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ABSTRACT

We attempt to address a key question in the joint
analysis of transcriptomic data: can we correlate
the patterns we observe in transcriptomic datasets
to known interactions and pathway knowledge to
broaden our understanding of disease pathophys-
iology? We present a systematic approach that
sheds light on the patterns observed in hundreds
of transcriptomic datasets from over sixty indica-
tions by using pathways and molecular interactions
as a template. Our analysis employs transcriptomic
datasets to construct dozens of disease specific co-
expression networks, alongside a human protein-
protein interactome network. Leveraging the inter-
operability between these two network templates,
we explore patterns both common and particular to
these diseases on three different levels. Firstly, at
the node-level, we identify most and least common
proteins across diseases and evaluate their consis-
tency against the interactome as a proxy for their
prevalence in the scientific literature. Secondly, we
overlay both network templates to analyze common
correlations and interactions across diseases at the
edge-level. Thirdly, we explore the similarity between
patterns observed at the disease-level and pathway
knowledge to identify signatures associated with
specific diseases and indication areas. Finally, we
present a case scenario in schizophrenia, where we
show how our approach can be used to investigate
disease pathophysiology.

INTRODUCTION

Despite the exponential growth of biomedical data in the
last decades, we are still far from understanding the func-
tion of every gene in a living organism. Nevertheless, major
technological advancements now enable us to assign specific
biological functions to thousands of protein-coding genes
in the human genome (1). In turn, complex interactions
between groups of genes, proteins and other biomolecules
give rise to the normal functioning of the cell. By acquiring
knowledge of these interactions, we can decipher the molec-
ular mechanisms which cause system-wide failures that can
lead to disease (2). A common modeling approach to repre-
sent these vast sets of interactions is in reconstructing mech-
anisms in the form of networks as intuitive representations
of biology, where nodes denote biological entities and edges
their interactions (3,4).

Numerous standardized formats have been widely
adopted to model biological networks that represent
pathway knowledge dispersed throughout the scientific
literature (5). Pathway models in a variety of formats can
be found housed in databases such as KEGG (6) and
Reactome (7), each with a varied focus and scope. These
databases can be specifically leveraged for hypothesis
generation, the analysis of biomedical data such as with
pathway enrichment (8), or predictive modeling (9). Using
the networks of known molecular interactions, one can also
discern novel genes involved in particular disease states as
functions of network proximity (10). A general trend noted
by Huang and colleagues was the observation that larger
networks tended to outperform smaller ones, an effect also
observed when comparing the performance of integrated
pathway databases to individual ones in enrichment and
predictive modeling tasks (11).
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Although knowledge-driven approaches that leverage
literature-based evidence can be used to gain a mecha-
nistic understanding of disease pathophysiology, these ap-
proaches tend to be augmented when applied in combi-
nation with data-driven ones. In the latter case, transcrip-
tomic profiling offers researchers a systematic and afford-
able method to analyze the expression and activity of genes
and proteins on a large-scale under distinct physiologi-
cal conditions. Through gene expression profiling, patterns
of genes expressed at the transcript level that are rele-
vant to a particular condition can be determined, whilst
considering sets of genes involved in a specific biologi-
cal process tend to exhibit similar patterns of expression
or activity (12). To model these patterns, techniques such
as gene co-expression networks have been developed in
which genes with correlated expression activity are con-
nected. Several methodologies can be used to generate co-
expression networks, such as Weighted Gene Co-expression
Network Analysis (WGCNA) (13), SWItchMiner (SWIM)
(14) and ARACNE (15). Co-expression networks tend to
be represented as undirected weighted graphs, where graph
nodes correspond to genes, and edges between nodes cor-
respond to co-expression relationships (16). The applica-
tions of these networks are diverse, ranging from identifying
functional and disease-specific modules to hub genes (12).
For instance, Chou et al. (17) and Xiang et al. (18) com-
bined independent datasets related to endometrial cancer
and Alzheimer’s disease, respectively, in order to generate
co-expression networks that captured gene expression pat-
terns across multiple disease-specific datasets. Using these
co-expression networks, they were able to identify relevant
genes in the context of these two indications.

Though it is standard practice to perform enrichment
analysis using pathway and gene set databases (e.g. KEGG
and Gene Ontology (19)) on gene lists from co-expression
networks such as those from a particular disease module
(20,21) for mechanistic insights, this approach ignores the
topology of the network as it exclusively relies upon sets of
genes rather than the network structure. In a recent study,
Paci et al. (22) overcame this challenge by showing how dis-
tinct, topological properties of disease networks can emerge
through the identification and mapping of disease-specific
genes of several disease co-expression networks to a human
interactome network of protein-protein interactions. The
SWIM method used by the authors has independently been
applied to elucidate the molecular mechanisms that under-
lie several complex diseases mediated by the identification
of key genes (23–26).

The potential insights that can be gained from the pre-
viously mentioned analyses together with the abundance
of publicly available transcriptomic datasets (27,28) have
prompted the creation of databases that store collections of
co-expression networks, such as COXPRESdb for numer-
ous species (29). By harmonizing and storing thousands of
transcriptomic datasets in the form of co-expression net-
works, these resources capture a variety of ‘snapshots” rep-
resenting gene expression patterns in a diverse set of con-
texts. While transcriptomics datasets have been used to
identify regulatory patterns across a variety of different con-
texts such as specific species or tissues (30), the aim of most
transcriptomics data analyses is to reveal biological pro-

cesses that differentiate a disease patient from a healthy
control. The large amount of datasets available contain an
abundant number of samples, allowing for comprehensive
large-scale analyses on a variety of indications. Further-
more, by bringing together transcriptomic data with known
interactions in pathway resources, we can connect the tran-
scriptome with the proteome by overlaying the patterns
in co-expression networks with the scaffold of biological
knowledge embedded in pathway networks (31). In doing
so, we can gain insights on specific or shared molecular
mechanisms across multiple indications.

In this work, we jointly leverage the patterns of disease-
specific datasets reflected in co-expression networks and
pathway and interaction networks to uncover the mecha-
nisms underlying disease pathophysiology. To do so, we sys-
tematically compared hundreds of transcriptomic datasets
from over 60 diseases with a human protein-protein interac-
tome network to unravel the proteins, subgraphs, and path-
ways that are specific to certain diseases or shared across
multiple. Finally, in a case scenario, we demonstrate how
bringing together a disease-specific co-expression network
with pathway knowledge allows us to better understand the
role of a specific pathway within a disease context.

