational entity and is typically a mixture of up to three
different conformers that together may give rise to distinct neurological phenotypes. This suggests
that diversity of tau folds is intrinsic to the pathogenesis of each form of tauopathy and that effective
therapeutic interventions will need to address evolving repertoires of misfolded tau species rather
than singular static molecular targets. Moreover, understanding filament formation and deciphering
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the atomic coordinates of tau filaments will be useful for the design of aggregation inhibitors, as well
as diagnostic PET (positron emission tomography) ligands specific for each tauopathy.

In most cases, tau aggregation encompasses the transition from a disordered unfolded monomeric
state into a highly ordered fibrillar conformation (Figure 1b) [95,96]. This process first involves tau
monomers’ transition into aggregation-competent intermediate conformations that then irreversibly
assemble into compacted higher order aggregates. Due to a high energy barrier for the formation of the
intermediate conformation, tau aggregation is a slow process, driven by conditions that favor compact
conformations of tau [97]. In recent years, it has been recognized that pathogenic tau undergoes
liquid–liquid phase separation (LLPS), which describes the protein’s progressive condensation
into discrete assemblies that dynamically exchange biomolecules with its surroundings [98,99].
Phase-separated tau is thought to be the main template for aggregation [100–103], as these tau droplets
transition from a gel-like into an aggregate state of lower energy and grow into non-spherical solid
aggregates. There might also be a physiological role for tau LLPS that may include regulation of
stress granule formation and nucleation of microtubule polymerization [104–106]. There are still many
unanswered questions on what drives tau LLPS and what non-tau molecular factors are involved.
Autosomal dominant tau mutations can significantly enhance tau phase separation and oligomerization
but result in droplets that display slower dynamics compared to wild-type tau. This indicates that
prolonged phase separation leads to more static tau structures and facilitates progressive accumulation
of “stable” tau oligomeric forms that are directly linked to mechanisms of tau toxicity [100]. That is,
the mutation makes tau more susceptible to pathogenic conformational changes by extended phase
separation and time-dependent adoption of toxic conformations and formation of stable oligomers.
Tau-P301L, one of the most disease-prevalent mutations, showed the greatest propensity for oligomer
formation, following an extended phase separation and formation of non-filamentous toxic tau
conformations. These findings suggest that tau phase separation represents a critical process by which
tau pathogenic toxic conformations are adopted.

Electrostatic forces are predominant drivers for LLPS of intrinsically disordered proteins
like tau [107], which is further facilitated by crowding agents, RNA [102], and PTMs, such as
phosphorylation [35,108,109], that drive tau loss-of-function, promote aggregation, and present with
distinct profiles across tauopathies [48,83,88,108,109]. Spanning along the molecule, phosphorylation
of several Ser/Thr residues (Figure 1c) introduces negative charges, changes the electrostatic
interactions along the polypeptide backbone, and enhances the kinetics of tau LLPS. The degree
of hyper-phosphorylation determines the growth rate and extent of droplet formation [100].
Tau acetylation is also thought to have an effect on LLPS. The main sites of tau acetylation are
concentrated in the positively charged central region of tau and can significantly alter tau electrostatic
properties (Figure 1c). However, a study by Ferreon et al. [110] showed a dramatic reduction
in acetylated tau droplet formation, suggesting that hyper-acetylation of tau in fact disfavors
LLPS. This study puts forward a hypothesis where hyper-acetylation disfavors full-length tau
LLPS by neutralizing the Lys positive charges, disrupting opposite-charge attractions that help
support tau interactions and phase transition [110]. Even though acetylation per se may not drive
aggregation, some of the tau Lys residues that are acetylated (Lys254, Lys311, Lys353) are also sites
of ubiquitination [111]. Thus, acetylation will compete and prevent ubiquitination, and promote tau
evasion from the ubiquitin-proteasome system and degradation, consequently promoting further
tau accumulation. Furthermore, hypo-acetylated tau at key motifs in the microtubule-binding
domains shows increased hyperphosphorylation, which drives tau aggregation [78]. So, indirectly,
tau acetylation is still associated with increased tau aggregation. In support of this, AD mice treated
with the deacetylase sirtuin 1 (SIRT1) showed a reduction in neuronal loss, whereas deletion of SIRT1
enhanced tau pathogenicity [112].

The molecular forces driving LLPS and conformational changes among tau PTMs and
mutations are not fully understood, but it is likely that both modifications change tau to facilitate
stronger intermolecular interactions that underlie the enhanced liquid droplet formation in disease.
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Understanding the physical forces and biochemical changes driving tau oligomerization is critical to
be able to design effective tau binders, either small-molecule aggregation inhibitors or antibodies with
therapeutic potential.

2.3. Tau Spreading and the Prion-Like Model

In AD, tau pathology propagates in a temporal and sequential mode from medial temporal regions
to the basal and lateral temporal cortices, inferior parietal cortices, posterior cingulate cortices, and other
associated cortices [113]. Neurofibrillary tau appears to spread along neurons that are anatomically and
synaptically connected, and these networks show the highest correlation with cognitive decline and
clinical severity seen in patients [113,114]. An important discovery was that tau aggregates purified
from patients’ brain tissue can template tau aggregation and accelerate propagation of pathology
in transgenic cells and animals [115,116]. Because these amyloid assemblies can seed and template
aggregation (“replication phenomenon”) of a homologous protein in naïve cells, an emerging view is
that of tau propagation through the brain by a prion-like mechanism, where the conformation of the
tau filaments determines its seeding characteristics [113,117–121]. In favor of a ‘spreading’ model of
pathology, tau is also detected in the brain interstitial fluid (ISF) of transgenic mice [122] and in the
CSF of AD patients, where both tau and P-Tau are elevated, suggesting a role for extracellular tau in
disease pathogenesis and/or a consequence of disease progression. While a fraction of tau found in the
CSF may be the result of passive tau release from dying cells [123], multiple lines of evidence suggest
that active cellular processes are also involved in tau secretion.

Multiple vesicle-mediated and non-vesicular processes have been linked to the transmission of
tau pathological species [54,118,124]. Extracellular tau can be found both as a free protein or in vesicles,
such as exosomes and ectosomes. Recent studies have shown that tau can be released to the extracellular
fluid both in vivo and in cultured cells, and that this is stimulated by neuronal activity [125,126].
Secretion of tau at the synapses during normal neuronal activity may be a physiological process
where monomeric tau could have some yet undetermined signaling role and be unrelated to tau
propagation. In animal transgenic disease models, a great fraction of pathological tau appears to
be localized at synapses, and synaptosomes isolated from human AD brains were shown to contain
more aggregated P-Tau than those of healthy controls [124]. Neuronal depolarization-associated
presynaptic activity and calcium fluctuations are associated with the release of ectosomes and exosomes
vesicles, which can facilitate trans-synaptic tau spreading into recipient post-synaptic cells [120,127,128].
This was demonstrated in cultured neurons as well as with human AD CSF, where tau-containing
exosomes were released into the extracellular space and were then taken up by synaptically connected
neurons [127]. Tau has also been found in ectosomes from cultured neurons, mouse brain ISF, and healthy
controls’ CSF, suggesting that secretion in ectosomes could also be part of a physiological phenomenon,
while exosomal tau secretion may prevail under pathological conditions [124]. Misfolded tau is
also delivered as cargo to endo-lysosomes during cell stress and overload of the proteasome system,
for secretion to the extracellular space through fusion with the plasma membrane (vesicle-free form).
A recent study uncovered that several components of the endosomal sorting complexes required for
transport (ESCRT) machinery, including charged multivesicular body protein CHMP2A and CHMP2B,
are involved in tau propagation [129]. These findings suggest that “leakiness” of the endo-lysosomal
compartment can contribute to propagation of aggregating tau.

Extracellular tau can be taken up by neurons through several mechanisms, including receptor
mediated endocytosis (e.g., heparan sulfate proteoglycans (HSPGs) receptor-mediated uptake),
phagocytosis, and pinocytosis [130,131]. Work led by Diamond et al. in mouse neural progenitor cells,
utilizing tau-repeat domain fragment pre-formed fibrils, showed that tau uptake, in a similar way to
prion proteins, occurs via binding to HSPGs on the cell surface [132]. Tau binding to HSPGs stimulates
tau cellular uptake via pinocytosis (i.e., fluid phase endocytosis) into large intracellular vacuoles, and in
turn this can be blocked by pinocytosis inhibitors or genetic knockdown of a key HSPG synthetic
enzyme [130]. In this context, exostosin-2 (EXT2), a heparan sulfate-synthesizing enzyme, was found to



Int. J. Mol. Sci. 2020, 21, 8948 11 of 49

play a role in the regulation of tau uptake in human cell lines [133,134]. To determine whether specific
HSPG proteins or motifs mediate cellular entry of tau, Kampmann, Kosik et al. executed a CRISPR
interference screen to identify modifiers of inter-cellular tau propagation [133]. Key regulators of this
process were identified to be enzymes in the HSPG biosynthetic pathway. In particular, 6-O-sulfation
of heparins was critical for tau–heparan sulfate interaction and competition or removal of these motifs
from the cell surface reduced tau internalization [133]. The effect of 6-O-sulfation of heparins was
validated in human CNS cell lines, human iPSC (induced pluripotent stem cell)-derived neurons,
and mouse brain slices. This discovery can now develop into new strategies to halt tau transmission
and possibly disease progression.

Low-density lipoprotein receptors (LDLRs) are known to work in conjunction with HSPGs [135],
and so Rauch et al. [136] set out to investigate whether members of the LDLR family could modulate
tau internalization. LRP1 (low-density lipoprotein receptor-related protein 1), a receptor highly
expressed in neurons at the post-synaptic density [137], was identified to control tau uptake by cells
via endocytosis. CRISPR silencing of LRP1 in H4 neuroglioma cells almost completely blocked the
uptake of full-length soluble monomeric tau (2N4R isoform), inhibited the uptake of tau oligomers,
and reduced but did not completely inhibit the uptake of sonicated tau fibrils. The uptake of mutant
tau and P-Tau was also affected by LRP1 knockdown [136]. Based on cryogenic electron microscopy
(cryo-EM) structures of tau fibrils [91,93], interaction of tau with LRP1 is expected to occur via two
motifs: one within the microtubule-binding region, and one in the N-terminus or in the C-terminus [136].
In agreement with the working hypothesis that tau is propagated trans-synaptically, LRP1 knockdown
in human iPSC-derived neurons or in a tauopathy mouse model efficiently reduced the amount of
internalized tau and significantly reduced tau spreading [136,138].

