
RESEARCH Open Access

Transparent mediation-based access to multiple
yeast data sources using an ontology driven
interface
Abdelaali Briache1, Kamar Marrakchi1, Amine Kerzazi2, Ismael Navas-Delgado2, Badr D Rossi Hassani1, Khalid Lairini1,
José F Aldana-Montes2*

From Semantic Web Applications and Tools for Life Sciences (SWAT4LS) 2010
Berlin, Germany. 10 December 2010

Abstract

Background: Saccharomyces cerevisiae is recognized as a model system representing a simple eukaryote whose
genome can be easily manipulated. Information solicited by scientists on its biological entities (Proteins, Genes,
RNAs...) is scattered within several data sources like SGD, Yeastract, CYGD-MIPS, BioGrid, PhosphoGrid, etc. Because
of the heterogeneity of these sources, querying them separately and then manually combining the returned results
is a complex and time-consuming task for biologists most of whom are not bioinformatics expert. It also reduces
and limits the use that can be made on the available data.

Results: To provide transparent and simultaneous access to yeast sources, we have developed YeastMed: an XML
and mediator-based system. In this paper, we present our approach in developing this system which takes
advantage of SB-KOM to perform the query transformation needed and a set of Data Services to reach the
integrated data sources. The system is composed of a set of modules that depend heavily on XML and Semantic
Web technologies. User queries are expressed in terms of a domain ontology through a simple form-based web
interface.

Conclusions: YeastMed is the first mediation-based system specific for integrating yeast data sources. It was
conceived mainly to help biologists to find simultaneously relevant data from multiple data sources. It has a
biologist-friendly interface easy to use. The system is available at http://www.khaos.uma.es/yeastmed/.

Background
The yeast Saccharomyces cerevisiae, known popularly as
bakers’ or brewers’ yeast, has been used extensively in
aging research. It is a unicellular organism whose DNA
is packaged into chromosomes that are localized in a
subcellular structure called the nucleus. Since 1990, it
has emerged as an important model organism for the
dissection of the biological aging process at the genetic
and molecular levels. Saccharomyces cerevisiae was the

first eukaryotic genome that was completely sequenced
[1].
Nowadays, the word yeast is widely given to the spe-

cies Saccharomyces cerevisiae because of the place it
occupies in biological research. Large amounts of data
related to it are genereted by Life Science and stored in
multiple databases. Biologists are brought systematically
to query these sources in order to analyse the results of
their experiments. They usually perform the following
tasks during query formulation and execution: (i) look
for appropriate sources where it is possible to find help-
ful data and specify their location, (ii) identify the focus
of each source, (iii) query each convenient source inde-
pendently using its specific access method and query
language, (iv) navigate through the sources to obtain

* Correspondence: jfam@lcc.uma.es
2Department of Computer Languages and Computing Science, Higher
Technical School of Computer Science Engineering, University of Malaga,
Malaga, 29071, Spain
Full list of author information is available at the end of the article

Briache et al. BMC Bioinformatics 2012, 13(Suppl 1):S7
http://www.biomedcentral.com/1471-2105/13/S1/S7

© 2011 Briache et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://
creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

http://www.khaos.uma.es/yeastmed/
mailto:jfam@lcc.uma.es
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/licenses/by/2.0

complementary data, and (vi) manuallymerge the results
obtained from different sources. This is a tedious and
time-consuming task for biologists, most of whom are
not bioinformatics experts, and reduces the advantage
that can be took of the available information.
The challenges of modern bioinformatics research is

not only storing data in repositories, but also processing
and integrating them. Multiple solutions to biological
data integration have been developed. Researchers have
come up with some approaches that integrate diverse
biological data sources. Two common approaches have
being used to interoperate biological databases: data
warehousing (or materialised) approach [2] and feder-
ated/mediator-based (or virtual) approach [3].
The data warehousing approach is adopted by numer-

ous biological integration systems like GUS [4], Atlas
[5], BioSQL [6], BioMart [7], BioWarehouse [8], and
chado [9]. This approach uses a data warehouse reposi-
tory that provides a single access point to a collection of
data, obtained from a set of distributed, heterogeneous
sources. Data from the remote heterogeneous databases
are copied on a local server and the user will use a
unique interface within the system to allow multi-data-
base queries to be issued to this single interface. Data
warehousing requires the use of Extraction, Transforma-
tion and Load (ETL) [10] tools to load data, and map it
to a materialised global schema. In fact, warehousing
requires that all the data loaded from the sources be
converted through data mapping to standard unique for-
mat before it is physically stored locally. Relying less on
the network to access the data clearly helps to eliminate
various problems such as network bottlenecks, low
response times, and the occasional unavailability of
sources. Furthermore, using materialised warehouses
allows for an improved efficiency of query optimisation
as it can be performed locally [11,12]. Another benefit
in the data warehouse integration approach is that it
allows the system to filter, validate, modify, and anno-
tate the data obtained from the heterogenous sources
and this has been noted as a very attractive property for
bioinformatics. This approach however has an important
and costly drawback in terms of reliability of results and
overall system maintenance caused by the possibility of
returning outdated results. Warehouse integration must
indeed regularly check all the underlying sources for
new or updated data and then reflect those modifica-
tions on the local copy of the data [12].
Virtual integration (mainly mediator-based systems)

concentrates on query rewriting: It rewrites the user
query, into queries that are understood by the integrated
sources. The mediator uses the relationships between
sources and a global schema to translate queries on the
mediator schema to the data source schemata. The two
main approaches for establishing the mappings between

each source schema and the integration schema are glo-
bal-as-view (GAV) and local-as-view (LAV) [11,13]. In
the GAV approach the mediator relations are directly
written in terms of the source relations. The GAV
approach greatly facilitates query reformulation as it
simply becomes a view unfolding process. In LAV
approach every source relation is defined over the rela-
tions and the schema of the mediator. It is therefore up
to the individual sources to provide a description of
their schema in terms of the global schema, making it
very simple to add or remove sources but also compli-
cating the query reformultaion and processing role of
mediator.
The mediator-based approach has several strengths

compared to data warehouse. It does not have the
updating problem as the query goes directly to the origi-
nal source. Mediators can be seen as a cheaper and
more effective approach since they use schema or view
integration, rather than having to have huge storage
capacity to store copied data from all the involved data
sources.
This paper presents a mediator-based system called

YeastMed [14] that aims to provide transparent access
to disparate biological databases of yeast. It provides a
unique interface between the user who submits a query,
and a set of five data sources accessible via web proto-
cols. YeastMed relies on SB-KOM [15] to perform the
query transformation needed to reach the integrated
data sources. These sources are: SGD [16], Yeastract
[17], CYGD-MIPS [18], BioGrid [19] and PhosphoGrid
[20]. They provide complementary data on biological
entities (cellular interaction, metabolic pathways, tran-
scription factors, annotation data...). With YeastMed, we
aim to help biologists to get relevant data to understand
and explain the biological processes of interest by using
an integrative system.
This paper is organised as follows: an overview on

some biological data integration systems is given in the
next section. Then, a general overview of the system
and the resources used in YeastMed are given before to
describe the integration process components along with
some explanatory schemas. A detailed use case is then
sketched describing how YeastMed proceeds when a
user query is submitted. At the end, we discuss some
advantages and limitations of the current version of
YeastMed before to conclude the paper.

Related work
Works specific to the integration of yeast data sources
are not abundant. However a variety of data integration
systems especially tailored to cater for bioinformatics
applications have been developed. These systems can
broadly be classified as: data warehouses, federated/med-
iator-based systems and XML-based systems.

Briache et al. BMC Bioinformatics 2012, 13(Suppl 1):S7
http://www.biomedcentral.com/1471-2105/13/S1/S7

Page 2 of 19

Data warehouse systems
Several attempts have been made to create integrated
environments for storing and analysing biological data.
For the sake of brevity, we sketch here two of them due
to their relation to yeast.
Cell Cycle Database [21] is an integrated data ware-

house for systems biology modelling and cell cycle ana-
lysis based on yeast and mammalian organisms. The
system integrates information about genes and proteins
involved in the cell cycle process. It stores complete
models of interaction networks and allows the mathe-
matical simulation over time of the quantitative beha-
viour of each component. The database integration
system consists of a series of programs used to retrieve
the data from several different external databases, trans-
form and load them into the warehouse data model.
YeastHub [22] is a prototype application in which a

data warehouse has been constructed in order to store
and query different types of yeast genome data provided
by different resources in different formats including the
tabular and RDF formats. Once the data are loaded into
the data warehouse, RDF-based queries can be formu-
lated to retrieve and query the data in an integrated fash-
ion. YeastHub is implemented using Sesame 1.1 [23].
The tabular-to-RDF conversion is written using Java.
These two systems present some limitations: they

store the extracted data locally in a data warehouse or
database which render the updating process a tedious
task. YeastHub presents another problem where Sesame
does not have a way to identify the source of the triples
(statements) once they are loaded into the repository. In
contrast, YeastMed accesses and interrogates data in its
original data sources, and provides the user with the
possibility to choose which data source entry to return.
If the user doesn’t make a choice, the system explicitly
gives the provenance of the result entries.
Federated and mediator-based systems
Other alternative solutions have been proposed in biolo-
gical data integration adopting a virtual approach.
Among them we can cite:
Kleisli [4] is as a mediator system encompassing a

nested relational data model, a high-level query lan-
guage, and a powerful query optimiser. It runs on top of
a large number of light-weight wrappers for accessing
various data sources. The Kleisli system is highly exten-
sible. It can be used to support several high-level query
languages by replacing its high-level query language
module. Kleisli supports the Collection Programming
Language (CPL) [24] and a nested relational version of
SQL. However Kleisli does not use any global schema or
ontology over which a user can formulate queries. A
query attribute is bound to a matched attribute in single
source, so there is no integration across different
sources.