MATERIAL AND METHODS

In the first subsection, we outline the process of generat-
ing disease-specific co-expression networks from transcrip-
tomic data (Figure 1A–C). Then, we describe the construc-
tion of a human protein-protein interactome network (Fig-
ure 1E and F). Finally, we outline the various analyses con-
ducted (Figure 1D).

Generating co-expression networks from transcriptomic data

Identifying disease-specific datasets in ArrayExpress. We
queried datasets from ArrayExpress (AE) (27) belonging
to the most widely used platform: the Affymetrix Human
Genome U133 Plus 2.0 Array (accession on AE: A-AFFY-
44). By using the same platform for each of the datasets,
we ensured that the datasets were relatively comparable. Ar-
rayExpress was preferred over other databases such as Gene
Expression Omnibus (GEO) (28) as datasets often comprise
of normalized and mapped terms in their metadata that
describe their characteristics (e.g. experimental details, or-
ganism information, etc.). Furthermore, it provides a user-
friendly API through which all the necessary information
was queried. As of 20 July 2020, 4485 datasets generated
from platform A-AFFY-44 have been stored in ArrayEx-
press, resulting in roughly below 200 000 samples. Figure 2
summarizes the filtering steps that we conducted to identify
disease-specific datasets which are also described below.

As the purpose of this work was to analyze disease-
specific datasets, only patient samples and their controls
were eligible for the analysis. Thus, a filtering step was in-
troduced to focus exclusively on patient-level data (Figure 2,
filter A). To filter out irrelevant datasets, we leveraged key-
words present in the metadata such as ‘dose’, ‘compound’
or ‘strain’ (Figure 2, filter B). Furthermore, information
about the disease state of each sample is needed for building
disease-specific networks. Therefore, the metadata columns
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Figure 1. Schematic illustration of the methodology. 279 transcriptomic datasets were acquired from ArrayExpress (A) and grouped into 63 distinct diseases
to generate disease-specific co-expression networks (B). A comprehensive protein-protein interactome network was built (E) from an ensemble of six
pathway and interaction databases (F). A series of analyses were then conducted on the disease-specific co-expression networks (D), specifically: a node-
level analysis (D.i), an edge-level analysis (D.ii), and a pathway-based analysis (D.iii) leveraging pathway knowledge and the interactome network.

were searched for disease keywords like ‘disease’, ‘histol-
ogy’ or ‘status’ (Figure 2, filter C). This resulted in 651
datasets, of which one non-human dataset was removed, to-
taling in 650 datasets with 51 550 samples (Figure 2, filter
D).

Once datasets were filtered to identify those that con-
tained disease-specific information, we then harmonized
the disease terms present in the title and metadata of the
datasets with the help of the Human Disease Ontology
(DOID) (32). Next, the disease terms from patient sam-
ples were mapped to DOID entities using ZOOMA (https:
//www.ebi.ac.uk/spot/zooma), enabling us, in some cases, to
automatically find DOID matches. However, the majority
of the terms did not contain a perfect match to a DOID
entity so ZOOMA proposed the closest match. Based on
this set of proposed DOID entities, we manually evaluated
whether the term had been correctly assigned or if a DOID
entity that could more accurately represent the disease was
available. Through this process, we also identified false pos-
itive terms which had not been successfully filtered in the
previous steps. In these cases, the metadata did not contain
sufficient information, though this information was present
in the dataset title. Thus, using the title information, we re-
moved such false positive terms following manual inspec-
tion.

To maximize the coverage, we conducted a final process-
ing step where we intended to group similar diseases to-
gether under a common label. For that, we leverage the on-
tology network structure and visualize it as a hierarchical
tree with a focus on selected branches (i.e. ‘immune system
disease’, ‘nervous system disease’, and ‘cancer’). Next, we
manually identify close neighbors for terms that have few
samples in order to merge them into a more general term
that still accurately describes the original term. The veracity
of the likeliness of the disease terms in the selected clusters
to be used as a single gene expression set were verified by a
clinician before re-mapping. (Supplementary Text 1).

After this final grouping step, we also filtered datasets
to fulfill the following criteria: i) ensure every disease has
a minimum of 50 samples to increase the stability of the co-
expression network, ii) ensure a minimum of two datasets
per disease, and iii) exclude samples with the ‘cancer’ la-

bel as this term was too broad (Figure 2, filter F). Thus, we
have 38 621 samples from 469 datasets as 63 distinct diseases
and one control group (Supplementary Table S1). To facil-
itate the grouping of control samples, we first harmonized
all samples coming from datasets used to generate the dis-
ease networks that correspond to controls by giving them
a common label (i.e. ‘normal’) (Figure 2, filter G). Apply-
ing the previously described filtering steps resulted in 35 025
samples from 323 datasets that were selected. Finally, not all
datasets comprised the raw data required to generate the co-
expression networks which are solely based on 279 datasets
(20 748 samples) (Figure 2, filter H). The final list of datasets
with their respective disease labels can be seen in Supple-
mentary Table S1 and can be visualized according to their
DOID hierarchy in Supplementary Figure S1.

Scripts to retrieve and process the datasets from Ar-
rayExpress are available at https://github.com/CoXPath/
CoXPath/blob/main/R. We have also provided comprehen-
sive documentation to modify the filtering steps and add
extensions to the scripts.

Generating co-expression networks. For each disease, ex-
pression data could then be used to construct co-expression
networks to represent relationships between genes in dif-
ferent diseases. Therefore, the raw .CEL-files of the expres-
sion datasets were downloaded, pre-processed, and merged.
Here, each individual dataset was first pre-processed with
the RMA function of the oligo package in R, which per-
forms background subtraction and quantile normalization.
After merging the samples from different datasets irrespec-
tive of the sample tissue (as this information was not avail-
able for a large amount of samples), a batch correction via
ComBat (33) was applied to the data to remove the effect
corresponding to individual datasets. Finally, the probes
were mapped to genes. If multiple probes mapped to the
same gene, the most variable probe was kept. In the special
case of the normal network, we would like to note that only
control samples that were present in the disease datasets
were used (Figure 2, filter G).