Pathological tau involved in intercellular transmission has multiple biochemical forms, including
soluble monomeric, soluble oligomeric, insoluble aggregated, and fibrillar (Figure 1b) [120].
Many studies suggest that small tau oligomeric species are the most critical for pathological transmission
and toxicity [139]. In a variety of cellular models, including human iPSC-derived neurons, tau uptake is
a time-dependent process where monomeric, oligomeric, and sonicated fibrils are efficiently internalized
but intact fibrils are not [133]. In particular, iPSC-derived neurons show a preference for smaller tau
species whereas tau NFTs show almost no uptake. These observations suggest that the size of tau
species is a critical factor for cellular uptake. A recent study by Kayed et al. [140] demonstrated that
primary cortical neurons also show different efficiencies of tau species uptake. Soluble tau oligomers
from AD brain were internalized via HSPG-mediated endocytosis, whereas internalization of PSP brain
oligomers seemed to rely on HSPG-mediated as well as other pathways (e.g., clathrin mediated) [140].
Internalized exogenous tau oligomers were found to disrupt the autophagy–lysosomal pathway and
to enhance the levels of P-Tau, which both were attenuated by EXT2 knockdown. These findings
again implicated HSPG-mediated endocytosis and EXT2 in tau uptake and suggest that these could be
relevant pharmacological targets to prevent tau intercellular spreading [140].

A study by Dujardin et al. [69] showed that a key difference across AD cases of diverse clinical
severity was a striking variability in tau spreading and seeding activity, hyperphosphorylation extent,
and oligomerization state in postmortem tissue. In particular, tau seeding propensity showed a high
correlation with the levels of oligomeric P-Tau in each brain. That is, a more rapid course of disease
was associated with large soluble tau oligomers of P-tau [69]. With an elegant mass spectrometry
analysis, the authors showed that specific phosphorylated tau residues were associated with the rate
of disease progression and tau seeding activity, namely pThr231/Ser235 and pSer262. Interestingly,
epitopes found in the CSF of preclinical stages of AD (pThr181, pThr217) did not show association
with seeding activity. The results of this study suggest that P-Tau Thr181 and Thr217, found in CSF
during early disease stages, are not necessarily the most pathogenic tau species, also underscoring
the importance of soluble tau oligomeric assemblies over tau fibrils in AD. In light of the cryo-EM
studies showing two predominant types of tau fibrils in the AD postmortem brain [91,141], it seems
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that before the formation of end-stage fibrils, there is high heterogeneity in tau oligomers and seeding
capacity that show better correlation with disease severity.

In several diseases, tau also accumulates in astrocytes and oligodendrocytes (Table 1).
The morphologies of glial tau aggregates vary from astrocytic plaques in CBD to tufted astrocytes
in PSP, and oligodendroglial coiled bodies in both [15]. Although studies in the human brain have
shown glial cell death as an early feature of neurodegeneration [142,143], the mechanism underlying
the formation of glial tau pathology is less understood. Brain CBD-Tau and PSP-Tau were found to be
propagation competent in neurons and glia (astrocytes, oligodendrocytes) in the brain of non-transgenic
mice [144], suggesting that the formation of glial aggregates could be dependent on neuronal tau.
Narasimhan et al. [145] showed that oligodendrocytes can develop tau pathology independent of
neurons, but astrocytes cannot. In mice injected with human CBD-Tau or PSP-Tau, oligodendroglial
tau aggregates propagated across the brain along white matter independently of neuronal axons and
in the absence of neuronal tau pathology, whereas astrocytic tau aggregates did not. This suggests
that glial tau pathology has significant functional consequences independent of neuronal pathology,
with oligodendrocytes using their own processes for tau transmission [145]. Microglia may also play an
important role. Postmortem studies revealed deposits of tau in reactive microglia, but because microglia
do not express tau, this indicates that microglia had engulfed tau aggregates from the extracellular
space or from dead neuronal debris. Once internalized, microglia have the ability to degrade tau
under a certain threshold, above which excess tau leads to microglial dysfunction. While a correlation
between microglia activation and spreading of tau pathology has been reported, the mechanism by
which microglia transfer pathological tau to neurons is unknown [124].

The extent to which observations from in vitro systems, neuronal cell models, and transgenic
animals accurately represent disease progression in the human brain and fulfill the criteria for prion
classification has been vigorously debated. Moreover, extracellular tau levels in CSF and blood increase
in AD, but these changes appear to be better associated with Aβ deposition than with tau pathology,
because increased extracellular tau has not been observed in other tauopathies [146]. Most extracellular
tau species, in both control and AD CSF, are truncated before the microtubule domains and are not
seed competent. Thus, as there is limited evidence in humans for extracellular tau capable of seeding
aggregation, it is only a hypothesis that prion-like spread underlies the progressive accumulation
of tau pathology across neuropathologies. It is also not absolutely clear whether the spread of tau
pathology is due to neuronal connectivity or due to the differential vulnerability of specific neurons
or regions to tau pathology, or both. A growing understanding of the cellular processes involved
in the transmission of seed-competent tau, as well as the identity of these species, will be critical
for the development of effective therapeutic agents, chemical or immunological (Figure 2), that bind
to tau, blocking aggregation nucleation and propagation [147–149]. Likewise, identification of the
mechanism and receptors involved in transcellular propagation may lead to the development of
specific small-molecule inhibitors of tau secretion and uptake by neurons.

2.4. Protein Degradation Failure

The cellular quality control system is responsible for maintaining a healthy proteome and
relies on coordinated action of a multitude of chaperone functions and the proteolytic systems [150].
The autophagy-lysosomal pathway and the ubiquitin proteasome system (UPS) mediate the degradation
of these abnormal proteins (reviewed in [111,151]). In tauopathies, these systems’ efficiency is
challenged and overloaded by the time-dependent accumulation of misfolded aggregation-prone tau,
which occurs in parallel with a reported age-dependent decline in proteostasis maintenance [152–158].
Other proteases that also process tau, including calpain, caspases 3, 6, and 9, can lead to limited
tau proteolysis, which instead contributes to more toxicity through the generation of amyloidogenic
fragments [159].

The multi-subunit ATP-dependent protease 26S proteasome catalyzes the selective degradation
of proteins signaled for degradation by ubiquitination [160,161]. Ubiquitination of tau was first
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described upon the discovery that NFTs contained ubiquitin [162,163], and that tau in AD PHFs
was ubiquitinated at Lys254, Lys257, Lys311, and Lys317 through Lys48-linked ubiquitination [164].
With further advances in mass spectrometry technologies, tau poly-ubiquitination at Lys6, Lys11,
and Lys63 was also demonstrated [45,165]. Later, tau was shown to be a substrate of the E3 ubiquitin
ligases CHIP and TRAF6 [166–168]. While Lys48-linked polyubiquitin chains are regarded to be a signal
for proteasomal degradation, the majority of AD PHF-Tau was reported to be mono-ubiquitinated,
which constitutes a weaker signal for degradation [164,169,170]. Consequently, the majority of
PHF-Tau is not efficiently targeted for proteasomal degradation, suggesting that it can instead
contribute to tau aggregation [171,172]. Work by David et al. [173] showed that recombinant tau
could be degraded by the 20S proteasome core particle in vitro in a conformation-dependent manner,
and that this process originated the formation of stable tau intermediates. However, incubation of
26S proteasomes with mutant or aggregating tau from AD brain caused inhibition of the barrel
protease and “clogged” the entrance of other substrates into the proteasome [174,175]. Moreover,
tau disaggregase chaperones have recently been shown to further generate species that are seeding
competent, instead of facilitating proteasome degradation [176]. In AD triple transgenic mice,
clearance of soluble tau by the UPS was observed only in the early stages of disease but not upon
accumulation of hyperphosphorylated tau aggregates [177]. Not surprisingly, tau aggregation is a
major factor in impeding its clearance, because the narrow pore of the proteasome barrel precludes the
entrance of oligomeric and aggregated proteins [178]. Several studies have now shown that PHFs and
NFTs can associate with proteasomes, impair its activity, and lead to overall higher levels of undegraded
ubiquitinated proteins [175,179]. Tau impairment of proteasome activity might be caused by a change
in the quaternary structure of the 26S complex by tau aggregates, leading to profound deterioration
of its organization, or by the attachment of a tau “fibrous blanket” to the proteasome, leading to
attenuated activity. Other tau PTMs can also prevent degradation by the proteasome by preventing
ubiquitin conjugation: hyper-phosphorylation of the repeat domain region competes directly with
ubiquitination (Figure 1c); C-terminal Asp421 truncation by caspase 3 enhances Tau autophagy;
and acetylation at Lys163, Lys174, and Lys180 delays tau processing by the proteasome [52,180,181].
The seemingly inefficient process of tau ubiquitination and proteasome degradation, together with
accumulated ubiquitinated tau in PHFs and NFTs from AD and FTD brain, has led to the argument
that the proteasome has little influence on tau degradation [182–185]. Although evidence clearly shows
that tau can be, in specific conditions, a substrate of the proteasome, and that in vivo administration
of small molecules that enhance proteasome activity (e.g., PKA activators) promotes clearance of
abnormal tau and improves cognition [186], tau PHFs can interfere directly with proteasomal activity,
further amplifying tau toxicity [175,187]. In-depth characterization of tau ubiquitination and the
multitude of enzymes involved in substrate recognition, modification, and processing for entrance in
the proteasome barrel is crucial for the effort of developing enhancers of the UPS proteolytic function
in healthy aging and in disease.