DiscoveryLink [25] is a wrapper-oriented bioinfor-
matics integration system built on the Garlic project
technology [26]. It serves as a middleware between the
applications and a set of wrappers. Applications connect
to DiscoveryLink and submit an SQL query on its global
schema. The wrappers provide source-specific informa-
tion about query capabilities that help the optimiser to
determine which parts of a query can be submitted to
each source. The query optimiser considers the speed of
various sources, their network connections, and the size
of their data to predicate the costs of different plans.
DiscoveryLink, however, cannot deal with complex
source data such as nested data. Most biological data,
unfortunately, are highly nested. Therefore, there is a
significant amount of mismatch between most data
sources and DiscoveryLink. Furthermore, it is hard to
add new data sources or analysis tools to DiscoveryLink.
In addition, DiscoveryLink requires SQL as its query
language, which is not easy for biologists to write.
TAMBIS [27] is a mediator-based and ontology-driven

integration system, it has three layers: the conceptual
model, the mapping model and the physical model. In
TAMBIS, the formulation of queries is done through a
graphical interface where user needs to browse through
the different concepts defined in the global schema and
select the suitable ones for particular query. As the first
step, the system expresses the graphical query in GRAIL
[28]. Then, the query is translated into a Query Internal
Form (QIF), which is in turn translated into a source-
dependent query execution plan in CPL [24]. The global
ontology is a unified conceptual-level representation of
its registered component resources. It provides a global
schema as well as an abstract framework for relating,
reconciling, and coordinating the concepts in the
sources. The mapping model converts a query phrased
in terms of the conceptual layer into executable plans in
terms of each source. The physical model submits the
executable plans to different sources and retrieves the
results. Although TAMBIS is more of an upper level
solution than other systems, but its graphical interface is
very complicated and requires that a user understands
the query language. BioMediator [29] is a federated data
integration system based on XML. It uses a mediated
schema which allows for more flexible data modelling.
The central component of BioMediator system is its
source knowledge base, which consists of descriptions of
the various data sources, mappings from the source to
the mediated schema, and the mediated schema itself.
The system include also wrappers that conduct syntactic
translations by translating the returned data results into
an XML document, a metawrapper that conducts
semantic translations by mapping the returned XML
document onto the mediated schema, and a query pro-
cessor that queries (using XQuery Language) against the

Briache et al. BMC Bioinformatics 2012, 13(Suppl 1):S7
http://www.biomedcentral.com/1471-2105/13/S1/S7

Page 3 of 19

mediated schema. BioMediator is thus dedicated to
users who know the XQuery language and is not willing
to be used by external research groups.
Compared to these systems, YeastMed is the first data

integration system which adopts the mediation approach
to integrate yeast-specific data sources. It has a domain
ontology which plays the role of the global schema and
supports the user queries. Unlike the systems cited
above, YeastMed has an easy-to-use ontology driven
interface where users express their requests in simple
natural language. Users do not need to know a specific
query language to use it. In addition, due to its modular
design, YeastMed furnishes the possibility to add easily
new data sources or analysis tools.
XML-based systems
Despite the possibility to use standard approaches for
data integration [30], specific approaches based on the
employment of XML in Bioinformatics have been
proposed:
Automed [31] is a heterogeneous data transformation

and integration system which offers the capability of
handling virtual, materialised and hybrid data transfor-
mation/integration across multiple data model. Auto-
Med uses XML DataSource Schema (XMLDSS) as a
common representation language and schema type sup-
porting the annotations for each source by suitable
ontologies. An XMLDSS schema can be automatically
extracted from an XML document or automatically
derived from an accompanying DTD/XML schema if
one is available.
The system approach is based on: (i) XML as a com-

mon representation format; (ii) XMLDSS as the schema
type for the XML documents input to and output by
services; (iii) Correspondence to available ontologies; i.e.
the services inputs/outputs are annotated with corre-
spondences between the XMLDSS schema and some
existing ontologies; and (iv) AutoMed toolkit to automa-
tically transform the XMLDSS schema to output of a
given service to the XMLDSS schema of the input of
another service.
SWAMI [32] defines a rich middleware architecture

that integrate different databases, formats and computa-
tional resources. Its architecture design includes a Pre-
sentation layer that receives user requests, passes them
to the Core workbench Application, and returns applica-
tion results to user by the same route. The Core Appli-
cation consists of four major components: The user
module which receives data and instructions from the
Presentation Layer. The Broker module which interacts
with the others modules via APIs and serves as coordi-
nator using a registry service that maintains information
about all available services and databases. Then The
Tool and Data modules, which are conceptually identi-
cal, abstract respectively applications and databases, and

perform their functions by orchestrating a series of ser-
vices. XML is used for the declarative specification of
services.

Methods
YeastMed is a mediator-based system that consists of
several components contributing to the data integration
process in different ways. In this section we talk in detail
about the process for creating the system by giving
descriptions of its components and the role of each of
them.

YeastMed overview
The general architecture of the YeastMed system is
shown in (Figure 1). It consists of a set of components
that have been implemented independently and play dif-
ferent roles. The access point to the system is a web
interface that furnishes two search forms:

▪ A quick search form where scientists can quickly
submit their requests based on some keywords
(Gene or Protein names, GO terms or any other
words that can appear in the search fields of the
interrogated data sources). This type of search does
not make use of the mediator. It exploits the
YeastMed web services to look for information in
the integrated data sources.
▪ An ontology-driven search form which allows biol-
ogists to express their requests in terms of the
YeastMed Ontology. These terms are presented in
natural language to ease the query formulation pro-
cess for biologists most of whom are not familiar
with knowledge representation and query languages.

YeastMed relies on SB-KOM [15] to perform query
transformation at execution time. Once the user submits
a request from the web interface, YeastMed generates a
conjunctive query. SB-KOM decomposes this query into
suitable sub-queries to individual sources based on a set
of mapping rules. These sub-queries are expressed in
XQuery, because the sources are accessed through web
services using this query language.
YeastMed have a set of web services (Data Services for

us): one for each integrated source. These components
receive XQueries from SB-KOM and return XML docu-
ments. The role of the web services is to allow
YeastMed to use wrapper functionalities to find and
extract solicited information from data sources through
their web pages or FTP mechanisms. Answers, materia-
lised by XML documents, to XQueries are sent to the
mediator which combines them into a YeastMed ontol-
ogy instance expressed in RDF. The final result is pro-
vided for the user in HTML format. Data sources are
also an important component in the YeastMed

Briache et al. BMC Bioinformatics 2012, 13(Suppl 1):S7
http://www.biomedcentral.com/1471-2105/13/S1/S7

Page 4 of 19

architecture because they are the providers of the biolo-
gical information.

Integrated data sources
In its current version, YeastMed integrates five Yeast
databases. They have been selected for having the most
appropriate properties for studying Saccharomyces cere-
visiae, because they provide complementary data con-
cerning genome, proteome, metabolome and reactome.
These sources are:

▪ SGD Database [16]: It contains the sequences of
yeast genes and proteins, descriptions and classifica-
tions of their biological roles, molecular functions,
subcellular localisations, links to literature informa-
tion and tools for analysis and comparison of
sequences.
▪ YEASTRACT Database [17]: It is a repository of
regulatory associations between transcription factors

and target genes, based on experimental evidence
which was spread throughout bibliographic refer-
ences. Each regulation has been annotated manually,
after examination of the relevant references. The
database also contains the description of specific
DNA binding sites for a sub-group of transcription
factors.
▪ MIPS-CYGD [18]: aims in general to present
information on the molecular structure and func-
tional network of Saccharomyces cerevisiae. In addi-
tion, the data of various projects on related yeasts
are also used for comparative analysis.
▪ BioGRID [19]: It is an online interaction reposi-
tory with data compiled through comprehensive
curation efforts. All interaction data are freely pro-
vided through the search index and available via
download in a wide variety of standardised formats.
▪ PhosphoGRID [20]: records the positions of speci-
fic phosphorylated residues on gene products.

Figure 1 General architecture of YeastMed system. It shows how the different components of YeastMed System are structured and interact
between them.