The actual co-expression datasets were then constructed
with the WGCNA package in R (13). WGCNA has been
shown to be one of the most accurate methods, even in the

https://www.ebi.ac.uk/spot/zooma
https://github.com/CoXPath/CoXPath/blob/main/R


7942 Nucleic Acids Research, 2021, Vol. 49, No. 14

Figure 2. Extracting disease-specific datasets from ArrayExpress. tran-
scriptomic data from nearly 4500 datasets was derived from ArrayExpress.
Several filtering steps (A–H) were applied to only retain disease-specific
datasets for patient samples and controls that fulfilled the criteria outlined
in the section: Identifying disease-specific datasets in ArrayExpress.

case of small sample sizes, as opposed to other methods
such as ARACNE (34). But, in contrast to most common
approaches that construct and analyze modules of the net-
work based on hierarchical clustering, here we relied only
on the topological overlap matrix (TOM). In order to fa-

cilitate the comparability of the networks, for each disease,
we defined its co-expression network as the top 1% highest
similarity in the TOM as it is considered a conservative cut-
off in benchmark studies (35) and enables us to maintain
the same number of edges in each network while the num-
ber of nodes can vary. Nodes having a higher topological
overlap were previously found to be more likely to belong
to the same functional class than nodes having lower topo-
logical overlap (36). Given the platform used in this study
(i.e. Affymetrix Human Genome U133 Plus 2.0 Array), 1%
corresponds to 2 036 667 edges for each co-expression net-
work. This cut-off for connections with the highest topolog-
ical overlap was used because without a stringent cut-off,
we would yield fully connected networks of over 200 mil-
lion edges. However, since most of the genes do not have
such a high topological overlap, the majority of these edges
would not be relevant for our analysis as they would have
a weight close to zero (see Supplementary Text 2 for more
details). Finally, we would like to mention that we refer to
these edges interchangeably as correlations through this pa-
per. Although this is not precise, edges representing a high
topological overlap are also highly correlated as the TOM
value is based on the signed correlation but also takes the
connectedness of nodes into account.

Building a human protein–protein interactome network

To systematically compare disease-specific co-expression
networks against pathway knowledge, we built an integra-
tive network comprising information from a compendium
of well-established databases. This interactome was com-
prised of tens of thousands of human protein–protein inter-
actions from six databases including KEGG (6), Reactome
(7), WikiPathways (37), BioGrid (38), IntAct (39) and Path-
wayCommons (40). We would like to note that the first three
of the six databases were harmonized through PathMe (41).
Additionally, for each of the six databases, only proteins
that belonged to pathways from MPath (11), an integrative
resource that combines multiple databases and merges gene
sets of equivalent pathways, were included in the interac-
tome, thus ensuring that each protein in the network was
minimally assigned to a single pathway. The use of MPath
to annotate proteins to pathways facilitated both the gen-
eration of a larger network and the avoidance of redundant
pathways.

The resulting human interactome has a total of 8601
nodes and 199 535 edges. Not surprisingly, the vast majority
of the nodes in the interactome are protein-coding genes, as
these genes are transcribed into functional proteins with es-
sential roles in the biological processes represented in path-
way databases (Figure 3A). Among the edges of the interac-
tome, association relations are the most prevalent (∼73%),
while causal relations including, increase, decrease, regulate,
and has component relations constitute the remaining re-
lation types (Figure 3B). Apart from the interactome net-
work we generated, we also obtained protein–protein inter-
actions (PPIs) from HIPPIE (42) and STRING (43) to com-
pare the results yielded by our network containing path-
way knowledge with other comprehensive PPI resources.
Unlike the protein–protein interactome, the STRING and
HIPPIE networks were not constrained to only contain pro-
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Figure 3. Node and edge type statistics of the human protein-protein interactome network. (A) Venn diagram indicating the coverage of proteins in
the interactome network with respect to all existing HGNC identifiers as well as protein-coding genes. The interactome contains ∼8600 unique HGNC
identifiers, or 20% of the roughly 42 300 approved HGNC identifiers. In total, 97% of the HGNC identifiers of the interactome are protein-coding genes.
(B) Distribution of relation types in the interactome network. The largest proportion of relation types were associations, comprising nearly 73% of all
∼200 000 edges, while causal relations, specifically decrease, regulate, and increase, made up ∼25% of all relation types with roughly 50 000 edges.

teins which could be annotated to pathways. Thus, both net-
works contained a significantly greater number of proteins
and PPIs (detailed descriptions of these networks can be
found in Supplementary Table S2).

Analyses

Software and data used in network analysis and visualiza-
tion. Network analyses were conducted using the meth-
ods and algorithms implemented in NetworkX (v2.5) (44).
KEGG pathways (6) were downloaded on 3 August 2020
using ComPath (41). Network visualizations were done us-
ing WebGL, D3.js, and Three.js and the python-igraph
package. The processed data and analyses are available at
https://github.com/CoXPath/CoXPath.

Meta-analysis of gene expression data. Differential expres-
sion analysis was performed using the Limma R package
(45) on the merged disease datasets previously described
which contained information on both patient samples and
controls. This step yielded differentially expressed genes
(DEGs) for 46 diseases in total from the original 63. For
all other diseases, no matching control data was available
(Supplementary Table S3). For example, both datasets (E-
GEOD-13141 and E-GEOD-16237) used to build the neu-
roblastoma dataset only consisted of neuroblastoma sam-
ples. DEGs for each disease were then filtered to include
only those with an adjusted P-value < 0.05. DEGs across
the 46 diseases were combined into a consensus by splitting
the up- and down-regulated genes for each disease and tak-
ing the average adjusted P-values and log2 fold changes for
all up- and down-regulated subsets separately.