In turn, degradation of aggregated proteins by the autophagy-lysosomal pathway has been
extensively reported [188,189]. The essential components of the autophagy proteolytic system are
the lysosomes, single-membrane vesicles that contain in their acidic pH lumen a large variety of
hydrolases [190,191]. The low lysosomal pH has been proposed to facilitate unfolding of substrate
proteins, followed by the action of endo- and exoproteases that process proteins into smaller peptides
and free amino acids. A review on the different types of autophagy and cargo specificity can be
found elsewhere [151,191,192]. Autophagy not only plays a role in removing aggregated proteins
that are too large to be degraded by the UPS [193–195], but it also appears to be a primary route of
clearance for endogenous tau in healthy neurons [182,184,185,196]. Tau is a long-lived protein, and as
such is predicted to be degraded in lysosomes. In the AD brain, tau immunoreactivity co-localizes
with lysosomes, and inhibition of lysosomal proteases in the rat brain induces the formation of tau
tangles [153,197]. Additionally, unlike the proteasome, autophagy degrades tau regardless of PTMs.
The presence of ubiquitin on the surface of tau inclusions has been shown to actually facilitate the
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recruitment of components of the autophagic machinery to the aggregates, leading to the formation
of engulphing autophagosome. Aggregates can also be recruited by cargo recognition proteins,
such as p62, which can interact directly with ubiquitin moieties and with LC3, one of the essential
autophagy proteins that associate with the autophagosome membrane [198]. Interference with the
clearance of phagolysosomes, rather than induction of autophagy itself, gives rise to patterns of
pathology resembling AD [153]. Tauopathy disruption of autophagy can also encompass deficiencies
in autophagosome formation, cargo recognition, autophagosome mobilization toward lysosomes,
autophagosome–lysosome fusion, and inefficient degradation of the autophagic cargo once delivered
to lysosomes [151,199]. For this reason, even though tau aggregates can be positive for ubiquitin
and interact with cargo recognition molecules, they still fail to be “efficiently incorporated” into the
autophagic system [200]. A study by Wang et al. showed that chaperone-mediated autophagy is
also involved in the proteolytic processing of tau, at least in cell models [185]. Tau contains two
targeting motif homologs (336QVEVK340 and 347KDRVQ351) in the microtubule-binding domains,
which are involved in the direct delivery of cytosolic tau by chaperones to lysosomal membranes.
However, these motifs are also aggregation cores, ubiquitination sites, and oxidation sites, which can
interfere with this process. In this study, induction of chaperone-mediated autophagy in mutant
tau cells led to the generation of more aggregation-prone fragments as mutant tau failed to fully
translocate into the lysosomes, perhaps due to aberrant PTMs. Several additional studies have shown
evidence of abnormal autophagy-lysosomal function in the brain of tauopathy patients, as well as in
animal and cellular models, where accumulation of autophagic vesicles, lysosomes, and tau correlate
with neuronal toxicity [152,153,155,157,201,202] and enhanced tau aggregation [203,204]. Notably,
lysosomes have also been implicated in the mechanism of exocytosis of selected tau species, mediated
by the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis [122]. TFEB loss
of function in the Tau-P301S mouse model reduced the levels of ISF tau, and in cultured primary
neurons, it reduced the amount of tau in the extracellular media, while endogenous tau was not
affected. This work showed that TFEB-mediated exocytosis of non-seeding-competent tau could serve
as a clearance mechanism to reduce the intracellular tau burden under pathological conditions [122].
Supporting this concept, prevention of TFEB-mediated tau exocytosis enhanced neuronal pathology.
This study importantly showed that effective tau therapies should avoid targeting certain molecular
processes and calls for the need to better understand the role of tau exocytosis in mechanisms of
tau toxicity. Whether autophagy-lysosomal impairment is a contributor or a consequence of tau
pathogenicity is still unclear [154,159]. In other words, deficient autophagy can be causal to disease,
or its failure can be secondary to alterations in other quality control mechanisms. Nonetheless,
this pathway seems to be amenable to genetic and pharmacological enhancement, which can reduce tau
levels and aggregation, mitigating spreading and neuronal loss [193,201,202,205–213]. Based on these
observations, enhancement of autophagy-lysosomal function can have critically relevant therapeutic
implications [159,195,202,212–217].

2.5. Neuronal Stress Responses to Tau and Stress Granules Formation

How neurons respond to the accumulation of misfolded tau monomers, oligomers, and fibrils
remains poorly understood, but it is undoubtably linked to the toxicity events that follow.
Molecular chaperones are responsible for maintaining protein homeostasis, i.e., folding, function,
and solubility, but age-associated decline in the function of the chaperone network has been increasingly
held responsible for the incidence of aging diseases of protein aggregation. Since individuals carrying
tau mutations only develop symptoms relatively late in life, it is possible that neuronal chaperones are
capable of preventing tau toxicity for years. Interactions between tau and a number of chaperones
have been documented, indicating that multiple players are involved, namely HSPB1, HSP27, HSP90,
and HSP70/HSC70 interact with tau in ways that are likely relevant to disease [218]. For instance,
HSPB1 is a small heat shock protein that acts as a holdase to prevent protein aggregation; HSC70 is
a constitutively expressed member of the HSP70 family of chaperones that promotes refolding of



Int. J. Mol. Sci. 2020, 21, 8948 15 of 49

misfolded proteins. Interestingly, these two chaperones are predicted to affect tau aggregation
through different but complementary mechanisms. While HSPB1 is considered a “first responder”
to delay formation of toxic oligomers [219], HSC70 interacts with oligomers and later species in
the fibril formation pathway to protect from toxic conformations and promote degradation [218].
Meanwhile, the chaperone HSP90 has been proposed to promote tau proteasomal degradation through
unclear mechanisms [220]. Importantly, the interaction of aggregating tau with chaperones may
also have deleterious effects on proteostasis by sequestering chaperones and interfering with their
other cellular functions [221]. Pharmacological enhancement of the cytosolic heat shock response,
leading to upregulation of chaperones that potentially can keep tau folding vs. oligomerization under
surveillance, is a therapeutic strategy under study by several groups [222].

Neurons have additional mechanisms of coping with protein stress, and one such mechanism
involves a shift in protein synthesis. In this context, stress granule (SG) formation is mediated by
RNA-binding proteins that regulate RNA translation, trafficking, sequestration, and degradation.
In turn, these RNA-binding proteins are strongly regulated by signaling cascades integrating RNA
translation and protein synthesis [223]. SGs are membrane-less organelles thought to be created through
a phase separation-like process. Nucleation by core RNA-binding protein, such as TIA1, is followed
by recruitment of secondary RNA-binding proteins to form a mature SG, which is a key component
for stress-induced translational suppression. SGs normally accumulate in the soma and dendrites
as small insoluble complexes and promote cell survival by blocking translation of non-essential
mRNAs, allocating resources to protein (re)folding and sequestration of pro-apoptotic proteins [223].
In moderation, this stress response is likely protective for neurons. However, overactive SG formation
and dysfunction of neuronal RNA-binding proteins can have deleterious consequences similar to the
accumulation of protein aggregates [224,225]. Therefore, SGs are now considered pathology markers
in many neurodegenerative disorders [226]. How does tau relate to formation of SG? Under basal
conditions, tau is present in dendrites only at low levels, whereas in disease, misfolded, oligomeric and
aggregated tau redistributes from the axon to the somatodendritic compartment [227,228]. Here,
tau seems to associate with RNA-binding proteins and facilitate the formation of larger than normal
SGs that serve as pathological seeds, where misfolded tau finds other low-complexity proteins with
aggregating domains, forming a nucleating core for further aggregation [225,229]. Tau-mediated SG
formation is associated with a shift in protein synthesis and an increase in sequestration of RNA-binding
proteins in the cytoplasm [230]. The SG marker and nucleating protein TIA1 contains prion-like
poly-glycine-rich domains, which further promote aggregation. TIA-1 has been found in AD and
FTD hyperphosphorylated NFTs, in increasing amounts with increasing disease severity [231,232].
Increased Tau–TIA1 interaction is observed in cells expressing hyper-phosphorylated tau, and this has
led to the hypothesis that TIA-1 plays a role in tau recruitment to SGs and in doing so modulates tau
toxicity. In agreement, TIA1 knockdown cells show significantly less tau-positive and tau-TIA-1-positive
SGs [233]. Thus, TIA1 seems to be a key player in tau-SG formation, as even a partial knockdown
strongly reduced tau recruitment to SGs. Evidence suggests that the biology of tau and TIA1 are linked
in disease, with both proteins accumulating in the brain over disease progression [232].

The positive link between tau oligomerization, cell toxicity, and SG formation has been
demonstrated in cell models and in vivo [230,234,235]. SGs may also play a role in cell-to-cell
propagation of Tau species, possibly serving as a pathological seed. A study by Brunello and Huttunen
in HEK293 cells showed that contrary to overexpressed cytosolic tau, internalized extracellular
hyperphosphorylated tau (pinocytosis) was associated with cytosolic SGs and reduced viability of
the recipient cells [233]. Regarding how internalized tau affects SG dynamics, this study showed that
whereas SGs normally disassemble and resolve within a few hours from the disappearance of the
stressful stimulus that promoted their formation [223], in cells exposed to tau-conditioned media,
SGs remain for an abnormally extended period of time, with a significant amount of SGs positive for
both tau and TIA1. Although there was not a significant increase in cell death, the cells were more
sensitive to secondary stressors (e.g., subtoxic dose 30 nM of rotenone), implying that tau recruitment
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to SGs increased vulnerability to subsequent stressful events [233]. Importantly, modifications in tau
chemistry or structure must occur during the secretion-uptake process, because only internalized tau
species were able to effectively interact with TIA1 and promote formation and stabilization of SGs.
In a parallel study, Vanderweyde et al. showed that interaction of tau with TIA1 in the brain affects
SG formation and influences tau aggregation [230]. Tau interaction with TIA1 further enhances tau
misfolding and assembly at the site of SGs, resulting in the stimulation of apoptotic markers in primary
neurons. In this system, TIA1 knockdown prevented tau misfolding and toxicity, and highlighted a role
for RNA-binding proteins as therapeutic targets in tauopathies [230]. Treatment of primary neurons
with compounds that prevent SG formation, such as translational inhibitors (e.g., cycloheximide) and
kinase inhibitors (GSK3β and p38 inhibitors), reduced tau-SG formation [230].

Proteomic studies in mouse cortical brain tissue revealed that the loss of tau abrogated interaction
of TIA1 with multiple RNA-binding proteins linked to RNA metabolism, suggesting that tau protein
is required for normal physiological interaction of TIA1 with the RNA metabolism machinery and
SG formation [230]. These results suggest that part of this tau pathological mechanism derives from
an intimate physiological interaction with RNA-binding proteins: Tau must play a role in neuronal
RNA-binding protein biology, regulating RNA transport and translation during stress. This raises the
possibility that pathophysiology in tauopathies is strongly associated with dysfunction of RNA-binding
proteins, and tau relocation to the somatodendritic compartment facilitates interaction of TIA1 with other
SG proteins, and facilitates SG formation and translational stress response activation [227,228,230,236].