Briache et al. BMC Bioinformatics 2012, 13(Suppl 1):S7
http://www.biomedcentral.com/1471-2105/13/S1/S7

Page 5 of 19

Where available for specific sites, PhosphoGRID has
also noted the relevant protein kinases and/or phos-
phatases, the specific condition(s) under which phos-
phorylation occurs, and the effect(s) that
phosphorylation has on protein function.

YeastMed user interface
The fact that biologists are familiar with HTML forms
when interrogating biological databases, and in order to
make YeastMed easy to use, we have adopted the same
strategy that most biological databases are using to
receive queries: A simple HTML-form-based interface
has been developed permitting the queries to be
expressed in natural language. It is an ontology driven
interface. Users formulate their queries by selecting
items from the form fields. These items have their
equivalents in the YeastMed ontology (concepts and
properties) and are written in natural language. For
example the concept BibRef in the ontology is translated
in the form fields as Bibliographic Reference and the
datatype property hasProductDesc as having Product
Description. We are convinced that it is very easy for
users to express in natural language their requests by
using implicitly triplets composed of, those designed in
the terminology of ontologies by, domain, property and
range. For example, the user interested in the set of
genes regulated by the transcription factor having the
standard name Adr1, can express it using the two asser-
tions: “Gene regulated by Transcription Factor” and
“Transcription Factor has standard name Adr1”. In this
context, we have designed the YeastMed interface to
capture these kinds of expressions. The query form pro-
poses three fields per line. Each line represents the tri-
plet formed by: domain, property and range. Range can
be either a concept to select from the third field in a
line or a literal value to introduce in a field that appears
at the bottom of the second field if a datatype property
has been selected in it. The example above can be cap-
tured in YeastMed interface using two field lines as fol-
lows: in the first line “Gene“ “regulated by“
“Transcription Factor“ and in the second line “Tran-
scription Factor“ “having Standard Name“ “Adr1“ (Fig-
ure 2). When submitted, the system makes use of the
equivalents of these in the ontology and creates the con-
junctive query: Ans(G):= Gene(G), regulatedBy
(G, TF), TranscriptionFactor(TF), has-
StandardName(TF, “Adr1”) before to send it to
the mediator component.
The YeastMed web site also gives the possibility for

users to use a quick search form to interrogate the five
integrated databases without using the mediator. Users
simply enter their keywords in an input field, select the
databases to be looked up and the system takes

advantage of the YeastMed Data Services to access and
extract data from the underlying sources.

Data integration in YeastMed
YeastMed has a set of modules that depend heavily on
XML and semantic web technologies to integrate syn-
tactically and semantically biological data. In what fol-
lows, we give detailed information on these components.
Source schemas
The knowledge modelling of the application domain of
YeastMed constitutes the corner stone for an efficient
integration. To that end, a detailed study of the sources
has been carried out with the goal of establishing a stan-
dard terminology to describe the data. Each data source
has been modelled by an exported XML Schema (Figure
3). An exported schema refers to translated source
schema in the YeastMed Ontology. These schemas are
considered as models describing data and their organisa-
tion in data sources and define a structure under which
results will be returned by Data Services.
Data services
YeastMed uses a set of web services (called in our case
Data Services) to access data sources. We have devel-
oped one Data Service for each integrated yeast source.
These components hide technical and data model details
of the data source from the mediator. They receive
XQueries from SB-KOM and return XML documents in
addition to other metadata. The role of YeastMed Data
Services is twofold:

▪ Allowing YeastMed to use the wrapper functional-
ities to find and extract solicited information from
data sources using HTML protocols or FTP
mechanisms. This means providing the ability to
solve XQueries and return answers in XML format.
▪ Exporting semantic information about data sche-
mas and data provenance. This allows mainly
YeastMed to keep track of the returned information
when combining them and also which source is
being interrogated.

It is common knowledge that a wrapper is an interface
for a data source that translates data into the common
data model used by mediators [33]. Because the goal of
YeastMed is to integrate databases accessible via Web
protocols, it is completely normal that a wrapper is con-
sidered as the most important component of the archi-
tecture of YeastMed Data Services. It is an interface that
receives XQueries generated by SB-KOM, accesses a
specific data source, extracts data and translates them
into the common data model used by SB-KOM, i.e.
XML (Figure 4).
In addition to the wrapper’s query service, the web

services encapsulate an Application Programming

Briache et al. BMC Bioinformatics 2012, 13(Suppl 1):S7
http://www.biomedcentral.com/1471-2105/13/S1/S7

Page 6 of 19

Interface (API). It is the access point for SB-KOM to the
functionality of the web service. This API publishes
three methods: getQuery(Q) that passes to the wrapper
the XQuery Q and returns its answer in an XML for-
mat. The XML structure of this answer must satisfy the
constraints of the source schema. The other two meth-
ods, getSchema() and getProvenance(), provide access to
the metadata that the web service stores. The former
returns the XML data schema and the latter provides
information on the underlying data source. In order to
use these methods correctly, SB-KOM finds all the

necessary information about them in a WSDL (Web
Service Description Language) document.
The Data Services have been implemented in Java.

They receive XQueries from SB-KOM via the getQuery()
method of the API which passes it to the wrapper. This
is materialised by a set of java classes that define several
methods. The incoming XQuery is analysed to identify
precisely what information is solicited from the underly-
ing data source. The wrapper then generates a source-
adapted query following the query capabilities of the
source already specified for each Data Source. Then it

Figure 2 The ontology-based search interface of YeastMed. It shows how is captured the example sketched in this section.

Figure 3 A fragment of the yeastract schema. It is used in YeastMed as a model describing data and their organisation in data source and
defines a structure under which results will be returned by the Yeastract web service.

Briache et al. BMC Bioinformatics 2012, 13(Suppl 1):S7
http://www.biomedcentral.com/1471-2105/13/S1/S7

Page 7 of 19

establishes a connection to the data source via HTML
or FTP protocols. In the case of HTML protocol, the
data source is interrogated through its web interface
using its query engine. The answer is one or several web
pages which are parsed on the fly to extract the solicited
data. In the case of FTP protocol, the data source is
interrogated through its available flat files which are also
parsed on the fly. A set of methods are defined to
extract data from source answers and organize them as
an instance of the XML source schema before to send it
to the SB-KOM in the form of an XML document.
YeastMed is able to reflect data provenance by calling

the method getProvenance() which returns information
about a source or through the XML document returned
by Data Services: it contains by default a description of
the interrogated data source. Thus, instances with the
integrated data can be annotated with the data prove-
nance of each piece of information. In this way, the user

interface could show users the provenance of each part
of the results.
YeastMed ontology
As mentioned before, the goal of the YeastMed System
is to help scientists to get information from multiple
Yeast data sources by providing a single access point.
To that end, we have equipped YeastMed with a domain
ontology. The primary purpose of this Ontology is to
support the user queries. Queries are phrased in terms
of the ontology and YeastMed converts these to XQuery
requests to the appropriate sources via Data Services.
The YeastMed ontology has been constructed from
scratch by reconciliating the different data source sche-
mas into a single, coherent ontology.
The YeastMed ontology [34] ensures semantic encap-

sulation of data sources by defining a concepts hierar-
chy. This is a classification of all the biological entities
manipulated by the system. It represents a knowledge

Figure 4 Architecture of the web services in YeastMed system. Services receive Xqueries through the different methods of the API and
transmit them to the wrapper. The output is an XML document.

Briache et al. BMC Bioinformatics 2012, 13(Suppl 1):S7
http://www.biomedcentral.com/1471-2105/13/S1/S7

Page 8 of 19

model that captures biological and bioinformatics
knowledge in a simple hierarchical conceptual frame-
work constrained by parent-child relationships (Figure
5): A child is a subset of a parent’s elements; each child
inherits all of its parent’s properties but has more spe-
cialised properties of its own. Overall, the ontology con-
cepts can be classified into two categories: the purely
biological concepts category and the source-related con-
cepts category.

▪ The purely biological concepts category, which is a
union of all the classes modelling biological entities
found in the integrated data sources. As an example
of this category, we cite ChromosomalFeature con-
cept. It is the superclass of 38 classes representing
different types of chromosomal features (genes, CDS,
intron, repeat regions, etc).
▪ The source related concepts category is repre-
sented by concepts referring to sources. For example
the concept Source represents the five integrated
data sources and the concept Entry refers to entries
in data sources. Adding this category to the ontology
has as the objective to permit scientists, when using
YeastMed, to express their preferences on data
sources. So, giving the possibility to determine which

source entry they want YeastMed to return if a
result is found rather than the system making its
own choice.