Quantifying the similarity between disease-specific co-
expression networks and biological pathways. To in-
vestigate the consensus between the patterns present in
each co-expression network and pathway knowledge,

we superimposed each disease-specific co-expression
network against pathways from KEGG and the inter-
actome network using two different methods. Method 1
investigates every pairwise combination of nodes from
the set of proteins P for a given pathway from KEGG
(CP) to find the proportion of edges that exist in the
disease co-expression network D = (P′, ED) between
those node pairs, namely edge overlap (edge overlap =
|{ ∀ eu,v s.t. u, v ∈ CP; u, v ∈ P′ and eu,v ∈ ED}|)
(Equation 1). P′ is the set of proteins in the co-expression
network and E is the set of edges connecting the proteins.

pathway-based similarity (P, D) = edge overlap
|CP| (1)

Equation 1. Similarity between a pathway and disease co-
expression network using method 1.

Similarly, applying a more stringent criterion to
take into account the protein-protein interactome net-
work, using a set of proteins P for a given pathway
from KEGG, method 2 takes the interactome network
I = (U, Ei ) and generates a subgraph S = (V, ES)
containing only those nodes in P with edges in Ei
(with V = {u : eu,v ∈ ES and u, v ∈ P ∩ U} and
ES = {eu,v : u, v ∈ P; u, v ∈ U; eu,v ∈ Ei }). Next,
the proportion of edges on the interactome subgraph S
that are also found in each disease co-expression network
D = (P′, ED) are calculated (Equation 2).

interactome-based similarity (P, D) = |ES ∩ ED|
|ES| (2)

Equation 2. Similarity between a pathway and disease co-
expression network using method 2.

We would like to mention that we exclusively used path-
way definitions (i.e. gene sets) from KEGG which contain
a relatively fewer number of pathways in order to facilitate
the interpretation of the analysis (e.g. Reactome contains

https://github.com/CoXPath/CoXPath
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over 2000 pathways while KEGG has over 300). Nonethe-
less, in method 2, we overlay the KEGG gene sets onto the
interactome network, ensuring that the analysis is not only
restricted to biological interactions in KEGG.

Pathway enrichment analysis. Overrepresentation analysis
(ORA) was conducted employing a one-sided Fisher’s exact
test (46) for each of the pathways in KEGG (downloaded on
12 December 2020). A pathway is considered to be signifi-
cantly enriched if its adjusted P-value is smaller than 0.05
after applying multiple hypothesis testing correction using
the Benjamini–Yekutieli method (47).

RESULTS

In the first subsection, we outline the diseases that fulfilled
the criteria to generate the corresponding co-expression
networks and investigate the characteristics of these net-
works. Then, we analyze the disease-specific co-expression
networks at the node- and edge- levels, respectively, while
later comparing the co-expression networks against path-
way knowledge. Finally, in a case scenario we demonstrate
how a pathway-level analysis in a disease context can be
leveraged to better understand the role of a specific path-
way in a disease context.

Overview of disease-specific co-expression networks

From over 330 datasets that were categorized into distinct
diseases, we systematically constructed 64 co-expression
networks, 63 of which correspond to disease-specific co-
expression networks, and the remaining corresponding to
a control group co-expression network. Figure 4A summa-
rizes the network size of each disease-specific co-expression
network clustered by major disease indication for a total of
ten disease categories and one unspecific group. Body sys-
tem clusters (e.g. gastrointestinal system disease, immune
system disease) were given priority for the classification of
all cancers before considering the ‘other cancer’ group. How
each disease relates to its disease category cluster can be
visualized on the DOID hierarchy in Supplementary Fig-
ure S1. The sarcoma co-expression network had the least
number of nodes of all the networks (i.e. 5450), while the
ductal carcinoma in situ co-expression network had the
highest number of nodes (i.e. 20 163). Generally, the net-
works within each disease category cluster tended to vary
greatly in size. For example, the ‘immune system disease’
category includes networks ranging in size from 5754 to 18
449 nodes. Additionally, the number of co-expression net-
works within a disease cluster varied, with nearly half the
disease groups containing between 6 and 15 networks (i.e.
gastrointestinal system disease, immune system disease, ner-
vous system disease, respiratory system disease, and other
cancer), while all remaining clusters contained less than
five.

We also investigated whether a correlation exists be-
tween the number of samples or datasets used to cre-
ate a co-expression network and the size of the network.
No dependency of network size based on the amount of
samples/datasets used was observed (Supplementary Fig-
ure S2). The total number of datasets ranged from 1 to

27, while the total number of samples was between 9 and
2515. The vast majority of disease co-expression networks
were generated from 1 to 10 datasets and contained be-
tween 9 to 461 samples. We found that the resulting net-
work size for each disease varied within a wide range (i.e. be-
tween ∼6000 and 20 000) and no discernible pattern was
observed.

Investigating global trends of disease-specific co-expression
networks at the node level

Exploring the most and least common proteins of the co-
expression networks. Here, we explored the most and
least common proteins across all 63 disease-specific co-
expression networks generated with the goal of identifying
both disease-specific and commonly occurring proteins. We
first identified the most common proteins as those that oc-
cur in the highest number of disease co-expression networks
(Supplementary Figure S3). We discovered that 96–99% of
the top 1000 to top 100 most common disease proteins, in
intervals of 100, are also found in the normal network, in-
dicating that these proteins are widespread and therefore
not disease-associated proteins. Additionally, we found that
none of the proteins were present in all co-expression net-
works as we were only interested in considering the top 1%
strongest correlations in each network (i.e. the selected cut-
off; see Generating co-expression networks section). On the
other hand, TXLNGY and NCR2 were the most common
proteins, occurring in 60 out of the 63 disease co-expression
networks. Nonetheless, we were able to identify 48 proteins
present in at least 57 of the 63 diseases.