2.6. Disruption of Mitochondrial Function and ER Unfolded Protein Stress Response

Neuronal function is energy consuming, and mitochondria are the main energy source providing
ATP through oxidative phosphorylation. Mitochondria also regulate many cell survival and
death mechanisms and safeguard neuronal survival from a variety of stresses during the long
neuronal lifespan. Not surprisingly, mitochondria are involved in the aging-associated decline in
proteostasis, and disturbances in mitochondrial function are closely associated with mechanisms
of neurodegeneration [237]. In the AD brain, there are extensive mitochondrial abnormalities and
oxidative damage, consistent with changes in energy metabolism and impaired mitochondrial function
that precede clinical onset and persist throughout the course of the disease [238,239]. Early analysis of
AD brain biopsies showed ultrastructural mitochondrial damage in the vulnerable pyramidal neurons,
with changes in the size, number, fission, fusion, and altered distribution along the neurons with a lower
abundance in the processes [240–242]. These observations revealed that fragmented mitochondria
are a pathological feature of AD, and possibly other tauopathies, contributing to energetic deficits
and the generation of reactive oxygen species. Moreover, an uneven mitochondria distribution in the
neuronal processes, due to the disruption of anterograde and/or retrograde transport, leaves large
axonal and dendritic segments devoid of healthy mitochondria, which can impair the integrity
and function of the neuron. Deficits in mitochondrial axonal transport have been attributed to the
accumulation of hyper-phosphorylated tau and its somatodendritic relocalization in disease, which is
expected to disrupt axonal transport through dynein and kinesin motor proteins, and compromise
axonal anterograde transport [243–247]. In agreement with this, P-Tau reduction by GSK3β inhibition
prevented deficits in the anterograde axonal transport of mitochondria in AD primary neurons [248].
Conversely, an increase in oxidative stress by mitochondrial dysfunction further promotes tau
phosphorylation through upregulation of kinases, such as GSK3β [249]. In fact, mitochondrial and
metabolic stress influence many signaling cascades regulating tau phosphorylation in disease [250].
Of note, mitochondria are also key targets of autophagy (mitophagy) in the brain, and growing evidence
shows that autophagy-lysosomal dysfunction in tauopathy may further contribute to disruption of
mitochondria recycling and homeostasis [156,251]. This leads to further accumulation of damaged
mitochondria as evidenced by swollen appearances in electron microscopy images, in human AD
biopsies, and in transgenic animal models of AD [252]. An accentuated decline in glucose consumption
has been consistently found in the hippocampus and cortex of AD brains by PET imaging [237],
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and glucose hypometabolism became a standard biomarker of AD detection. The rate of oxygen
metabolism was also found consistently decreased in the AD cortex, revealing a strong correlation
with dysfunction of the mitochondrial electron transport chain and the severity of disease [237].
Several gene expression and histology studies in postmortem AD tissue have identified disruption
of mitochondrial metabolic pathways, in particular downregulated expression of electron transport
chain subunits (complex I and IV), TCA cycle, oxidative phosphorylation, and mitochondrial import
genes, all representative of impaired energy metabolism in AD [253–255]. However, it still remains
to be resolved how chronic and relatively mild impairment of mitochondrial function (e.g., 15–50%
decrease in complex I or IV activity reported) can cause the changes observed in the AD and other
tauopathies [238]. In summary, a “healthy pool” of mitochondria supports neuronal activity by
providing needed energy and by protecting against neuronal activity and age-dependent oxidative
damage. In turn, disruption of mitochondrial function, impaired bioenergetics, and increased oxidative
stress are considered neurodegeneration contributors, as well as amplifiers of neuronal dysfunction.
In this regard, understanding the multitude of mitochondrial mechanisms altered in tauopathies
is critical.

The endoplasmic reticulum (ER) plays a crucial role in the folding and transport of cellular proteins
that enter the secretory pathway, such as membrane proteins involved in synaptic function. In disease,
prolonged ER stress has been implicated in increased neuronal vulnerability to cell death [256,257].
ER transmembrane-lumen stress sensors and transcription factors are critical responders to neuronal
stress by the accumulation of misfolded proteins and altered physiological demands, mounting the
ER unfolded protein response (UPR) [258]. The UPR relies on three major sensors of protein
misfolding [257,259,260], each represented by a transmembrane protein: the inositol-requiring enzyme
IRE1, the protein kinase RNA-like ER kinase PERK, and the activating transcription factor ATF6.
Upon ER stress, each of these UPR arms is activated through a specific mechanism. PERK is highly
expressed in the brain [261], and when activated, it phosphorylates the eukaryotic translation initiation
factor 2 (eIF2α), which mediates a global reduction in protein synthesis. In AD, UPR is activated and
leads to upregulation of P-eIF2α and of the ER HSP70 chaperone (BiP), which are found co-localized
with P-Tau. In fact, neurons with an active UPR show an exponential increment in NFTs and a
positive correlation with neuropathology [262]. Importantly, in the neurodegeneration context, there is,
in addition to tau, an increase in the load of misfolded proteins, cellular stressors, and redox changes
that also contribute to UPR activation. In fact, a direct tau causal role has not been established.
Moreover, different tau mutations, and animal and cellular models of tauopathy have historically
shown variable degrees of neuronal UPR activation as determined by markers’, such as P-PERK,
levels associated with P-Tau accumulation [262]. Despite some discrepancies, the available data
provide sufficient evidence to support the hypothesis that the progressive accumulation of tau in the
neuronal cytosol is capable of inducing ER stress. A plausible scenario includes long-term events of tau
misfolding, accumulation, and aggregation, where the “buffering” capacity of the cytosolic chaperones
HSP70-HSP90 is overwhelmed, protein degradation is insufficient/inefficient, and tau accumulation
in the cytosol depletes energy production and disrupts redox homeostasis, ultimately inducing ER
stress. Several studies have also established a link between ER stress, GSK3β activation, and increased
tau phosphorylation [256,263,264], and autophagy-lysosomal dysregulation, which altogether amplify
toxicity leading to neuronal death [265]. Much research has focused on the genetic and pharmacological
modulation of stress response pathways (cytosolic, ER, mitochondrial) with the goal of improving
cellular and protein homeostasis maintenance in the context of chronic insults, such as misfolded and
aggregating proteins, in neurodegenerative diseases [222,266].

2.7. Disruption of the RNA Splicing Machinery

In disease, somatodendritic tau co-localizes with TIA1, an RNA-binding protein that regulates
SG formation and stimulates aggregation of additional RNA-binding proteins in the cytoplasm,
including tau [223,230,232]. The fact that TIA knockdown in tau-P301S transgenic mice delays
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neurodegeneration, prolongs lifespan, and reduces the amount of SGs suggests that RNA-binding
proteins directly affect tau pathogenicity [234]. The disease-modifying effect of TIA1 reduction on tau
has raised the hypothesis that dysfunction of RNA metabolism is an important contributor to pathology.
That is, an increase in SG formation in tauopathies, and increased nucleation of RNA-binding proteins,
disrupts their function as well as RNA splicing. In this context, disruption of RNA splicing has
been observed in tauopathy mouse models and in the AD brain. As a consequence of alternative
splicing errors, tauopathy neurons show functional defects associated with isoform-specific proteins.
In a study led by Apicco et al. [267], the tauopathy mouse model expressing human Tau-P301S
(PS19 mice) presented with downregulation of key RNA-splicing pathway components and altered
mRNAs possibly associated with disease mechanisms. Disruption of RNA splicing in this model
significantly affected the expression of synaptic and neurotransmitters expression genes, with half of
these transcripts encoding proteins with known roles in glutamatergic synaptic function and calcium
signaling [267]. For instance, flip GluR2-containing AMPA receptors were upregulated, which leads
to slower receptor desensitization, rendering the cell more susceptible to excitotoxicity [268,269].
This study also showed that reduced expression of TIA1 in the Tau-P301S mice rescued some of the
disease-related changes in RNA splicing [267]. Further dissection of the genes mediating the protective
effect of TIA1 silencing identified factors known to regulate tau pathophysiology, such as FYN kinase,
HSP90, and the E3 ubiquitin ligase CHIP. Other high-impact genes not previously associated with tau
toxicity were also identified in the TIA1 knockdown, including the proto-oncogene/transcription factor
MYC and EGF receptor (EGFR) [267]. Pharmacological inhibition of either MYC or EGFR protected
against toxicity in tau-overexpressing cells. Overall, the patterns of dysfunctional RNA splicing in
AD brain and tauopathy models are largely overlapping and many are predicted to be regulated by
TIA1. These findings further support the potential for therapeutic approaches targeting RNA-binding
proteins, regulation of splicing factors, and SG formation across tauopathies.