To convey additional semantic information about the
concepts, the ontology defines two types of properties.
The first one is defined by a set of object properties that
model the relationships that can hold between two indivi-
duals belonging to one or two different classes of the
ontology. The second type concerns data properties: these
are relationships linking an individual to a literal data.
To further illustrate the role of properties in convey-

ing semantics to the YeastMed ontology, we detail a
real-world example (Figure 6). SWI4 [35], having the
systematic name YER111c, is a gene coding for a DNA
binding component of the SBF complex (Swi4-Swi6), a
transcriptional activator that in concert with MBF
(Mbp1-Swi6) regulates late G1-specific transcription of
targets including cyclins and genes required for DNA
synthesis and repair, an example is Topoisomease I [36]
(which have the standard name TOP1). From this we
can make the following assertions:

▪ SWI4 and TOP1 are two Genes having the sys-
tematic names YER111c and YOL006c;

Figure 5 A fragment of the YeastMed ontology. It shows the semantic encapsulation of the concepts related to DNA sequences in YeastMed.
For example the concept GeneSequence which represents the set of gene sequences is a child of the concept DNASequence which represents all
type of DNA sequences. DNASequence is in turn a child of NASequence which represents the set of nucleic acid sequences.

Briache et al. BMC Bioinformatics 2012, 13(Suppl 1):S7
http://www.biomedcentral.com/1471-2105/13/S1/S7

Page 9 of 19

▪ SWI4 and TOP1 code respectively for a Transcrip-
tion Factor and an Enzyme;
▪ SWI4 regulates the transcription activity of TOP1;
▪ Both SWI4 and TOP1 code for proteins (having
respectively the same standard names as their
Genes).

These assertions let one define:

▪ Four concepts: Gene, Protein, TranscriptionFactor,
and Enzyme;
▪ Four object properties: codesFor and its inverse
property codedBy linking Gene to Protein, in addi-
tion to the property regulates and its inverse regula-
tedBy linking TranscriptionFactor to Gene;
▪ Two datatype properties: hasSystematicName and
hasStandardName linking TranscriptionFactor and
Enzyme to literal values of type String (SWI4 and
TOP1 for the former and YER111c and YOL006c
for the latter);
▪ Enzyme and TranscriptionFactor as child concepts
of Protein.

In YeastMed, we have chosen OWL [37] as a standard
Ontology language to represent the ontology. OWL is,
like RDF [38], taking advantage of the syntactic univers-
ality of XML. Based on the RDF/XML syntax, OWL
provides a way to write web ontologies. It is different
from the couple RDF/RDFS in the sense that is just a
language of ontologies: If RDF and RDFS bring the user
the ability to describe classes (with constructors) and

properties, OWL incorporates, in addition, comparison
tools for properties and classes: identity, equivalence,
contrary, cardinality, symmetry, transitivity, disjunction,
etc. Thus, OWL offers for machines a greater capacity
of interpretation of the web content than RDF and
RDFS [39], with a wider vocabulary and a real formal
semantics. To be more precise, we have contented our-
selves with using OWL-Lite (which is a sub-language of
OWL) because we have envisaged from the beginning to
equip YeastMed with a simple domain ontology showing
a simple concepts hierarchy and simple constraints.
Mappings
Having a domain ontology facilitates the formulation of
queries to the system. The users simply pose queries in
terms of the ontology rather than directly in terms of
the Source Schemas. Although this is very practical and
effective in terms of the system transparency to the
user, it brings the problem of mapping the query in the
mediated schema to one or more queries in the schemas
of the data sources. In YeastMed, this problem is solved
using the functionality of SB-KOM. So in addition to
modelling the ontology and the sources, we needed to
establish associations between the concepts in the ontol-
ogy and the appropriate elements representing the infor-
mation in the sources. These associations are
materialised in YeastMed by the mapping rules.
SB-KOM is designed to decompose queries based on

GAV approach-based mappings. That means each con-
cept (also property in our case) in the ontology is a view
defined in terms of the source schemas’ elements. This
view specifies how to obtain instances of the mediated

Figure 6 A schematic representation of the example sketched in this section. It shows four biological concepts (ellipses) linked by four
object properties (red arrows) and two parent-child relationships (blue arrows), and two datatype properties (green arrows) linking two concepts
to values of type String (rectangles).

Briache et al. BMC Bioinformatics 2012, 13(Suppl 1):S7
http://www.biomedcentral.com/1471-2105/13/S1/S7

Page 10 of 19

schema elements from sources. In this context, the map-
ping rules we have used are defined as pairs (P,Q). P is
one or a couple of path expressions on a source schema
expressed in XPath, and Q a conjunctive query
expressed in terms of the Ontology terms. Three kinds
of mappings have been defined:

▪ Class Mapping: it maps ontology classes to source
schemas. It has the following form:
XPath-Element-Location, Ontology-
Class-Name, correspondence-index
Where XPath-Element-Location is the location of an
element in the source schema, expressed in XPath;
Ontology-Class-Name is the name of the correspond-
ing class in the Ontology and correspondence-index
is an integer value that informs on the correctness
of the mapping instance. In YeastMed, this index is
always 100 since all the mappings are done manually
and not automatically. An example which maps the
Protein class to the SGD schema is as follows:
Result/Entries/Entry/Protein,
Protein,100
▪ Datatype Property Mapping: it maps ontology
datatype properties to source schemas. It has the fol-
lowing form:
XPath-Domain-Location; XPath-value-
Location, Ontology-Domain-Name; Prop-
erty-Name, correspondence-index
XPath-Domain-Location is the Path to the element
in the source schema which is mapped to the
domain of the datatype property; XPath-value-Loca-
tion is the Path to the element where the property
takes the value of its range and Ontology-Domain-
Name and Property-Name are respectively the
domain and the name of the property. The following
example concerns the datatype property hasName:
Result/Entries/Entry/Protein; Result/
Entries/Entry/Protein/SysName, Tran-
scriptionFactor;has Name,100
▪ Object Property Mapping: it maps ontology object
properties to source schemas. It has the following
form:
XPath-Domain-Location; XPath-Range-
Location, Ontology-Domain-Name; Ontol-
ogy-Range-Name; Property-Name, corre-
spondence-index
XPath-Range-Location is the Path to the element in
the source schema which is mapped to the range of
the object property. Ontology-Range-Name is the
range name of the property. The following example
shows how the object property hasBibRef is mapped
to the source schema:

Result/Entries/Entry/Protein;Result/
Entries/Entry/Literature, Protein;
BibRef;hasBibRef,100

SB-KOM
YeastMed relies on SB-KOM [15], to perform query
transformations at execution time. KOMF is a generic
infrastructure to register and manage ontologies, their
relationships and also information relating to the
resources. This infrastructure is based on a resource
directory, called Semantic Directory [40], with informa-
tion about web resource semantics. KOMF has been
successfully instantiated in the context of molecular
biology for integrating biological data sources [41-43].
SB-KOM mediator is composed of three main compo-
nents: the Controller, the Query planner and the Evalua-
tor/Integrator.
The Controller component receives requests coming

from the YeastMed web interface and evaluates them to
obtain a result for the requests. The controller creates
different threads for different user requests, and assumes
the role of the middleware between the mediator com-
ponents. Queries are expressed as conjunctive predicates
[44], with three main types of predicate: classes in terms
of YeastMed ontology which is registered in the Seman-
tic Directory, datatype properties that link individuals to
data values, and object properties that link individuals
to individuals. The results of these queries are instances
of the YeastMed ontology which the query was
expressed in.
The Query planner component is by far one of the

most fundamental pillars in elaborating one or several
query plans to solve the query from different data
sources. Plans generated by this component specify the
data sources from which the information can be
retrieved and in which order they must be accessed.
The evaluation of these queries depends on the query
plans themselves.
According to the query (a conjunctive query), there

will be different types of mapping in the Semantic
Directory. Classes will be connected to the XPath of one
or several XML Schema resource elements. On the
other hand, datatype properties will be connected to
those two expressions: the first one corresponds to the
class and the second to the property. The object proper-
ties will be related to the active XPath classes in the
property.
The Query Planner runs following a simple algorithm

that receives as entry a conjunctive query expressed in
terms of the YeastMed ontology (conjunction of con-
cepts and properties) and returns a set of possible plan
trees. The algorithm steps are enumerated below (for a
use case see the following section):

Briache et al. BMC Bioinformatics 2012, 13(Suppl 1):S7
http://www.biomedcentral.com/1471-2105/13/S1/S7

Page 11 of 19

1. Get all the query predicates (concepts and proper-
ties) and distribute them in two groups based on the
number of the arguments: will contain predicates
having one argument (concepts) and will contain
predicates having two arguments (properties).
2. Construct a set of combinations between the
two groups based on common arguments, add all
the elements of and to it and eliminate the
repeated ones.
3. Eliminate from the elements that do not have a
representation in the mapping rules registered in the
Semantic Directory.
4. For each instantiated variable in the predicate
arguments, elaborate a plan tree:

a. The instantiated variable will construct a root
node.
b. The elements that contain a predicate specify-
ing a value for the instantiated variable and the
elements that contain only the instantiated vari-
able (without other variables) will be passed to
the current node and eliminated from .
c. The elements that contain, in addition to the
instantiated variable, another variable will consti-
tute the edges leaving the current node to new
nodes and eliminated from . The newly cre-
ated nodes will be represented by the other vari-
ables which will be the instantiated variables.
d. if there are still more elements in and for
each new instantiated variable we continue from
the step 4.b.