We next assessed the overlap between all proteins of
the interactome and the disease co-expression networks
(Supplementary Figure S4). From this overlap, we inves-
tigated whether proteins in the disease co-expression net-
works could consistently be identified in our interactome
network to infer how well these proteins have been stud-
ied and reported in the literature. We refer to proteins that
could consistently be found across the majority of disease
co-expression networks and were also present in the inter-
actome as the most common proteins of the disease net-
works and the most highly connected proteins of the in-
teractome. Surprisingly, we found that only 30–33.4% of
the most common proteins (with cut-offs between 50 and
54 out of 63) of the disease co-expression networks were
present in the interactome. Similarly, for an approximately
proportional range of these most common disease pro-
teins against the most connected proteins of the interac-
tome (i.e. top 100–400 proteins), little to no overlap was
observed (Supplementary Figure S5). We also found that
the average number of relations for the proteins in the in-
teractome that overlapped with the approximately top 400
most common proteins in the disease networks (∼33 re-
lations) was lower than the average number of relations
overall in the interactome (∼46 relations). This analysis
was also conducted on networks built using the STRING
and HIPPIE PPI resources; relative to the interactome, we
found a much larger overlap between proteins in these net-
works and proteins of the disease co-expression networks
(Supplementary Figures S6 and S7). Within these over-
laps, we observed similarly small overlaps of the most com-
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Figure 4. (A) Overview of the size of each of the co-expression networks clustered by major disease groups. (B) Merged co-expression network clustering
proteins by their association to different disease groups. In A) each of the 63 diseases was grouped into one of ten categories (or a remaining leftover group).
Here, we see the varied sizes of co-expression networks within their corresponding disease clusters. In B) association was determined by selecting the set
of nodes which were present in all of the diseases of a given disease cluster (excluding ‘other’ and ‘other cancer’), and eliminating those nodes which were
also present in all diseases of other clusters. This resulted in unique sets of nodes which were guaranteed to be found in all diseases of the given cluster,
but not in all of another cluster. As expected, we observed an inverse correlation between the number of diseases in a cluster and the size of the associated
node subset. High quality versions are available at https://github.com/CoXPath/CoXPath/tree/main/results/figures.

mon disease proteins and the most connected proteins of
these two networks (Supplementary Figures S8 and S9).
We then evaluated the overlap between all proteins from
KEGG pathways and the disease co-expression networks
(Supplementary Figure S10) and sought to verify whether
the most common proteins in the disease co-expression net-
works could also be found in pathway databases. In doing

so, we identified only a small proportion (i.e. 29–31%) of
these proteins in KEGG (Supplementary Table S4). When
comparisons were made against KEGG pathway annota-
tions, we observed that these few most common proteins
had, on average, a slightly lower number of pathway an-
notations (∼14.8) than the average number of annotations
for all proteins in the pathway database (∼16). Taken to-

https://github.com/CoXPath/CoXPath/tree/main/results/figures
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gether, these findings indicate that though these proteins
are the most common across all disease co-expression net-
works, they tend to be underrepresented in the scientific
literature.

Among the proteins in common between the top
400 most highly connected proteins of the interactome
and the most common proteins in the disease co-
expression networks, 13 proteins, including three members
of the cytochrome P450 family of enzymes (i.e. CYP1A2,
CYP2C9 and CYP3A4), a major ribosomal protein
(i.e. RPL18), as well as key regulatory proteins such as
CDK1, PRKCG and PLCB2 were present in the over-
lap (Supplementary Table S4 and Supplementary Figure
S6). Similarly, we define proteins that could be consistently
found across the majority of disease co-expression networks
and were also present in KEGG pathway annotations as
the most common proteins of the disease networks and the
most common KEGG proteins. We examined the overlap
between the top 400 most common disease proteins with
the highest number of KEGG pathway annotations, and
the most common proteins of the disease co-expression net-
works (Supplementary Figure S11). Among the 22 proteins
in common, we found seven members of the human leuko-
cyte antigens (HLA) system of proteins (HLA-B, HLA-
C, HLA-DMA, HLA-DMB, HLA-DQB1, HLA-DRA and
HLA-G), as well as several proteins which were also in the
overlap between the aforementioned most highly connected
proteins of the interactome and most common proteins in
the disease co-expression networks (i.e. CAMK2A, ELK1,
GNAO1 and PLCB2) (Supplementary Table S4 and Sup-
plementary Figure S11).

Finally, we investigated the least common proteins in the
disease co-expression networks and their overlap with those
in the interactome, additional PPI resources and pathway
knowledge (Supplementary Figures S12–S15). Similar to
the most common ones, we found that the majority of the
least commonly occurring proteins in the co-expression net-
works were not present in the interactome nor in KEGG,
suggesting that little is currently known of these proteins.
Among the least commonly occurring proteins that over-
lapped with proteins from both KEGG and the interac-
tome, we observed a significant number of proteins from
the ZNF family (i.e. 42/54 (78%) from KEGG and 12/43
(28%) from the interactome overlap) (Supplementary Ta-
ble S4). This family is one of the largest protein families
and is known to regulate a wide range of biological pro-
cesses, while some of its members have already been asso-
ciated with several disorders (48). Thus, it may be interest-
ing to investigate proteins that are specific to a particular
disease, or a few distinct diseases, in detail. As an example,
we observed that TWIST1, one of the least commonly oc-
curring proteins and a well-known oncogene (49), was ex-
clusively present in only 25 diseases and over 50% of them
were cancers (Supplementary Table S4 and Supplementary
Figure S15).

Meta-analysis on consistently differentially expressed genes
across diseases. Differential gene expression analysis was
performed in order to pinpoint genes which were consis-
tently significantly differentially expressed between patient
and control samples across 46 diseases. While here, we in-

dependently conducted the meta-analysis to identify pat-
terns of dysregulation among DEGs that are specific to
or shared across diseases, in the case scenario we demon-
strate how DEGs can be overlaid with disease-specific co-
expression networks and the interactome to elucidate mech-
anisms that DEGs may be involved in. The average of all
genes in these diseases that were up-regulated as well as
the average of all genes that were down-regulated were in-
dependently calculated. Figure 5 jointly reports the com-
parison of the negative log10 adjusted P-values versus log2
fold changes of all independently averaged up- and down-
regulated DEGs in the 46 diseases. We found that nearly
all genes were, to some degree, up-regulated in one or more
diseases and down-regulated in at least one other, while only
CCDC43, JADE3, RPL22L1, SOCS1 and TOR3A were ex-
clusively up- and CAVIN2 and ZSCAN18 down-regulated
across all diseases they were present in. In all, nearly 20 000
unique genes were significantly differentially expressed (ad-
justed P-value < 0.01), with ∼17 600 up-regulated DEGs
and ∼15 600 down-regulated ones.

We then applied a |log2 fold change| threshold of 1.75 to
identify significantly (adjusted P-value < 0.01) differentially
expressed genes with the most extreme average log2 fold
change values. This threshold was selected as it yielded a
reasonable number of DEGs to investigate (i.e. 60), whereas
more commonly used thresholds, such as |log2 fold change|
> 1.5, yielded over 200. Among the genes that were found
to be significantly differentially expressed at the extremes,
34 were the most up-regulated and 26 were the most down-
regulated (Supplementary Table S5).