2.8. The Role of Neural Inflammation in Neurodegeneration

The immune response is important for maintaining fundamental neuronal functions, such as
long-term potentiation, neural plasticity, and neurogenesis [270]. However, immune and inflammatory
responses can also accelerate the process of neurodegeneration [271,272]. Multiple transcriptomic and
proteomic studies of the human brain from AD or other tauopathies (e.g., PSP) have identified clear
dysregulation of immune response pathways [273–276]. Innate immunity and neuro-inflammatory
changes in tauopathy are mainly characterized by release of inflammatory mediators, and changes in
microglia and astroglia morphology, reactivity, distribution, and gene expression. All these factors
contribute to disease progression and key roles have been attributed to TREM2, CD33, and CR1 [277–280].
Reactive microglia can induce astrogliosis through the production of specific cytokines (interleukin 1
alpha or IL1α and tumor necrosis factor alpha or TNFα) that promote cell death, with the hippocampus
showing particular vulnerability to the increase of the proinflammatory cytokine interleukin-1β
(IL-1β) [281,282]. Studies in AD mice indicate that microglial neurodegenerative phenotypes include
downregulation of homeostatic genes (P2ry12, Tmem119, Cx3cr1), and a parallel upregulation of
genes, such as Apoe, Tyrobp, and Trem2 [278,283]. In AD, microglial-expressed TREM2 (triggering
receptor expressed on myeloid cells 2) signaling seems to be protective against the spreading of tau
pathology [284]. TREM2 signaling is associated with downstream regulation of cell proliferation
and survival, suppression of inflammatory cytokine production, and facilitation of metabolic ATP
production [285]. In line with this observation, rare variants in the TREM2 gene increase disease risk
by 2–4-fold, possibly by impairing the response of microglia. In AD CSF, soluble TREM2 levels have
been shown to correlate fairly well with total and P-Tau Thr181 levels. AD patients that also harbor
the TREM2-R47H variant display even higher levels of total tau and P-Tau Thr181 in CSF compared
to non-carriers [286–288], which is indicative of exacerbated pathogenic tau burden in the brain and
neuronal loss [289].
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Primary tauopathies also manifest prominent neuroinflammatory gene expression signatures.
RNA-sequencing studies in transgenic mice have highlighted early upregulation of inflammatory
processes and downregulation of synaptic function genes preceding behavioral phenotypes,
suggesting that tau has a direct impact on microglial activation and synaptic dysfunction [290,291].
Little is known about the role of TREM2 in the specific context of primary tauopathies,
where accumulation of pathological tau species is the main driver of cell death. Sayed et al. [292]
found that, in the Tau-P301S (PS19) transgenic mouse model, TREM2 knockout was protective against
tau-mediated microglial reactivity and atrophy but that TREM2 haplo-insufficiency or the AD-associated
TREM2-R47H variant led to elevated expression of proinflammatory markers, exacerbated atrophy,
and increased tau pathology [279]. However, when Bemiller et al. [293] crossed the TREM2 knockout
mouse with a less aggressive mouse model of tauopathy, the authors observed a decrease in
microgliosis in TREM2-deficient mice, as observed in TREM2-deficient PS19 mice, but reported
that the complete deletion of TREM2-exacerbated tau pathology. More recently, Gratuze et al. [284]
showed that in TREM2-deficient Tau-P301S mice (PS19-T2R47H), glial fibrillary acidic protein (GFAP)
gene expression, a marker of reactive astrocytes, was significantly decreased. These observations
suggested that the TREM2-R47H variant (mainly associated with AD) strongly reduced microglial
activation and astrogliosis in the setting of tauopathy. Consequently, there was a reduction in P-Tau
staining, attenuated brain atrophy and synapse loss, and reduced microglia reactivity. These findings
support that impaired TREM2 signaling reduces microglia-mediated neurodegeneration in the setting
of primary tauopathy. Moreover, reduced TREM2 signaling reduces microglial conversion to a
proinflammatory phagocytic state and is protective against neurodegeneration in the setting of advanced
tauopathy [284]. Overall, these studies have led to the hypothesis that TREM2 and its downstream
signaling have distinct effects depending on disease stage and aggressiveness. During early stages of
tau accumulation in the absence of neurodegeneration, a decrease in TREM2 function exacerbates tau
pathology, while the complete loss of TREM2 function in advanced disease stages (PS19 mice) protects
from neurodegeneration.

Cumulative evidence shows that neuroinflammation is a common hallmark of AD and other
neurodegenerative diseases and is proposed to actively contribute to pathogenesis. Most observations
show a high correlation between pathological tau, neuronal loss, and immune response, emphasizing the
need to understand how tau directly or indirectly promotes the release of inflammatory mediators.
Modulation of risk factors and targeting of these immune mechanisms could lead to future therapeutic
strategies for AD and other tauopathies.

3. Tau-Directed Therapeutics

The rate of failure in drug development for tauopathies is relatively high. Promising preclinical
data has supported the development of multiple experimental therapies for tauopathy, but showing a
pharmacodynamic effect in transgenic animal models has had poor translatability into clinical efficacy.
For AD, 99% of all drug trials have failed partly due to limited bioavailability, poor blood–brain barrier
(BBB) penetration, low cell permeability, and reduced drug half-life. The BBB still constitutes, and for
good reason, a formidable obstacle to ensuring that any drug reaches its target in the CNS and therefore,
an effective therapy will have to have a super affinity for tau and/or be administered at high doses,
which becomes exceptionally difficult and expensive. Alternatives include intrathecal approaches,
which can circumvent the BBB but have an immensely high cost of treatment and other medical
implications associated that will render the medicinal application worldwide almost prohibitive.
Using small molecules that cross the BBB is an attractive and possibly optimal approach, but so far,
the majority of experimental tau drugs with positive preclinical data have clear limitations of BBB
permeability. Another significant challenge for tau therapeutics is the demonstration of selective
target engagement and unvalidated biomarkers for pharmacodynamics and a modifier effect on
disease progression of primary tauopathies. Although robust assays can measure some forms of tau
found in CSF and blood, these tau species do not necessarily represent the relevant pathological tau
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found in the brain parenchyma. Several PET ligands are being developed and tested but not without
challenges. All these aspects highlight the need for profound changes in drug development approaches.
An effective therapeutic agent is the result of a multi-variable effort that combines the right target,
drug, biomarker, participant, and clinical trial (as reviewed in [294]). The right target represents the
biologic process most relevant for tauopathy, with proven function in disease pathophysiology and
greater representation in disease than in normal physiological function and is a non-redundant process
necessary for neuronal survival. The main proposed targets and pathways relevant for tauopathies
were described in the section above. So far, apart from the use of combination therapy in AD to target
the cholinergic system that has some effect on cognitive function [295], no other target has been shown
to have patient benefit. A challenge in developing small molecules that target tau and lead to effective
disease-modifying therapeutics is the insufficient understanding of disease mechanisms, as well as the
lack of a well-defined tau fold for active molecular binding in disease [214,296,297]. Moreover, a drug
for tauopathy must have appropriate pharmacokinetic (PK) and pharmacodynamic (PD) parameters,
ability to penetrate the BBB, efficacy demonstrated in animals, and, importantly, in patient-derived
ex vivo neurons, and acceptable toxicity. Achieving appropriate BBB penetration is a major hurdle
for many experimental therapeutics [298]. The human BBB has p-glycoprotein transporters and
other multidrug resistance channels (MDRs) that may not be present in the animal models employed
preclinically and that for this reason do not adequately predict human CNS entry. Despite the still
critical limitations from an incomplete understanding of disease mechanisms, a lack of reliable clinical
biomarkers, variable drug effects on less-then optimal mouse models, and limited implementation of
humanized cellular models of tauopathy, the field has seen groundbreaking advances in multiple fronts
for development of tau therapeutics [299,300]. At the time of this review, 24 therapeutics towards tau
have been tested in clinical trials Phase 1 or later, with 15 agents currently in active development based
on publicly available data (see [301] for a review). Here, we will highlight some of the main current
approaches showing the most progress in experimental tau-directed therapeutics (Figure 2).

3.1. Modulators of MAPT Expression

Gene editing techniques are increasingly used in drug discovery research, [302], particularly when
the genetic cause(s) of disease is known. However, with the recognition that late-life sporadic
neurodegenerative diseases frequently have more than one contributing pathology, identifying a single
molecular therapeutic target whose manipulation is efficacious in all affected individuals may not be
straightforward [303]. Additionally, and as highlighted in previous sections, given the diverse roles of
tau in the human brain, complete MAPT knockdown has been approached cautiously. Although in
many preclinical mouse models, complete MAPT knockout has no overt phenotypes and may even be
protective against seizures, in older animals, behavioral and cognitive changes have suggested that
tau is necessary for normal brain function [304]. Additionally, low tau levels have been described in
association with dementia lacking distinctive histopathology, such as sporadic FTD [305], pointing to
some discrepancies regarding the silencing of MAPT expression in the human brain and possible
detrimental long-term consequences. Nonetheless, promising new strategies focusing on anti-sense
oligonucleotides (ASOs) to decrease tau expression have led to multiple reports of reversal of tau
pathology in mouse and non-human primate models (Figure 2) [147,306,307]. ASO-based clinical
treatments have demonstrated dramatic success in other neurodegenerative diseases and in transgenic
preclinical mice models, suggesting that this approach would be viable in tauopathy patients [147].
In transgenic mice expressing Tau-P301S (PS19 model), ASO treatment caused a 50% reduction in MPAT
mRNA levels and reversed tau aggregation, with a concomitant decrease in the rate of hippocampal
atrophy, neuronal loss, and behavioral deficits. These encouraging findings led to an ongoing Phase 1/2
trial of anti-tau ASOs (IONIS-MAPTRx) in mild AD (Clinicaltrials.gov ID NCT03186989). Additionally,
as of recently, a new safety, tolerability, and pharmacokinetic study of multiple ascending doses of
another MAPT ASO (NIO752) has been launched by Novartis for PSP trials (Clinicaltrials.gov ID
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NCT04539041). Given this initial success, the same group of investigators are leading the preclinical
development of 4R-Tau specific ASOs [308].