The Elvaluator/Integrator is the third component of
SB-KOM mediator. It analyses the query plan (QP), and
performs the corresponding calls to the Data Services
involved in the sub-queries (SQ1, ..., SQn) of the query
plan. To answer YeastMed query, this component first
executes the Data Services in the order specified by the
query plan. Then, it obtains the instances from the Data
Service results. These instances are not interconnected
because they have been produced by different Data Ser-
vices. In order to retrieve a set of interrelated instances
we need to establish relationships between them. This
can be achieved by the object properties defined in the
ontology that are used as relationships between services
in the query plan. Finally, these interrelated instances
are filtered in order to eliminate the information not
required.

Use case
In this section, we show how a user query is solved by
YeastMed, and how its different components take part
in this process. Let us take the case of a biologist who is
using YeastMed to find information about two kinds of
proteins. The first one is represented by DNA

Topoisomerase III, and the second one is indicated by
some transcription factors regulating the expression of
the first kind. The biologist is interested in the phos-
phorylation sites that are found in the sequences of the
transcription factors of DNA Topoisomerase III, espe-
cially the one (or ones if they exist) whose gene is
located on the Chromosome 16. In addition, the biolo-
gist also aims to get all the literature on DNA Topoi-
somerase III. As stated previously, YeastMed provides a
web interface that allows biologists to express this kind
of requests in terms of the ontology. The user can for-
mulate its request in the YeastMed interface by selecting
fields’ items as follows:
“Protein“, “having Description“, “DNA Topoisomerase

III“;
“Protein“, “having Bibliographic Reference“, “Biblio-

graphic Reference“;
“Protein“, “Regulated By“, “Transcription Factor“;
“Transcription Factor“, “Belongs To“, “Chromosome“;
“Chromosome“, “having Name“, “16“;
“Transcription Factor“, “having Phosphorylation Site“,

“Phosphorylation Site“.
To specify to the system what to return, the user

should add checkmarks by clicking on the boxes above
the fields where “Bibliographic Reference“ and “Phos-
phorylation Site“ were chosen before to submit its query.
The fragment of semantics that is implied directly in

the formulating process of that query is shown in (Fig-
ure 7). From this fragment, a conjunctive query is gener-
ated automatically:
Ans(BR,Ph):= Protein(P),hasDescription

(P,"DNA Topoisomerase III”), BibRef(BR),
hasBibRef(P,BR), hasSystematicName(P,
SN), regulatedBy(P,TF),hasName(TF,Nt),
TranscriptionFactor(TF),Chromosome(C),
hasName(C,"16”), BelongsTo(TF,C),Phos-
phoSite(Ph), hasPhosphoSite(TF,Ph);”
This conjunctive query includes as predicates five

ontology classes (Protein, BibRef, TranscriptionFactor,
Chromosome and PhosphoSite), three datatype properties
(hasDescription, hasSystematicName and hasName) and
four object properties (hasBibRef, regulatedBy, belongsTo
and hasPhosphoSite). This query will return instances of
PhosphoSite and BibRef that satisfy its constraints.
As a subsequent step, the conjunctive query will be

sent to SB-KOM, received by the controller which will
pass it to the Query Planner. This component has an
algorithm that, based on the query predicates and the
mappings of the semantic directories, will generate a set
of sub-queries and also a plan to execute them. The
predicates of the conjunctive query are divided into two
sets: a set that contains predicates with a single argu-
ment and another that contains predicates with more
than one argument. The predicates from the two sets

Briache et al. BMC Bioinformatics 2012, 13(Suppl 1):S7
http://www.biomedcentral.com/1471-2105/13/S1/S7

Page 12 of 19

which have common arguments are then grouped
together into groups represented by the combination of
two or more predicates. The groups that are not repre-
sented in the Semantic Directory mappings are dis-
carded. The remainder is added to the first set allowing
a group to be present only once. (Table 1) lists all
resulting groups.
From this set, the planner will try to construct poten-

tial trees of the execution order. It selects groups with
variables instantiated in order to set a root for a tree.
The order of the plan execution depends on the instan-
tiated variables: the group containing an instantiated

variable is executed first, then the groups that are
related to those variables, and so on until all the groups
are executed. In our case, G2 and G8 are selected. G8
cannot serve as a root, because there is no other group
that depends on its instantiated variable which keeps
the other groups without execution. This is not the case
for G2 which serves as a root for the tree shown in (Fig-
ure 8). It is the first to be executed. This returns the
protein that has as description “DNA Topoisomerase
III”. Then G9 and G10 are executed in parallel because
they depend on the instantiated variable of G2. From
these simultaneous executions, the algorithm will

Figure 7 The fragment of the ontology invoked to formulate the query example. Classes are shown in green and Properties in blue. The
mappings between the ontology and the source schemas are present above the ontology element (in red).

Table 1 The groups used to form the plan tree.

Group Query Mapping source

G1 Protein(P), hasBibRef(P,BR) SGD

G2 Protein(P),hasDescription(P,"DNA Topoisomerase III”) SGD

G3 Protein(P), hasSystematicName(P, SN) Yeastract

G4 Protein(P), RegulatedBy(P, TF) Yeastract

G5 TranscriptionFactor(TF), hasName(TF, Nt) Yeastract

G6 TranscriptionFactor(TF), belongsTo(TF,C) Yeastract

G7 TranscriptionFactor(TF), hasPhosphorylationSite(TF, Ph) PhosphoGrid

G8 Chromosom(C), hasName(C,"16”) Yeastract

G9 regulatedBy(P,TF) Yeastract

G10 hasBibRef(P,BR) SGD

G11 belongsTo(TF,C) Yeastract

G12 hasPhosphoSite(TF,Ph) PhosphoGrid

G13 Protein(P) SGD; Yeastract; PhosphoGrid

G14 TranscriptionFactor(TF) Yeastract; PhosphoGrid

G15 BibRef(BR) SGD

G16 Chromosome(C) Yeastract

G17 PhosphoSite(Ph) PhosphoGrid

For each group the mapping source is given.

Briache et al. BMC Bioinformatics 2012, 13(Suppl 1):S7
http://www.biomedcentral.com/1471-2105/13/S1/S7

Page 13 of 19

determine all the objects that are related to Protein by
means of the relationships regulatedBy and hasBibRef.
Once those objects are obtained, it will check whether
they satisfy G14 and G15: that means checking if the
objects obtained from G9 and G10 are respectively of
the type TranscriptionFactor and BibRef. Based on the
result of G9, groups G11 and G12 are executed but not
simultaneously. SB-KOM has a plan optimisation mod-
ule that might change the order of the initial plan
execution as is the case here: Since G8 has a variable
instantiated (value “16”) and is related to G14 via G11,
this one is executed before G12, and the result is used
by the group to be executed. The arcs of the planning
trees generated by the planer represent object proper-
ties, while the nodes are ontology concepts or instances
of these. Each node and arc contains all the necessary
information for the Evaluator/Integrator to execute sub-
queries. That is: the XQuery (elaborated from the map-
ping) corresponding to the sub-query of the node or the
arc, the names and the URLs of the Data Service of
interest. An example is shown in (Figure 9).
The YeastMed Data Services are executed by the Eva-

luator/Integrator following the plan, after optimisation,
generated by the Planner. In our case, SGD Data Service
receives the first sub-query, because the object property

hasDescription is mapped to the SGD Schema. TOP3 is
returned as an answer of this sub-query and then is
used by the sub-query RegulatedBy to find instances of
TranscriptionFactor. The Yeastract Data Service is
invoked this time because the property is mapped to the
Yeastract Schema. Three instances of the type Tran-
scriptionFactor are returned: Fhl1p, Hsf1p and Swi4p.
For each of these instances, the Yeastract Data Service
is called again. It receives this time the sub-query repre-
sented by the property belongsTo that contains the two
arguments instantiated: the first one is one of the three
instances returned by the previous query, and the sec-
ond argument is instantiated by the name of the chro-
mosome 16. This sub-query checks whether the
Transcription factor has its coding gene on the chromo-
some 16. Only the instance Fhl1p is maintained. Finally
the sub-query hasPhosphoSite is executed on the Phos-
phoGrid Data Service that returns all the PhosphoSite
instances of the Transcription Factor Fhl1p. At each
execution, the Evaluator/Integrator receives results in
XML format from the target Data Services.
These results are instances of the XML schemas of the

underlying sources. Based on the mapping between the
elements of the source schemas and the elements of the
ontology, these XML schema instances are translated

Figure 8 The plan tree generated from the conjunctive query. The plan tree is a binary tree where nodes are represented by variables of
the predicate arguments in the conjunctive query and the edges are predicates containing the two variables of the nodes they are linking.