These genes were then compared to the top 500 most and
least common disease proteins. Of the genes that were the
most up-regulated, CDK1 was also among the top 500 most
common disease proteins, while CRNDE, DEPTOR, and
RASD1 were among the 500 least common. Similarly, for
genes that were the most down-regulated, only S100A8 was
among the top 500 most common disease proteins while
no genes overlapped with the 500 least common disease
proteins. Additionally, we found that four of the most up-
regulated genes belonged to the collagen group of protein
(i.e. COL11A1, COL1A1, COL1A2 and COL3A1), while
some protein families (i.e. S100 protein family, SLC, and
SYNP) could be found both in the most up- and down-
regulated genes.

Of the most significantly highly up- and down-regulated
genes (i.e. adjusted P-value < 0.01; |log2 fold change| >
1.75), we examined their expression changes in each of
the individual diseases they were involved in. Interestingly,
we found a group of genes (i.e. AMPD1, BEX5, DEP-
TOR, IGF1, JCHAIN, MARC2, MTUS1 and NDFIP2)
that were highly up-regulated in only two of nearly 20
diseases they were in (i.e. myeloid neoplasm and multiple
myeloma, grouped in the other cancers cluster), and down-
regulated in nearly all of the remaining. Thus, although
these genes were down-regulated in the vast majority of
diseases they were involved in, they still appeared among
the most significantly highly up-regulated genes since they
are significantly up-regulated in the two aforementioned
cancers. This trend has been documented for DEPTOR,
with low expression of the gene observed in most can-
cers, yet high overexpression seen in a group of multiple
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Figure 5. Consensus for consistently differentially expressed genes. Genes for 46 diseases were split into two subsets: those that were up-regulated and
those that were down-regulated in that disease. The average consensus was taken for all up- and down-regulated subsets separately and is shown here.
Nearly all genes could be found in both the up-regulated and down-regulated consensus as most genes are up-regulated in at least one disease as well as
down-regulated in at least one other disease. In total, 19 666 unique genes were significantly up- or down-regulated (i.e. adjusted P-value < 0.01; above
red line). Of the significantly differentially expressed genes, 17 643 genes were up-regulated and 15 634 genes were down-regulated. The most significantly
differentially expressed genes were defined as additionally having a |log2 fold change| > 1.75, resulting in 26 most down-regulated genes (dark blue) and 34
most up-regulated genes (dark orange).

myelomas (50). Similarly, among the genes highly down-
regulated, we identified a subset of genes (i.e. ASH1L-AS1,
CXCL8, DUSP4, EPC1, PANK2, PCIF1, PHLDA1 and
PMAIP1) that were only highly down-regulated in periph-
eral T-cell lymphoma, whilst being up-regulated in nearly
all of the remaining diseases they were in (i.e. 17 diseases
on average). This pattern has been identified with the over-
expression of DUSP4, a tumor suppressor, in certain can-
cer types (51), whereas the loss of its expression caused by
epigenetic dysregulation has been observed in at least one
type of lymphoma (52) Finally, the meta-analysis revealed
that one gene with significantly highly down-regulated,
SLC8A1, was only significantly down-regulated in a group
of nervous system diseases (i.e. medulloblastoma, pediatric
supratentorial ependymoma, malignant glioma, astrocy-
toma, and to a lesser degree, Alzheimer’s disease), not al-
together surprising as the SLC8 gene family of sodium-
calcium exchangers, which includes SLC8A1, have been
shown to play important regulatory roles in the control of
central nervous system functions (53). In contrast, SLC8A1
was only identified as significantly up-regulated in multiple
myeloma.

Investigating global trends of disease-specific co-expression
networks at the edge level

In this subsection, we explored the most commonly occur-
ring edges among the co-expression networks from all dis-
eases and compared them against the normal co-expression
network and the interactome. We hypothesized that the
edges most common across disease networks involve the
dysregulation of key proteins such as transcription factors,
common edges present across several diseases as well as
in the normal co-expression network correspond to non-
specific interactions, and common edges which could also
be identified in the interactome represent known molecular
interactions.

We first assessed whether there were any edges specific to
particular disease networks, identifying 57 774 118 unique
edges in total (i.e. 45% of all edges). This was to be ex-
pected, as we exclusively focused on the 1% strongest cor-
relations from the initial hundreds of millions of possible
edges, which led to most of the edges in our resulting co-
expression networks to be specific to a single disease. Al-
though this unique, disease-specific set of edges are worth
exploring, due to the considerably large number of edges
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in the co-expression networks, we restricted our analysis to
the most common edges in the co-expression networks. We
found that 21 edges were in more than 70% of the diseases
(44/63) and 202 in more than 50% of the diseases (32/63).
Interestingly, of those 21 edges that were in 70% of the dis-
eases, we observed that 6 of the 13 proteins which are en-
coded by genes in the Y chromosome appeared in 5 edges
each (i.e. RPS4Y1, USP9Y, DDX3Y, KDM5D, EIF1AY
and TXLNGY). Additionally, we found that nearly half of
these 21 edges involved a protein of the Metallothionein
family (i.e. MT1H, MT2A, MT1HL1, MT1X and MT1G),
involved in the regulation of transcription factors and in
cancers (54).