3.2. Inhibitors of Tau PTMs

Tau PTMs have a strong effect on the regulation of tau function and propensity for aggregation and,
therefore, were considered early on as relevant therapeutic targets (Figures 1c and 2). Regarding aberrant
P-Tau, there are a number of kinases that mediate tau phosphorylation and that have been proposed as
putative drug targets [214,309]. These are Ser/Thr protein kinases and Tyr protein kinases, and examples
include GSK3, CDK5, MAPK, PKA, CaMKII, and TTBK1 [310]. However, even if phosphorylation
plays a role in tau toxicity, developing tau-specific and safe kinase inhibitors is extremely challenging
particularly for long-term treatment in tauopathies. Moreover, it is still unclear which kinase is
responsible for each P-Tau residue (Figure 1c), and whether its function is specific or redundant.
Kinases also have many roles and numerous substrates, so even in the event that an inhibitor is specific,
the unintended off-target (non-tau) effects may still represent an important liability. Borrowing from
the oncology field, initial drug screens for kinase inhibitors were straightforward, and several kinase
inhibitors with an effect on tau phosphorylation were identified. The first kinase inhibitors tested
targeted GSK3β, which is also a regulator of cellular differentiation, growth, motility, and apoptosis.
Lithium, an FDA-approved mood stabilizer used to treat bipolar disorder, was found to reduce tau
hyperphosphorylation and aggregation in Tau-P301L transgenic mice via a mechanism that was
dependent on GSK3β inhibition [311]. This led to Phase 2 trials in AD, but no effect was found on
cognition, mood, or CSF P-Tau biomarkers of the participants. In a later trial in patients with PSP or
CBS, lithium was poorly tolerated. Valproate (Depakote) is another small-molecule FDA-approved
mood stabilizer and anti-epileptic, also found to inhibit GSK3β and rescue behavioral phenotypes in
AD mice [312]. Unfortunately, in a Phase 3 AD trial, treatment with valproate resulted in accelerated
brain atrophy and cognitive impairment, with significant toxicity. A later study in PSP patients showed
no difference in disease progression, with possible worsening on measures of gait. Valproate is no
longer in clinical development for treatment of tauopathies, and available evidence recommends
against its use. It should be noted that both lithium and valproate are non-specific for GSK3β,
and thus observed toxicity may be due to off-target effects. It is also a possibility that GSK3β was not
inhibited to the extent needed to significantly reduce tau phosphorylation for clinical benefit. Later,
tideglusib was introduced as a novel GSK3β inhibitor. In the double transgenic mouse model of
AD (expressing human APP and tau), tideglusib reduced tau phosphorylation, decreased amyloid
deposition, rescued neuronal loss, and improved cognition [313]. However, in a Phase 2 trial in
mild-to-moderate AD patients, it did not demonstrate any reduction in the rate of cognitive or
functional decline [314]. FYN, another kinase implicated in tau phosphorylation, is proposed to be
overactive in AD, leading to tau hyperphosphorylation and synaptic loss [315]. A small-molecule FYN
inhibitor called saracatinib (AZD0530) showed promising results in AD mice, reducing tau aggregation
and rescuing synaptic function [316]. However, in a Phase 2 AD trial, saracatinib showed no effect on
primary or secondary outcomes, and gastro-intestinal side effects led to discontinuation in a quart
of participants. The most recent kinase inhibitor tested in clinical trials was Nilotinib, a selective
BCR-ABL kinase inhibitor that is FDA-approved for chronic myeloid leukemia. ABL is a tyrosine kinase
that phosphorylates tau on the residue Tyr394, leading to increased tau aggregation into PHFs [317].
A Nilotinib positive effect on tauopathy phenotypes may also be explained by an indirect effect on
autophagy activation and tau clearance [318]. In a small Phase 1/2 trial in patients with Parkinsonism
dementia, nilotinib reduced CSF levels of tau and amyloid [319]. Based on these results, a Phase 2
trial in AD patients is underway, with a primary outcome of safety and tolerability (Clinicaltrials.gov
ID NCT02947893). Noticeably, identification of kinase inhibitors with a verified mechanism of action
specificity is very challenging, and so far, preclinical mouse models have not been predictive enough
and do not provide enough information on extent of reduction of tau phosphorylation needed for a
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positive outcome in clinical trials. Additionally, animal models have not adequality represented the
negative and off-target effects of these small molecules.

Activation of tau phosphatases, in particular protein phosphatase 2A (PP2A), has been proposed
as an alternative strategy to kinase inhibition for reducing tau phosphorylation. Drugs increasing the
activity of PP2A, probably through modulation of endogenous proteins that inhibit PP2A activity,
have the therapeutic potential for treating tauopathies [320], but no clinical trials with PP2A activators
have yet been initiated.

Tau acetylation (Figure 1c) has been reported to compete with ubiquitination, reduce degradation
of P-Tau, and contribute to somatodendritic relocalization and toxicity [52], but it has also been
reported to interfere with tau phosphorylation and diminish aggregation [78]. The residue Lys174
was identified as an important acetylation site critical for tau homeostasis. In Tau-P301S (PS19)
transgenic mice, treatment after disease onset with salsalate, a small-molecule anti-inflammatory agent
that precedes the FDA approval process, reduced tau acetylation at Lys174, decreased aggregation,
prevented hippocampal atrophy, and rescued memory deficits in the mice [79]. These findings led
to two Phase 1/2 trials for salsalate. The trial on PSP patients showed no efficacy after 6 months of
treatment. The trial on AD patients is still ongoing (Clinicaltrials.gov ID NCT03277573). This study
might indicate whether targeting tau acetylation has therapeutic potential in FTD; however, the brain
penetration of salsalate is limited (<3%) and therefore more potent brain-penetrating inhibitors of tau
acetylation might be needed to conclusively test this hypothesis. Furthermore, hyperactive p300/CBP
in disease is implicated with increased tau acetylation, and is associated with aberrant blockage of
autophagy-lysosomal function and increased tau secretion in neurons of transgenic mice. Very recently,
Gan et al. [321] identified a new p300 inhibitor that significantly blocked tau secretion in vitro and tau
spreading in vivo, with a reduction of tau accumulation and pathology.

On the other end of the spectrum, O-GlcNAc modification of tau (Figure 1c), which is the attachment
of N-acetylglucosamine (GlcNAc) moieties to Ser/Thr residues, inhibits tau toxic self-assembly [322].
Tau O-GlcNAcylation can affect tau aggregation by blocking hyperphosphorylation by kinases. In the
human AD brain, levels of O-GlcNAcylation were found to be reduced by 50% compared to healthy
controls, and this inversely correlated with tau hyperphosphorylation, supporting O-GlcNAcase (OGA)
inhibition in disease and that an increase in O-GlcNAcylation could have therapeutic relevance [323].
In support of this premise, the OGA inhibitor Thiamet-G was found to reduce the levels of pathologic
tau aggregates in P301L transgenic mice [324]. Subsequently, the small-molecule OGA inhibitor
MK-8719 showed similar effects in transgenic mouse models. A Phase 2 clinical trial for PSP was
planned but was never initiated and this compound has since been discontinued [325]. Meanwhile,
another OGA inhibitor, ASN120290 (ASN-561), was developed and showed positive outcomes in
Tau-P301S transgenic mice, increasing the levels of O-GlcNAcylated tau by more than two-fold, with a
parallel decrease in P-Tau. ASN120290 has been awarded orphan drug status and will soon commence
clinical trials for PSP.

3.3. Tau Aggregation Inhibitors

Tau aggregation inhibitors are therapeutic agents that target the aggregating properties of the
tau molecule and consequent gain-of-toxic function (Figure 2) [326–328]. Highly specific binders and
inhibitors of tau aggregation that also block the seeding propensity of tau will undoubtedly contribute
to the prevention of tau pathology in the brain. Small MW compounds have been developed to block
tau–tau binding and inhibit the formation of oligomers and fibrillization. While some have reached
clinical trials, several inhibitors have also shown toxic profiles in vivo early on (reviewed in [326,329]).
Aggregation inhibitors fall into two mechanistic classes based on the type of interaction with tau.
Covalent aggregation inhibitors are agents that either covalently modify tau directly or foster formation
of covalent bonds within or between tau proteins to yield aggregation-incompetent conformations.
These agents have a higher binding affinity for tau monomers but seem to be able to interact with
all tau species. Examples include natural polyphenols (e.g., oleocanthal, oleuropein aglycone) and
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redox-active compounds (e.g., methylene blue). Although, covalent mechanisms of tau aggregation
inhibition are predicted to have low utility in vivo, methylene blue is still the most advanced aggregation
inhibitor in clinical trials. This compound was initially developed in the late 1800s for treatment
of malaria and was later found to modulate oxidation of cysteines and disrupt tau–tau bonds,
showing beneficial outcomes in animal models when given prior to symptoms onset. More recently,
studies have shown that methylene blue can also reduce tau aggregation by promoting increased
clearance of tau by autophagy and by the UPS [210]. In different transgenic tauopathy mouse models,
methylene blue treatment reduced either insoluble P-Tau or mainly soluble tau, delayed cognitive
decline, and improved behavioral phenotypes [329,330]. However, it did not reverse pre-existing
NFT pathology. Contradictory results in vivo, with a lack of effect reducing P-Tau aggregation
have diminished researchers’ enthusiasm for further development. A second-generation stabilized
derivative of methylene blue, called LMTM, quickly entered the clinical trials route, but, despite high
expectations [331], two different Phase 3 AD and FTD trials failed to produce beneficial outcomes
or delay disease progression [332]. It was not tested whether LMTM had an effect on accumulation
or aggregation of tau, or whether it changed the levels of pre-existing tau NFTs. Another covalent
inhibitor, named N744, was found to inhibit in vitro fibrillization of full-length 4R tau and to promote
disaggregation of pre-formed tau PHFs [333]. However, when at high concentrations, N744 can also
form aggregates that enhance tau fibrillization, preventing its use in vivo [334]. Interestingly, for other
similar dye-like compounds, it is the formation of aggregated compound that results in the inhibition
of fibril formation [335]. A number of anthraquinones, including the anticancer drugs daunorubicin
and adriamycin, have been identified as inhibitors of tau aggregation [336], which can also induce
disassembly of pre-formed tau fibrils in neuronal cell models. In all cases, the molecules were more
effective in disaggregating shorter tau fragments than full-length tau [337]. The Mandelkow team
has subsequently identified a series of tau aggregation inhibitors, namely phenylthiazolyl-hydrazide
(PTH) compounds [338,339]. It is unclear if covalent interaction with tau is a general property of
this class of inhibitors. For many other aggregation inhibitors found to bind tau in vitro, there is
still lack of evidence for efficacy in vivo. The second class of tau aggregation inhibitors are
non-covalent agents that interact transiently with tau species, mainly with natively unfolded tau
monomers [326,327,329]. Examples include molecules that render tau aggregation-incompetent
(e.g., curcumin), molecules that block the formation of cross-β-sheet structures, and molecules that
drive the formation of non-aggregating SDS-stable oligomers (e.g., phthalocyanine tetrasulfonate,
Congo red derivatives, rhodanine). The Mandelkow team also identified a rhodanine series of tau
aggregation inhibitors [338,339], and elaborated on the key structural elements within this series
that were important for activity, which included disaggregation of pre-formed short tau filaments in
neuronal cells.

Although an inhibitor of tau assembly has conceptual appeal, it remains to be demonstrated
whether any of the existing candidate inhibitors consistently reduce tau aggregation in vivo. Moreover,
it is also unclear whether reduction of somatodendritic tau inclusions will result in rescue of
cognitive decline. Generation of such proof-of-principle data in vivo will require that compounds
have appropriate chemical and biological properties, including good pharmacokinetic behavior,
adequate CNS exposure, and low toxicity. Unfortunately, many of the existing tau aggregation
inhibitors have chemical or biological characteristics that are likely to preclude them from being tested
in preclinical tau models for a lack of good BBB penetration, unsuitable half-lives, and poor safety.
Another critical aspect is the concentration of compound that will be required to inhibit aggregation
in vivo when for in vitro assays, the concentrations of inhibitor are approximately equimolar to the
amount of tau. Finally, it will be important to understand how aggregation inhibitors interrupt tau
fibril assembly and what other species of tau are generated by the treatment, since it is still unclear
whether mature tau fibrils or smaller tau oligomers are most toxic. Growing evidence supports a role
for the latter [340], and therefore interrupting tau fibrilization by increasing the pool of intermediate
multimers may in fact exacerbate tau pathology.
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3.4. Modulators of Tau Clearance by Autophagy and the Proteasome

The autophagy-lysosomal pathway is recognized as the main mechanism for clearance of protein
aggregates that cannot be proteolyzed by the proteasome. Whether autophagy and lysosomal
impairment are contributors or a consequence of tauopathy is unclear [154,159], but many studies have
shown evidence that pharmacological enhancement of autophagy activity in patient-derived neurons
and in vivo can reduce oligomeric and aggregated tau, mitigate tau neuronal transmission, and reduce
cell loss, supporting a role for autophagy modulators in therapeutics [159,193,206–208,211–213,215–217].
Several activators of autophagy have been put forward [159,212,214,215], but none have yet shown
efficacy in the human brain at patient-tolerated doses, or successful outcome in clinical trials.