Briache et al. BMC Bioinformatics 2012, 13(Suppl 1):S7
http://www.biomedcentral.com/1471-2105/13/S1/S7

Page 14 of 19

into ontology instances which are not interconnected
because they have been produced by different Data Ser-
vices. To associate them, the Evaluator/Integrator uses
just the instances of the domain and range classes of the
object properties. The final result is an ontology
instance that includes all the data extracted from the
interrogated data sources. That is all the instances of
the concepts BibRef of the protein TOP3 and all the
PhosphoSite objects of the Transcription Factor Fhl1p.

Results
We have conducted a usability assessment in order to
grade how well biologists can learn and use YeastMed
to achieve their goals and how satisfied they are with
the system. We have also conducted a performance
study of the system to reveal how run times behave
towards the increase of the number of implied data
sources in queries. In this section we present results
obtained from these two studies.

System usability
A variety of methods have been reported in the litera-
ture for assessing the perceived usability of interactive
systems. We can particularly cite QUIS [45], SUS [46],
CSUQ [47] and Microsoft’s Product Reaction Cards
[48]. Tullis and Stetson [49] reported a study that com-
pared these methods and showed that the accuracy of
the analysis increases as the number of participants gets
larger (for a sample of 6 to 14) and that the accuracy of
SUS increases quicker than the others. For that, we have
used SUS method in our study. The SUS questionnaire
consists of 10 items to which participants rate their
level of agreement. Odd-numbered items are positively
worded and even-numbered items are negatively
worded. A 5-point scale of agreements numbered from
1 (anchored with “Strongly disagree”) to 5 (anchored
with “Strongly agree”) is used for each. Each item’s
score contribution will range from 0 to 4. For odd-num-
bered items, the score contribution is the scale position
minus 1. For even-numbered items, the score contribu-
tion is 5 minus the scale position. To get the overall

SUS score, which is the indicator of usability, the sum
of the item score contributions is multiplied by 2.5. SUS
scores ranges from 0 to 100, with 100 representing a
perfect score.
The usability study we conducted had two objectives:

(1) having a general indicator on the usability of
YeastMed, and (2) assessing the evolution of the system
usability with the level of familiarisation to biological
databases. This is represented, in our study, by the fre-
quency of using biological databases of the participants.
These objectives will let us (1) to grade how well biolo-
gists, in general, can learn and use the system and (2)
how well we have succeeded to furnish an easy-to-use
system for biologists who are familiar with HTML
forms of biological databases.
There were a total of 39 participants. Each one tested

YeastMed before completing the SUS questionnaire. All
the participants are biologists spread over 5 groups with
different levels of familiarisation to biological databases.
These groups contained between 7 and 9 participants
and are named following the participants frequency of
using biological databases, i.e. Never, Rarely, Sometimes,
Usually and Always. For each participant we have calcu-
lated the individual SUS score and then the mean score
for each group was determined. As shown in (Figure
10), the usability of YeastMed increases with the famil-
iarisation to biological databases: The mean SUS score
passes from 60.71 for biologists who never used biologi-
cal databases to 78.75 for biologists who are always
using biological databases with an overall SUS score of
71.54. With these scores, we can say that YeastMed,
with its simple HTML form-based interface, is a system
easy-to-use for biologists who are familiar to biological
databases interfaces with a relatively lower usability for
biologists with lower familiarisation.

System performance
To illustrate the performance of YeastMed, we present,
in this section, the result of a study conducted on the
run times of the three main stages of the YeastMed
query processing: Planification, Execution and

Figure 9 The information presented by the node P in the plan tree. The node P contains the location of the YeastMed ontology and the
web service to call, in addition to the mapping resources and the xquery to send to the web service.

Briache et al. BMC Bioinformatics 2012, 13(Suppl 1):S7
http://www.biomedcentral.com/1471-2105/13/S1/S7

Page 15 of 19

Integration. The study concerned 50 queries distributed
on 5 groups following the number of data sources parti-
cipating in the query answer (from 1 to 5). All queries
were run on a dual-processor 2.33 GHz Pentium 4 pro-
cessor machine with 4 GB of memory. The objective of
this study is not to provide a thorough performance
analysis, but simply to show how run times behave
towards the increase of the number of implied data
sources. Each query was executed in three instances
before to calculate its mean run times for the three
stages. The data sources implied in the multi-sources
queries are called exactly one time for each query. This
had the objective to give certain uniformities to the
study.
(Figure 11) illustrates the obtained results. It shows

that there are no big changes in the Planification times
when the number of the implied sources increases. The
Planification time passes from 1.149 seconds for queries
implying one source to 1.252 seconds for others that
call 5 sources. In contrast, the execution time behaves
differently. It increases with the number of the implied
sources. This was expected because the execution of
sub-queries in YeastMed makes use of a set of web ser-
vices which are not called simultaneously but serially
due to the fact that the call of a web service might
depend on the result of another. As to the Integration
run time, it shows also some increases but small com-
pared to the Execution run time. It passes from 1.149
seconds for one-source-based queries to 5.589 seconds
for queries implying 5 data sources. In YeastMed, the
Integration stage is solicited even if just one source is
implied. This is because, in addition to the integration
process, it performs the transformation of the XML
result returned by the web services to an RDF instance
of the YeastMed ontology.

Discussion
Dynamic integration is a very important issue for tradi-
tional mediator-based systems. They are usually devel-
oped as monolithic systems and their architecture based
on wrappers involves a high degree of coupling among
the system components. They usually do not provide
scalable and reusable solutions. By the modular design
and the uncoupling of all the components of YeastMed,
we have sought to break out of traditional mediation
architecture and provide a flexible platform for integrat-
ing Yeast data sources. The modular structure of the
system reduces the costs of the system maintenance.
The system can be easily extended to cover other
sources. It is not required to rebuild the system from
scratch. The new source components are built indepen-
dently and then integrated in the system, i.e. publishing
a web service underlying that source, adding semantic
views on the source to the ontology, and publishing its
mapping rules in the Semantic Directory. The rest of
the system components are not touched. On the other
hand, the fact that the system adopts a mediation
approach avoids the updating problem when a change is
made in a source at the level of data, because the system
does not have a local copy of data. But when the change
touches the structure of the flat files or the HTML
pages from which YeastMed extracts data, the system
will need to reflect this on its components, but only on
the modified-source components: the modified-source
schema, the mapping rules implying that source, the
source-related entities in the ontology and also the web
service of the source. The other source components are
not modified and the system is not rebuilt from scratch.
Relying on Data Services rather than classical wrap-

pers offers the possibility of reusing them by other med-
iators or any other data accessing application. This is

Figure 10 SUS scores of YeastMed in function of the frequencies of using biological database. The graph shows that the evolution of the
mean SUS scores increases progressively when the frequency of using biological databases of biologists increases.

Briache et al. BMC Bioinformatics 2012, 13(Suppl 1):S7
http://www.biomedcentral.com/1471-2105/13/S1/S7

Page 16 of 19

the case of the quick search service we are proposing in
the web site of YeastMed. This service is an added value
of the system architecture. It makes use independently
of the Data Services to look for entries and direct access
to the integrated data sources without passing through
the system mediator.
While some mediator-based systems require a specific

query language or propose a complicated graphical user
interface [25,27,29], the YeastMed mediator receives
conjunctive queries expressed in terms of the ontology.
Even though we estimate that these are not very compli-
cated for biologists to express their requests, we have
proposed a simple interface where requests are
expressed using natural language through simple forms.
All the required translations to conjunctive queries are
hidden from users.
It is known that biologists have their own preferences

toward databases [50]. In YeastMed we take this into
account by giving users the possibility to specify from
which database they prefer to get answers. The
YeastMed ontology includes some source-related con-
cepts which permit the user to express preferences on
data sources. For example, a user can specify SGD as a
source from which to get entries by selecting SGDEntry
in the query form. Specifying a data source does not
mean reducing the constraints to be only applied on the
data of that source. Users can specify a source from
which to get entries and apply constraints on related
data from other sources. For example a user can ask for
entries from SGD describing a chromosomal feature
regulated by a transcription factor having the standard

name Rtg1. This is translated into the following con-
junctive query:
Ans(E) := SGDEntry(E),describes(E,F),

ChromosomalFeature(F), RegulatedBy(F,R),
TranscriptionFactor(R),hasName(R,
“Rtg1”);
In this conjunctive query, SGD entries are solicited,

but all the constraints are made on data residing in
Yeastract (data related to Transcription Factor). If the
SGD entry has not been specified, the result entries will
be returned by default from Yeastract. YeastMed is able
to find the equivalent of such entries (if any) in SGD.

Conclusions
We have described YeastMed: an XML and mediator-
based system that Integrates five Yeast databases which
have the most appropriate properties for studying Sac-
charomyces cerevisiae.
Data Services play an important role in the integration

process of this system, where they are considered as an
interface which receives queries, accesses to a data
source, extracts data and translates them into a common
data model used by SB-KOM. In YeastMed, Data Ser-
vices extract data mainly from flat files because most of
the integrated data sources are accessible via ftp
mechanisms and provide data in tabular or XML format.
This reduces the costs of the maintainability of the sys-
tem because flat files structures are not frequently target
to changes.
In our system, the schema integrator is an ontology

and the results are ontology instances. The use of the

Figure 11 Run times performed by YeastMed to answer a query. The figure shows how run times of the three main stages required to
answer queries behave when the number of the implied sources increases.