The most common edges in the disease co-expression net-
works were then compared to the normal co-expression net-
work to identify correlations between the two, assuming
that proteins involved in these edges would have basal levels
of expression and that they may not be relevant to a disease-
specific context. We perform a range of comparisons on the
most common edges by focusing on only the top 1000 to the
top 10 000, in intervals of 1000. In order to maintain a bal-
ance in these comparisons, given the high number of edges
in the normal network, we subset the edges of the normal
network to an equal number of edges that is currently be-
ing compared. To do so, we sort the edges of the normal
co-expression network by strongest correlations (i.e. highest
absolute value of weight) and select subsets of edges from
the top of the list for comparison. When the most common
edges in the disease co-expression networks were compared
to a proportionate range of edges with the strongest correla-
tions in the normal network (i.e. from 1000 to 10 000 edges),
we found that between 19% and 17% of the edges consis-
tently overlapped, respectively. Focusing on these ∼19% of
edges that were shared between the normal and most com-
mon disease networks, we were then interested in investigat-
ing whether these edges could also be found in the interac-
tome, STRING network, and HIPPIE network. In the in-
teractome, we found an overlap of only 8%, with this num-
ber decreasing to 4% as the number of edges being com-
pared in disease against normal co-expression networks in-
creased (i.e. between the top 1,000 and 10,000 most com-
mon edges). With STRING, its overlap with edges shared
between the disease and normal networks was 30%, increas-
ing to 45%, and in HIPPIE, the overlap was consistently
8%. These findings are expected because the overlap is pro-
portional to network size (i.e. the STRING network has
20 times more edges than the interactome while HIPPIE
has twice as many). Additionally, from these 8% to 4% of
edges which overlapped with the interactome, we looked at
the top 10 most connected proteins, consistently identifying
the same proteins as the number of edges in the compari-
son increased. Furthermore, we found that the direct over-
lap between the top 1000 most common edges of the dis-
ease networks with the interactome was only 4%, 57% with
the STRING network, and 6% with the HIPPIE network;
while the overlap between just the top 1000 most common
edges of the disease networks which were not among the top
edges of the normal network with the interactome was 2%,
with the STRING network 54%, and with the HIPPIE net-
work 5%. Because this latter group of edges represents the
top edges of the disease co-expression networks (but not of

the normal) which overlap with the interactome and other
PPI networks, they may also warrant further investigation
as they are more likely to consistently appear across diseases
than in normal networks.

Overlaying co-expression networks with pathway knowledge
supports the identification of disease associated pathways

In this subsection, we systematically overlayed pathway
knowledge with disease co-expression networks to re-
veal the consensus and/or differences between the latter
group of networks and well-established protein-protein in-
teractions in pathway databases. Given that strongly co-
expressed genes can be used as a proxy for functional simi-
larity (22), it can be inferred that genes that are co-expressed
could also be involved in the same pathway. In other words,
we assume that if a given pathway is relevant to a disease,
the proteins in the pathway would be strongly correlated in
the disease co-expression network. Thus, following this as-
sumption, we were interested in identifying the pathways as-
sociated with each of the investigated diseases. Using path-
ways from KEGG, we applied two methods which, i) map
pathway knowledge to disease co-expression networks and
ii) map pathway knowledge to the interactome, and the
mapped portion of the interactome to disease co-expression
networks (see Methods).

As expected, we noted that the results of both methods
were nearly identical, indicating that pathway proteins were
readily mappable to the interactome. Nonetheless, we found
that the second method resulted in generally higher simi-
larity values as it only considered edges that were identifi-
able in the interactome, rather than edges resulting from all
possible combinations of pathway proteins (Supplementary
Figure S16). Overall, clearly noticeable patterns were dis-
cernible, with groups of pathways showing variable levels
of similarity in specific diseases and disease clusters (Figure
6).

In particular, we observed multiple diseases/disease clus-
ters with higher similarity values for pathways relevant to
the given disease/cluster. Among these clusters, a large
group of pathways showed a high degree of similarity to
cognitive disorders (Figure 6; teal), including pathways
for long-term potentiation, multiple neurotransmitter sys-
tems (i.e. serotonergic synapse, glutamatergic synapse, and
dopaminergic synapse), long-term depression, alcoholism,
and pathways for addictions (i.e. nicotine addiction, am-
phetamine addiction, morphine addiction, and cocaine ad-
diction) (Supplementary Table S6). Not surprisingly, the
pathway for long-term depression showed the highest sim-
ilarity with the co-expression network for mental depres-
sion. Furthermore, the gastrointestinal system disease clus-
ter (Figure 6; blue) contained co-expression networks with
the highest level of similarity with several pathways, e.g. the
pathways responsible for renal cell carcinoma, colorectal
cancer, pathogenic Escherichia coli infection, intestinal im-
mune network for IgA production, and inflammatory bowel
disease (Supplementary Table S7). Additionally, a broad
group of pathways showed the highest similarity values for
the two reproductive system diseases (i.e. endometriosis and
ovarian cancer) (Figure 6; purple) over all other diseases
and disease clusters (Supplementary Table S8). Interest-
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Figure 6. Mapping disease-specific expression patterns with pathway knowledge via network similarity. The heatmap illustrates the consensus similarity
between KEGG pathways and disease co-expression networks. Similarity was defined as the percent of neighbors existing in a disease co-expression
network out of all possible pairs of proteins from KEGG pathways (i.e. pathway-disease similarity), with lighter values corresponding to a lower similarity
and darker values corresponding to higher similarity. The values (given as the percent of neighbors found) were standardized to a feature range from
0–1 for each pathway and pathways with similar values were grouped together. To ease the identification of patterns of pathway fingerprints across similar
diseases, diseases were grouped by the previously defined clusters (Figure 4). A high quality version of this figure is available at https://github.com/CoXPath/
CoXPath/tree/main/results/figures.

ingly, we found that several cancers, including gastrointesti-
nal stromal tumor, lung cancer, head and neck squamous
cell carcinoma, neuroendocrine tumor, hepatitis C, breast
cancer, and ductal carcinoma in situ shared a common pat-
tern of similar pathways (Supplementary Table S9). Among
the diseases, dermatomyositis was particularly distinguish-
able above all others, displaying notably higher similarity to
several pathways (Supplementary Table S10).

Altogether, we have demonstrated how by overlapping
pathway knowledge to disease-specific co-expression net-
works, we can identify pathways associated with a partic-
ular disease. Additionally, we have also shown how this
approach can be used to cluster diseases by the pathways
they have in common, pointing to sets of potentially shared
mechanisms across diseases.

Case scenario: in-depth investigation of the long-term poten-
tiation pathway in the context of schizophrenia

In the previous section, we identified disease-associated
pathways by calculating similarity between pathway knowl-
edge and disease co-expression networks. To understand the
mechanisms that underlie the similarity of a pathway to a
given disease, in a case scenario, we next investigated the
long-term potentiation (LTP) pathway which had yielded
high similarity to the schizophrenia co-expression network.
An association between this pathway and schizophrenia has
already been reported in the literature, with evidence indi-
cating impairment of LTP in the disorder (55,56).