Autophagy stimulation by trehalose in the transgenic Tau-P301S mouse model significantly
reduced tau inclusions in the brain, improving neuronal survival in the cerebral cortex and the
brainstem [202]. Trehalose failed to activate autophagy in the spinal cord and had no effect on the
motor impairment of Tau-P301S mice. These findings provided evidence in favor of tau degradation
by pharmacological activation of autophagy in vivo. Studies in mouse models with rapamycin,
an inhibitor of mTOR, showed a reduction in pathogenic tau levels and improved cognition by
upregulation of autophagy [341]. Long-term inhibition of mTOR by rapamycin or latrepirdine also
prevented AD-like cognitive deficits and lowered tau NFTs [205,209,342]. We recently described
pharmacological upregulation of autophagy in tauopathy patient iPSC-derived neurons that rescued
tau phenotypes [213]. The lead small molecules OSI-027, AZD2014, and AZD8055 are orally available,
potent, and specific mTOR inhibitors, which in human neurons had a stronger effect on tau clearance
than rapamycin, without affecting viability. Compound treatment downregulated P-Tau and insoluble
tau, consequently reducing tau-mediated neuronal stress vulnerability. The most notable finding in
this study was the discovery that a single dose 24-h treatment caused a reduction of tau for 12–16 days
post-treatment without loss of cell viability or integrity, and across independent neuronal models. This is
relevant because, in tumor cells, organ transplant studies, and clinical trials, mTOR inhibitors have
shown a plethora of side-effects. Although this poses an obstacle for treatment of older patients with
neurodegenerative diseases, adverse effects are usually dose and frequency dependent, and reversible
upon treatment interruption [343]. This study therefore proposes that these adverse effects could be
counter-balanced by an intermittent dosing regimen, on account of a prolonged drug effect. However,
in tauopathies, autophagy induction does not necessarily have a straightforward beneficial outcome.
Research has shown that in disease, induction of new autophagosome formation is not necessarily
impaired, but that the lysosomal-dependent proteolytic system is the main cause of disruption, leading to
“backed up” accumulation of autophagosomes carrying misfolded proteins [344]. These studies
point to impaired lysosomal proteolytic function as the origin of autolysosome malfunction in AD
pathogenesis [345]. Therefore, when considering autophagy modulation as a therapy, the lysosomal
defect needs to be taken into account, because simply inducing autophagy without correcting clearance
will not produce the desired outcome. In this regard, and luckily, in many cases, the pharmacological
enhancement of autophagosome formation also activates the transcription factor EB (TFEB) that
simultaneously coordinates lysosomal biogenesis as well as genes required for autophagosome
formation, fulfilling the criteria of autophagy-lysosomal upregulation [346]. This also suggests that
TFEB should be a therapeutic target. On the other hand, pharmacological treatments that improve the
catalytic performance of lysosomal enzymes and reduce the load of autolysosomes should also rescue
lysosomal function.

Modulation of the UPS in tauopathies is also appealing because chaperone proteins that regulate
the UPS function also mediate tau folding. Several HSP90 inhibitors are already in clinical trials
as anticancer agents, and when tested in cellular models promoted reduction of total tau and
P-Tau [180,347]. However, many of these drugs cannot cross the BBB, and their specificity for misfolded
pathogenic tau is uncertain. Several methods of proteasome activity enhancement have been thoroughly
reviewed by others [186]. Briefly, in healthy neurons, increased neuronal activity is coupled to increased
synaptic proteolysis by recruitment of proteasomes to dendritic spines and upregulation of proteolysis
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function via CaMKIIa phosphorylation of the proteasome ATPase subunit. In neurodegenerative
diseases, reduced UPS activity and impaired synaptic proteolysis leads to accumulation of ubiquitinated
P-Tau oligomers in the synaptoneurosomes. Phosphorylation of proteasome subunits (e.g., by PKA or
CaMKIIa) has been reported to increase recruitment of 26S proteasomes to dendritic spines and enhance
local protein degradation of aggregation-prone proteins in cell-based assays and in vivo models of FTD.
Reversible proteasome phosphorylation leading to enhancement of its function has been documented in
ex vivo human neurons, as well as in vivo in physiological and pathological animal models [186,348,349].
Another mechanism proposed to enhance proteasome substrate degradation is via inhibition of USP14,
a proteasome-associated deubiquitinating enzyme. USP14 reduces proteolysis in a substrate-specific
manner by rapidly trimming the tagging ubiquitin chains before the 26S proteasome can initiate
degradation of that substrate [350]. As a result, deubiquitinated proteins are released from the
26S proteasome undigested. It is possible to enhance 26S proteasome-mediated proteolysis using
small-molecule USP14 inhibitors, which have shown utility in cellular models [351,352]. Finally,
phosphodiesterase enzymes (PDEs) have also been identified as regulators of the 26S proteasome,
with possible therapeutic implications. Namely, a selective PDE4 inhibitor (rolipram) in a mouse AD
model showed increased proteasome-mediated protein degradation [179,353]. Later, it was shown
that PDE4 inhibition in fact stimulated PKA, and consequently phosphorylation of several subunits
of 26S proteasome, rescuing proteasome function and degradation of tau in the Tau-P301L mouse
model (rTg4510) [179]. Moreover, PDE10 inhibition and activation of PKA in the mouse striatum has
also been shown to have beneficial effects by increasing proteasome function and reducing protein
aggregates [186,353]. These studies suggest a new mechanism of action of PDEs, albeit in different
models and disease contexts, whereby PDEs can modulate protein homeostasis through the regulation
of proteasome function.

3.5. Anti-Tau Immunotherapy

Harnessing the immune system to clear protein aggregates is one of the earliest and most promising
therapeutic strategies for AD, and numerous immunotherapy approaches targeting β-amyloid and tau
have been developed [354]. Currently, there are nine different tau antibodies (passive immunotherapy)
and two tau vaccines (active immunotherapy) in clinical trials and several more in late-stage preclinical
development (Figure 3) [355]. Tau vaccines and humanized antibodies can target a variety of tau species
either in the intracellular or extracellular space, recognize the N-terminus, C-terminus, the proline-rich
region, or the microtubule-binding domains (Figure 1a), and can potentially selectively target only
pathological tau conformations. Several mechanisms have been proposed to contribute to the efficacy of
tau-targeted immunotherapies. Peripherally injected anti-tau antibodies have been shown to cross the
BBB once they reach the brain and bind intracellular tau as well as extracellular seeds, therefore inhibiting
the propagation of tau pathology. In addition to evidence for this mechanism that is still controversial,
tau immunotherapies must first reach the brain. This process seems to be very limited according to
the finding that antibody levels in the CNS only reach ~0.1% of peripheral levels [356]. Therefore,
whether peripheral immunization will result in sufficient target engagement to change the course of tau
pathology is still unknown. Even after reaching the brain, some anti-tau antibodies are not readily taken
up into neurons, presumably because of their unfavorable charge and size, and are expected to exert an
effect mainly in the extracellular space. Antibodies that do enter neurons do so via receptor-mediated
uptake or endocytosis [355]. Once internalized, it is hypothesized that antibodies bind to misfolded
tau and aggregates within the endosomal–lysosomal system, promote their disassembly, and enhance
exposure to proteolysis in the lysosome. Alternatively, tau antibodies can potentially bind tau species
in the cytosol, preventing release and spread, while increasing proteasomal degradation.
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Figure 3. Overview of Tau immunotherapies in clinical trial. Indicated are passive and active
Tau immunotherapy agents that have reached clinical trials Phase 1/2, for binding both intra and
extracellular Tau in the CNS. The Roche RG7345 antibody has since been discontinued (Clinicaltrials.gov).
Key: conform. -dep. refers to conformation-dependent antibody recognition of Tau, 16x means 16 Tau
fragments repeats, and eTau refers to extracellular Tau.