Briache et al. BMC Bioinformatics 2012, 13(Suppl 1):S7
http://www.biomedcentral.com/1471-2105/13/S1/S7

Page 17 of 19

ontology and instances enables basic reasoning pro-
cesses (class-subclass inference) to be later included.
This will permit YeastMed to infer new relationships
between the instances of the ontology when solving a
user query and thus, discover new knowledge for the
query answers. The final result is an ontology instance
that includes all the data extracted from the integrated
data sources. It is converted to an HTML Format before
to be presented to users.
The objectives expected from the YeastMed system

are not yet all met. The system is still in its natal phase
and additional work is undertaken to improve it. The
system does not yet make all its ontology available to
users when formulating queries. This is because it is not
yet able to answer queries expressed in terms of some
part of the ontology. In addition, the fact that the sys-
tem answers only conjunctive queries limits the user
requests expression; i.e. it is not able to answer queries
using disjunction quantification (or union operator
which is denoted as ∪).

List of abbreviations
API: Application Programming Interface; CDS: Coding Sequence; CPL:
Collection Programming Language; CSUQ: Computer System Usability
Questionnaire; CYGD: the Comprehensive Yeast Genome Database; DTD:
Document Type Definition; ETL: Extract, Transform, Load; FTP: File Transfer
Protocol; GAV: Global as view; GO: Gene ontology; GUS: Genomics Unified
Schema; HTML: Hypertext Markup Language; LAV: Local as view; MIPS:
Munich Information center for Protein Sequences; OWL: Web Ontology
Language; QIF: Query Internal Form; QUIS: Questionnaire For User Interaction
Satisfaction; RDF: Resource Description Framework; RDFS: Resource
Description Framework Schema; RNA: Ribonucleic Acid; SB-KOM: System
Biology Khaos Ontology-based Mediator; SGD: Saccharomyces Genome
Database; SQL: Structured Query Language; SUS: System Usability Scale;
TAMBIS: Transparent Access to Multiple Bioinformatics Information Sources;
XQuery: XML Query Language; XML: Extensible Markup Language; XMLDSS:
XML DataSource Schema: WSDL: Web Service Description Language.

Acknowledgements
This work has been funded by the Spanish Ministry of Innovation, Science
and Technology (TIN2011-25840) and the Innovation, Science and Enterprise
Ministry of the regional government of the Junta de Andalucía (P11-TIC-
7529).
This article has been published as part of BMC Bioinformatics Volume 13
Supplement 1, 2012: Semantic Web Applications and Tools for Life Sciences
(SWAT4LS) 2010. The full contents of the supplement are available online at
http://www.biomedcentral.com/bmcbioinformatics/supplements/13/S1.

Author details
1Department of Biology, Faculty of Sciences and Techniques, University
Abdelmalek Essaâdi, Tangier, BP: 416, 90000, Morocco. 2Department of
Computer Languages and Computing Science, Higher Technical School of
Computer Science Engineering, University of Malaga, Malaga, 29071, Spain.

Authors’ contributions
JFAM, BDRH and KL carried out the initial purpose of using mediation-
approach to integrate yeast data, followed and tested the work. AB and KM
performed the technical design, implemented and tested the system and
drafted the manuscript. IND performed the design task and helped to draft
the manuscript. AK ensured technical supervision and support. All authors
read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Published: 25 January 2012

References
1. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F,

Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y,
Philippsen P, Tettelin H, Oliver SG: Life with 6000 genes. Science 1996,
274(546):563-547.

2. Lambrix P, Jakoniene V: Towards transparent access to multiple biological
databanks. In Proceedings of the First Asia-Pacific bioinformatics conference
on Bioinformatics; 4-7 February 2003; Adelaide, Australia. Australian Computer
Society, Inc;Chen Y-PP 2003:53-60.

3. Hernandez T, Kambhampati S: Integration of biological sources: current
systems and challenges ahead. SIGMOD Rec 2004, 33:51-60.

4. Davidson SB, Crabtree J, Brunk BP, Schug J, Tannen V, Overton GC,
Stoeckert JCJ: K2/Kleisli and GUS: experiments in integrated access to
Genomic Data Sources. IBM System Journal 2001, 40:512-531.

5. Shah SP, Huang Y, Xu T, Yuen MM, Ling J, Ouellette BF: Atlas - a data
warehouse for integrative bioinformatics. BMC Bioinformatics 2005, 6:34.

6. BioSQL. [http://www.biosql.org/wiki/Main_Page].
7. BioMART Project. [http://www.biomart.org/index.html].
8. Lee TJ, Pouliot Y, Wagner V, Gupta P, Stringer-Calvert DW, Tenenbaum JD,

Karp PD: BioWarehouse: a bioinformatics database warehouse toolkit.
BMC Bioinformatics 2006, 7:170.

9. Mungall CJ, Emmert DB: A Chado case study: an ontology-based modular
schema for representing genome-associated biological information.
Bioinformatics 2007, 23:i337-346.

10. Jörg T, Deßloch S: Towards generating ETL processes for incremental
loading. In Proceedings of the 12th International Database Engineering and
Applications Symposium (IDEAS 2008); 10-12 September 2008; Coimbra,
Portugal. ACM;Desai BC 2008:101-110.

11. Florescu D, Levy A, Mendelzon A: Database techniques for the World-
Wide Web: a survey. SIGMOD Rec 1998, 27:59-74.

12. Davidson SB, Overton C, Buneman P: Challenges in integrating biological
data sources. J Comput Biol 1995, 2:557-572.

13. Lenzerini M: Data integration: a theoretical perspective. In Proceedings of
the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems; 3-5 June 2002 Madison, Wisconsin. ACM;Popa L
2002:233-246.

14. YeastMed Project. [http://www.khaos.uma.es/yeastmed/].
15. Navas-Delgado I, Aldana-Montes JF: Extending SD-Core for Ontology-

based Data Integration. Journal of Universal Computer Science 2009,
15:3201-3230.

16. Engel SR, Balakrishnan R, Binkley G, Christie KR, Costanzo MC, Dwight SS,
Fisk DG, Hirschman JE, Hitz BC, Hong EL, Krieger CJ, Livstone MS,
Miyasato SR, Nash R, Oughtred R, Park J, Skrzypek MS, Weng S, Wong ED,
Dolinski K, Botstein D, Cherry JM: Saccharomyces Genome Database
provides mutant phenotype data. Nucleic Acids Res 2010, 38:D433-436.

17. Teixeira MC, Monteiro P, Jain P, Tenreiro S, Fernandes AR, Mira NP,
Alenquer M, Freitas AT, Oliveira AL, Sa-Correia I: The YEASTRACT database:
a tool for the analysis of transcription regulatory associations in
Saccharomyces cerevisiae. Nucleic Acids Res 2006, 34:D446-451.

18. Guldener U, Munsterkotter M, Kastenmuller G, Strack N, van Helden J,
Lemer C, Richelles J, Wodak SJ, Garcia-Martinez J, Perez-Ortin JE, Michael H,
Kaps A, Talla E, Dujon B, Andre B, Souciet JL, De Montigny J, Bon E,
Gaillardin C, Mewes HW: CYGD: the Comprehensive Yeast Genome
Database. Nucleic Acids Res 2005, 33:D364-368.

19. Stark C, Breitkreutz BJ, Chatr-Aryamontri A, Boucher L, Oughtred R,
Livstone MS, Nixon J, Van Auken K, Wang X, Shi X, Reguly T, Rust JM,
Winter A, Dolinski K, Tyers M: The BioGRID Interaction Database: 2011
update. Nucleic Acids Res 2011, 39:D698-704.

20. Stark C, Su TC, Breitkreutz A, Lourenco P, Dahabieh M, Breitkreutz BJ,
Tyers M, Sadowski I: PhosphoGRID: a database of experimentally verified
in vivo protein phosphorylation sites from the budding yeast
Saccharomyces cerevisiae. Database (Oxford) 2010, 2010:bap026.

21. Alfieri R, Merelli I, Mosca E, Milanesi L: The cell cycle DB: a systems biology
approach to cell cycle analysis. Nucleic Acids Res 2008, 36:D641-645.

22. Cheung KH, Yip KY, Smith A, Deknikker R, Masiar A, Gerstein M: YeastHub: a
semantic web use case for integrating data in the life sciences domain.
Bioinformatics 2005, 21(Suppl 1):i85-96.

23. Broekstra J, Kampman A, van Harmelen F: Sesame: a generic architecture
for storing and querying RDF and RDF Schema. In The Semantic Web -

Briache et al. BMC Bioinformatics 2012, 13(Suppl 1):S7
http://www.biomedcentral.com/1471-2105/13/S1/S7

Page 18 of 19

http://www.biomedcentral.com/bmcbioinformatics/supplements/13/S1
http://www.ncbi.nlm.nih.gov/pubmed/15723693?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15723693?dopt=Abstract
http://www.biosql.org/wiki/Main_Page
http://www.biomart.org/index.html
http://www.ncbi.nlm.nih.gov/pubmed/16556315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17646315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17646315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8634908?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8634908?dopt=Abstract
http://www.khaos.uma.es/yeastmed/
http://www.ncbi.nlm.nih.gov/pubmed/19906697?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19906697?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381908?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381908?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381908?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15608217?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15608217?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21071413?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21071413?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18160409?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18160409?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15961502?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15961502?dopt=Abstract

ISWC 2002. Volume 2342. Springer Berlin/Heidelberg;Horrocks I, Hendler J
2002:54-68, [Lecture Notes in Computer Science].

24. Buneman P, Davidson SB, Hart K, Overton GC, Wong L: A data
transformation system for biological data sources. In Proceedings of the
21th International Conference on Very Large Data Bases; 11-15 September
1995; Zurich, Switzerland. Morgan Kaufmann Publishers Inc;Dayal U, Gray
PMD, Nishio S 1995:158-169.

25. Haas LM, Schwarz PM, Kodali P, Kotlar E, Rice JE, Swope WC: DiscoveryLink:
a system for integrated access to life sciences data sources. IBM Systems
Journal 2001, 40:489-511.

26. Haas LM, Miller RJ, Niswonger B, Roth MT, Schwarz PM, Wimmers EL:
Transforming heterogeneous data with Database Middleware: beyond
integration. IEEE Data Eng Bull 1999, 22:31-36.

27. Stevens R, Baker P, Bechhofer S, Ng G, Jacoby A, Paton NW, Goble CA,
Brass A: TAMBIS: transparent access to multiple bioinformatics
information sources. Bioinformatics 2000, 16:184-185.

28. Rector AL, Bechhofer S, Goble CA, Horrocks I, Nowlan WA, Solomon WD:
The GRAIL concept modelling language for medical terminology. Artif
Intell Med 1997, 9:139-171.

29. Cadag E, Louie B, Myler PJ, Tarczy-Hornoch P: Biomediator data
integration and inference for functional annotation of anonymous
sequences. Pac Symp Biocomput 2007, 343-354.

30. Halevy A, Rajaraman A, Ordille J: Data integration: the teenage years. In
Proceedings of the 32nd international conference on Very large data bases; 12-
15 September 2006; Seoul, Korea. VLDB Endowment;Dayal U, Whang K-Y,
Lomet DB, Alonso G, Lohman GM, Kersten ML, Cha SK, Kim Y-K 2006:9-16.

31. Zamboulis L, Martin N, Poulovassilis A: Bioinformatics service reconciliation
by heterogeneous schema transformation. In Proceedings of the 4th
international conference on Data integration in the life sciences; 27-29 June
2007; Philadelphia, PA, USA. Springer-Verlag;Cohen-Boulakia S, Tannen V
2007:89-104.

32. Rifaieh R, Unwin R, Carver J, Miller MA: SWAMI: integrating biological
databases and analysis tools within user friendly environment. In
Proceedings of the 4th international conference on Data integration in the life
sciences; 27-29 June 2007; Philadelphia, PA, USA. Springer-Verlag;Cohen-
Boulakia S, Tannen V 2007:48-58.

33. Levy A: Combining artificial intelligence and databases for data
integration. In Artificial Intelligence Today. Volume 1600. Springer Berlin/
Heidelberg;Wooldridge M, Veloso M 1999:249-268, [Lecture Notes in
Computer Science].

34. YeastMed Ontology. [http://www.khaos.uma.es/yeastmed/download.html].
35. Eriksson PR, Ganguli D, Clark DJ: Spt10 and Swi4 control the timing of

histone H2A/H2B gene activation in budding yeast. Mol Cell Biol 2011,
31:557-572.

36. French SL, Sikes ML, Hontz RD, Osheim YN, Lambert TE, El Hage A,
Smith MM, Tollervey D, Smith JS, Beyer AL: Distinguishing the roles of
Topoisomerases I and II in relief of transcription-induced torsional stress
in yeast rRNA genes. Mol Cell Biol 2011, 31:482-494.

37. OWL 2 Web Ontology Language Primer. [http://www.w3.org/TR/owl2-
primer/].

38. Resource Description Framework (RDF): concepts and abstract syntax.
[http://www.w3.org/TR/rdf-concepts/].

39. RDF Vocabulary Description Language 1.0: RDF Schema. [http://www.w3.
org/TR/rdf-schema/].

40. Navas-Delgado I, Aldana-Montes J: SD-Core: generic semantic middleware
components for the Semantic Web. In Knowledge-Based Intelligent
Information and Engineering Systems. Volume 5178. Springer Berlin/
Heidelberg;Lovrek I, Howlett R, Jain L 2008:617-622, [Lecture Notes in
Computer Science].

41. Marrakchi K, Briache A, Kerzazi A, Navas-Delgado I, Aldana-Montes J,
Ettayebi M, Lairini K, Rossi Hassani B: A Data Warehouse approach to
semantic integration of Pseudomonas Data. In Data Integration in the Life
Sciences. Volume 6254. Springer Berlin/Heidelberg;Lambrix P, Kemp G
2010:90-105, [Lecture Notes in Computer Science].

42. Reyes-Palomares A, Montanez R, Real-Chicharro A, Chniber O, Kerzazi A,
Navas-Delgado I, Medina MA, Aldana-Montes JF, Sanchez-Jimenez F:
Systems biology metabolic modeling assistant: an ontology-based tool
for the integration of metabolic data in kinetic modeling. Bioinformatics
2009, 25:834-835.

43. Navas-Delgado I, Montanez R, Pino-Angeles A, Moya-Garcia AA, Urdiales JL,
Sanchez-Jimenez F, Aldana-Montes JF: AMMO-Prot: amine system project
3D-model finder. BMC Bioinformatics 2008, 9(Suppl 4):S5.

44. Vardi MY: The complexity of relational query languages (Extended
Abstract). Proceedings of the fourteenth annual ACM symposium on Theory of
computing; 5-7 May 1982; San Francisco, California, United States ACM; 1982,
137-146.

45. Chin JP, Diehl VA, Norman KL: Development of an instrument measuring
user satisfaction of the human-computer interface. In Proceedings of the
SIGCHI conference on Human factors in computing systems; 15-19 June 1988;
Washington, D.C., United States. ACM;Soloway E, Frye D, Sheppard SB
1988:213-218.

46. Brooke J: SUS: a quick and dirty usability scale. In Usability Evaluation in
Industry. London: Taylor & Francis;Jordan BTPW, Weerdmeester BA,
McClelland AL 1996:.

47. Lewis JR: IBM computer usability satisfaction questionnaires:
psychometric evaluation and instructions for use. Int J Hum-Comput
Interact 1995, 7:57-78.

48. Benedek J, Miner T: Measuring desirability: new methods for evaluating
desirability in a usability lab setting. Proceedings of the Usability
Professionals Association (UPA 2002); 8-12 July 2002; Orlando, FL 2002.

49. Tullis T, Stetson JN: A comparison of questionnaires for assessing website
usability. Proceedings of the Usability Professionals Association (UPA); 7-11
June 2004 Minneapolis, Minnesota 2004.

50. Cohen-Boulakia S, Davidson S, Froidevaux C: A user-centric framework for
accessing biological sources and tools. In Data Integration in the Life
Sciences. Volume 3615. Springer Berlin/Heidelberg;Ludäscher B, Raschid L
2005:735-735, [Lecture Notes in Computer Science].

doi:10.1186/1471-2105-13-S1-S7
Cite this article as: Briache et al.: Transparent mediation-based access to
multiple yeast data sources using an ontology driven interface. BMC
Bioinformatics 2012 13(Suppl 1):S7.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Briache et al. BMC Bioinformatics 2012, 13(Suppl 1):S7
http://www.biomedcentral.com/1471-2105/13/S1/S7

Page 19 of 19

http://www.ncbi.nlm.nih.gov/pubmed/10842744?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10842744?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9040895?dopt=Abstract
http://www.khaos.uma.es/yeastmed/download.html
http://www.ncbi.nlm.nih.gov/pubmed/21115727?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21115727?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21098118?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21098118?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21098118?dopt=Abstract
http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://www.ncbi.nlm.nih.gov/pubmed/19189977?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19189977?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19091028?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19091028?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22103725?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22103725?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Related work
	Data warehouse systems
	Federated and mediator-based systems
	XML-based systems

	Methods
	YeastMed overview
	Integrated data sources
	YeastMed user interface
	Data integration in YeastMed
	Source schemas
	Data services
	YeastMed ontology
	Mappings
	SB-KOM

	Use case

	Results
	System usability
	System performance

	Discussion
	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 500
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 500
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