Active immunization works by injecting tau itself to induce a sustained autoimmune response,
and if effective, it could potentially be used as a preventative agent in a manner similar to
vaccines. Early studies using full-length human tau inoculation in mouse models showed high
inflammation and enhancement of tau aggregation, limiting the enthusiasm for active immunization.
Subsequent vaccination strategies have avoided full-length tau, employing protein fragments instead,
which have not demonstrated an off-target immune response, though efficacy has yet to be proven.
Active immunization trials include the ACI-35 vaccine developed by AC Immune and licensed
to Janssen, consisting of 16 copies of a synthetic P-Tau fragment (Ser396/Ser404) anchored to a
liposome—liposome-based vaccine (Figure 3) [357]. This vaccine aims to elicit an immune response to
pathological conformers of P-Tau without also mounting autoimmune responses against physiological
forms of tau. In transgenic Tau-P301L mice, vaccination led to the generation of polyclonal IgG
antibodies specifically directed against P-Tau that bound to NFTs in the brain, improving some
phenotypic parameters. Gliosis, T cell activation, and other inflammatory markers were reported as
negative [358]. Similar results were obtained in non-human primates. ACI-35 is currently undergoing
Phase 1 trials in mild-to-moderate AD patients and Phase 2 safety trials. Another active immunization
trial with AADvac-1, developed by Axon Neuroscience (Figure 3), consists of a synthetic peptide
derived from tau amino acids 294–305, which was conceived to trigger an immune response directed
toward pathological N-terminus truncated tau species [359]. The AADvac-1 vaccine is undergoing
Phase 1/2 trials in AD and progressive non-fluent aphasia (form of PPA).
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Several tau-targeted passive immunotherapy approaches, which involve the administration
of an anti-tau antibody, are also in development and in clinical trials (Figure 3) [355]. The AC
Immune antibody Semorinemab targeting extracellular tau was recently tested at Phase 1 in healthy
volunteers and AD patients. The goal for this antibody was to reduce microglial activation leading
to detrimental inflammatory responses, and was reported to bind the N-terminus of all six isoforms
of human tau, monomeric and oligomeric forms, regardless of PTMs [360]. Antibody treatment
reduced brain pathology in Tau-P301L mice. Semorinemab is now undergoing Phase 2 for AD.
Passive immunization with tau humanized IgG4 monoclonal antibody Gosuranemab is directed
against extracellular N-terminus tau (Figure 3). This tau form was proposed to be involved in the
secretion and spread of pathology, and in mouse FTD models, the antibody was reported to rescue
tau toxicity [361]. In 2017, Biogen took Gosuranemab though a Phase 1 trial in healthy volunteers
and AD patients. A Phase 2 trial in PSP patients has recently been discontinued (Clinicaltrials.gov
ID NCT03068468). The C2N 8E12 humanized antibody (ABBV-8E12, Figure 3), developed by C2N
Diagnostics and AbbVie, binds to the tau N-terminus and recognizes an aggregated extracellular form
of pathological tau and does not rely on uptake into neurons for efficacy [118,362]. In cell-based assays,
the antibody blocked tau seeding as well as the uptake of AD-derived tau [363]. In Tau-P301S transgenic
mice, antibody treatment reduced the brain NFT load, microgliosis, brain atrophy, and behavior [149].
Although it has been discontinued at Phase 2 in PSP trials, it is still under testing at Phase 2 for AD [361].

In general, there is still not enough preclinical data showing that any form of tau immunotherapy
is suitably optimized or that targeting of the tau species it was designed for is sufficient to prevent
neurodegeneration [146]. Recent cumulative research results have made evident that several features of
a tau antibody can have critical impact on its mechanism of action and overall efficacy. These features
include the tau epitope, antibody isotype, charge, affinity, and size (reviewed in [355]), in addition to the
decision of which tau conforms to the target, which undeniably brings back the question of which species
of tau is most toxic, where toxicity occurs (intracellular vs. extracellularly), and in which tauopathy.
In this context, a recent study by Goodwin et al. [146] highlights that immunotherapies that primarily
engage extracellular tau may have limited efficacy. By comparing tau-targeting single-chain variable
fragments (scFvs) and intrabodies (iBs) against pan-tau and P-Tau-specific epitopes, and respective
efficacies in tau transgenic mice models, the study showed that (i) disease-modifying efficacy does not
require antibody effector function, (ii) the intracellular targeting of tau with P-Tau-specific iBs is more
effective than extracellular targeting with the scFvs, and (iii) the effect on tau pathology only resulted
in modest disease modification as assessed by the delay of motor phenotypes [146]. Although this data
suggests that intracellular targeting of tau might be more effective, it is unclear whether the tau epitopes
targeted by this study’s antibodies corresponded to the ones present in these particular model’s
extracellular tau seeds. However, recombinant adeno-associated viral vector (rAAV)-mediated delivery
of select antibodies significantly reduced both pathology prior to the onset of neurodegeneration and
delayed neurodegenerative phenotypes, demonstrating efficacy for the first time for a gene therapy
immuno-approach for tau [146]. It is still questionable if the modest reduction in pathology observed
would translate into sufficient disease modification in a human trial. The pathological progression
of tauopathies is accompanied by the changes in tau conformation, and therefore epitopes, and as
such certain antibodies may work better or worse based on the stage of disease and the localization of
pathological tau. Anti-tau immunotherapies have shown great promise in animal and cellular models,
and with the successful completion of many Phase 1 trials, safety concerns are currently low. However,
antibody affinity and specificity, confounding aspects of organism immune response, and low effect in
clinical pathological markers still posed considerable challenges [149,327,355,364–366].

3.6. Tau-Targeted Therapeutics with Bifunctional Degraders

Proteolysis-targeting chimeras (PROTACs) were first described by Crews and Deshaies in
2001 [367] as bifunctional molecules that hijack the ubiquitin proteasome system to close proximity of
a target protein of interest in order to promote its ubiquitination and degradation by the proteasome.
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PROTAC-based protein degraders are an emerging strategy for ablating previously undruggable
protein functions [368,369], by providing a mechanism to transform a non-functional protein binder
into an effective degrader [369]. Structurally, these degraders are bivalent molecules where a binder of
the protein of interest is linked via a short chain to an E3-ligase recruiting molecule, such as the cereblon
(CRBN) binder immuno-modulatory drug thalidomide (Figure 4). This results in the formation of a
ternary complex between the protein of interest, the degrader molecule, and the E3-ligase complex,
and induces ubiquitination and subsequent proteasomal degradation of the protein (Figure 4) [370–375].
In contrast to classical drug pharmacology, no functional activity is necessary for degrading the protein
of interest, and the mechanism of action is event driven, rather than occupancy driven, requiring lower
drug concentrations. PROTACs show a catalytic behavior in their ability to induce proteasomal
degradation at sub-stoichiometric levels [376]. The mechanism of cellular uptake for these molecules is
not yet understood, but diverse molecular types of PROTACs have shown penetration in different
cell types, which is suggestive of a passive process [377]. In 2018, Jiang et al. [378] reported a peptide
PROTAC targeting tau and the Keap1-CUL3 E3 ubiquitin ligase. One of the peptidic PROTACs
described was able to interact effectively with Keap1 and tau, showing cell penetration and inducing
Tau degradation in different cell lines overexpressing tau. Although this was the first demonstration
of the potential for PROTAC-mediated degradation of tau, the peptidic nature of these molecules
would likely limit their therapeutic potential due to issues with instability and poor BBB penetration.
Later, we too harnessed the PROTAC technology to transform one of the most clinically advanced
tau PET tracers, flortaucipir (18F-T807), into the CRBN-recruiting (via pomalidomide) tau degrader
QC-01-175 [379]. We demonstrated that a T807-derived degrader molecule preferentially degraded
tau species in FTD patient-derived neuronal cell models expressing Tau-A152T or Tau-P301L, in a
dose-dependent manner, thus rescuing tau-mediated neuronal stress vulnerability. Importantly, this tau
degrader had a minimal effect on tau from wild-type control neurons and preferentially targeted tau
species from FTD patient-derived neurons. Tau degradation was fully dependent on CRBN activity
and tau binding, as well as proteasome function, whereas autophagy was not involved. These results
propose that tau degraders may offer a promising, unprecedented opportunity for neutralizing the
neurotoxic effects of tau in disease [379].
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Figure 4. Proposed mechanism of action of Tau degraders, based on targeted protein degradation
technology. (a) A degrader is a bifunctional molecule designed to preferentially recognize
disease-associated Tau species and simultaneously engage an E3 ubiquitin ligase complex. (b) This
leads to formation of a ternary complex that mediates Tau ubiquitination, targeting Tau for degradation
by the proteasome. (c) It is proposed that this is a catalytic mechanism, and that upon Tau degradation,
the degrader molecule is released and can associate with more Tau species, restarting the cycle.
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There are also challenges in this field, such as rational structure optimization, limited structural
data, and the greatly anticipated in vivo and clinical data. Albeit promising, tau PROTAC-based
degraders rely on the function of the UPS in a disease and aging context. However, the UPS has
been shown to be associated with disease pathogenesis with a progressive reduction in function.
This means that the use of tau degraders in neurodegenerative diseases like tauopathies may rely on
combined therapy approaches that signal proteins for proteasome degradation and concomitantly
enhance the proteasome proteolytic function. Unfortunately, interest in this pathway as a therapeutic
target has lagged behind other clearance pathways, such as autophagy. Despite the remaining hurdles,
PROTAC-based degraders are expected to soon become a new therapeutic category of drugs.

4. Concluding Remarks

Tau pathology is a hallmark of a number of genetic and aging diseases with growing incidence
worldwide. Having a deeper understanding of disease mechanisms will ultimately contribute to finding
a treatment that prevents the onset and relentless progression of neurodegeneration. The development
of new biomarkers to complement current clinical measures of symptomology and brain function
will be critical to enable measurement of target engagement in clinical trials, as it will help evaluate
pharmacodynamic effects of treatment, and measure disease progression. Increasing knowledge
regarding the structure of tau filaments in different forms of tauopathy (by cryogenic electron
microscopy) provides valuable structural information that will contribute to an improved and rational
design of specific tau aggregation inhibitors, tau ligands for PET imaging, and development of tau- and
disease-specific degraders. A total of 60 clinical trials have been conducted to date with 24 different
therapeutics targeting diverse proposed tauopathy mechanisms (Figure 3), an advance never before
seen for tau and really “representing the dawn of a new age of drug development for Tau” [301].
However, there are still many unknowns regarding the multitude of tau-mediated mechanisms leading
to neuronal loss of function and death, and there are also many barriers to be overcome until a tau
therapeutic reaches the clinic. Therefore, the intellectual and financial investment in this field of
research continues to increase. As a result, the rapid pace of progress in the research of tauopathy
disease mechanisms and parallel development of novel experimental tau therapies targeting those
mechanisms, especially over the past 5–10 years, is encouraging and suggests that we will eventually
see a tau therapeutic in clinical use.
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Abbreviations

AD Alzheimer’s disease
ASO Anti-sense oligonucleotide
BBB Blood-brain barrier
CBD Corticobasal degeneration
CNS Central nervous system
CSF Cerebral spinal fluid
ER Endoplasmic reticulum
FTD Frontotemporal dementia
GPCR G-coupled protein receptors
GSK-3 Glycogen synthase kinase 3
HSPGs Heparan sulfate proteoglycans
iPSC Induced pluripotent stem cells
MAPT Microtubule-associated protein Tau
MW Molecular weight
NFT Neurofibrillary tangle
OGA O-GlcNAcase
P-Tau Phosphorylated Tau
PDE Phosphodiesterase
PET Positron emission tomography
PHF Paired helical filament
PK Pharmacokinetics
PP2A Protein phosphatase 2
PROTAC Proteolysis targeting chimera
PSP Progressive supranuclear palsy
PTM Post-translational modification
SG Stress granule
TTBK1 Tau tubulin kinase 1
UPR Unfolded protein response
UPS Ubiquitin proteasome system
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