The LTP pathway is categorized as a nervous system
pathway in KEGG, with 35 edges between a set of 25
proteins/protein complexes (Figure 7). As 19 of the nodes
are protein complexes containing multiple proteins, the
pathway covers a total of 67 unique proteins. By overlay-
ing the co-expression network for schizophrenia with this
pathway, we identified four major edges in common, all of
which were well-established interactions within this partic-
ular pathway and formed a subgraph. These edges were
among the most essential of the LTP pathway; interac-
tions between protein kinase A and the NMDA receptor,
Ca2+/calmodulin-dependent protein kinase II (CAMKII)

and calmodulin, and the subsequent activation of AM-
PAR (57) and metabotropic glutamate receptors (58) by
CAMKII play key roles in determining the strength of
synaptic transmission and ultimately the expression of LTP
(59).

Interestingly, by overlaying the schizophrenia co-
expression network with the LTP pathway, we found 53
unique correlations between proteins of the LTP pathway,
indicating that the vast majority of proteins in this pathway
were correlated in the co-expression network (Figure 7;
grey edge), and demonstrating that indeed, proteins that
are correlated in a given co-expression network can also
be involved in the same biological process (31). 19 of these
correlations were between calcium voltage channel com-
plexes or calmodulin, which both have roles in the initial
activation of the pathway, and other proteins (e.g. gluta-
mate receptors). Similarly, there were approximately 20
correlations between all glutamate receptors present in the
pathway and other proteins. The remaining correlations
involved Erk/MAP kinase and cAMP, which ultimately
regulate EP300 and CREBBP (which form the CREB
binding protein complex) as well as ATF4. ATF4 is a
transcription factor with multiple regulatory functions
and whose polymorphisms have been associated with
schizophrenia in male patients (60).

Lastly, we attempted to pinpoint candidate downstream
pathways of LTP in the context of schizophrenia by investi-
gating the edges of ATF4 given its role as a key regulator of
the LTP pathway (61). As ATF4 is strongly correlated with
70 other proteins in the co-expression networks, we con-
ducted a pathway enrichment analysis as a proxy to reveal
pathway crosstalks mediated by this protein (see Methods).
This analysis pinpointed four pathways from which three
were involved in protein and RNA processing (i.e. ubiqui-
tin mediated proteolysis, RNA transport, spliceosome), bi-
ological processes which have been linked with schizophre-
nia (62,63), while the fourth pathway, cell cycle, has also
been associated with the disease (64,65) (Supplementary Ta-
ble S11). These findings indicate that there may be crosstalk
between these pathways that could be explored in the
future.

https://github.com/CoXPath/CoXPath/tree/main/results/figures
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Figure 7. Long-term potentiation (LTP) pathway in the context of schizophrenia. The figure depicts the overlap of the LTP pathway with the schizophrenia
co-expression network in addition to the normal co-expression network. Protein-protein interactions and associations between proteins and/or protein
complexes are displayed as colored edges, while black edges denote membership of proteins to protein complexes. Edges that were common to both the LTP
pathway, the disease co-expression network and/or the normal co-expression network are bolded, while grey edges denote correlations exclusively from
the schizophrenia co-expression network. Differential gene expression analysis was performed and genes that were up- and down-regulated are colored
orange and blue, respectively, with those that were significantly differentially expressed (i.e. adj. P value < 0.05) given less transparency. Protein complex
nodes are then additionally colored if all members are in agreement with the direction of regulation. The code to generate this figure for any combination
of disease co-expression network and pathway can be found at https://github.com/CoXPath/CoXPath/blob/main/analysis/3.5 analysis.ipynb.

https://github.com/CoXPath/CoXPath/blob/main/analysis/3.5_analysis.ipynb
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DISCUSSION

Here, we have presented a systematic network-based ap-
proach that builds a bridge between disease signatures and
pathway knowledge to better understand human patho-
physiology. Our analysis has enabled us to globally evaluate
the consensus between disease-specific transcriptomic data
and an integrative human interactome network. Leverag-
ing hundreds of transcriptomic datasets from over 60 ma-
jor indications, we have explored the expression patterns
observed in their corresponding co-expression networks at
three different scales (i.e. at the node, edge and pathway
levels). At each of these scales, we have investigated which
proteins, subgraphs, and pathways could be associated with
both disease-specific and shared mechanisms. Finally, we
have presented a case scenario where we demonstrated how
our approach can be used to investigate the role of a specific
pathway in a disease-specific context.

There exist several limitations to this study. Firstly, we
sought to improve the quality of the data by systemati-
cally integrating transcriptomic datasets from the same dis-
ease group, however, in doing so, we assumed that these
datasets were equivalent. Although we attempted to address
this assumption by enforcing a conservative inclusion and
exclusion criteria as well as extensively curating the meta-
data associated with each dataset to group datasets into
distinct diseases, disease heterogeneity for patients cannot
be ignored. Secondly, we restricted this study to the most
used platform in ArrayExpress in order to avoid possible
effects caused by the array type, thus limiting the number
of datasets that could potentially be used. Thirdly, since the
cut-off chosen to generate the co-expression networks influ-
ences the resulting network (36), we exclusively focused on
the 1% strongest correlations. While this cut-off was well-
suited for our large-scale approach, in the future, less re-
strictive cut-offs could be used to generate co-expression
networks as well as other methods. For instance, Pardo-
Diaz et al. (66) recently presented a novel method that adds
directionality into the co-expression network. Finally, while
we constructed a human interactome network from multi-
ple pathway and interaction databases, the majority of pro-
teins from the co-expression networks could not be mapped
to the network, highlighting the incompleteness of the cur-
rent interactome.

Although we have demonstrated a proof-of-concept of
our methodology across hundreds of datasets and in over
sixty indications, we were only able to scratch the surface
of the possible analyses that could be conducted with the
resources generated within the context of this work. Thus,
we have made the datasets and scripts generated in this
study public to allow other researchers to conduct addi-
tional analyses on them. In the following, we outline sev-
eral future applications and extensions of this work. Firstly,
while we employed data from microarray technologies, the
presented analysis could be expanded and/or validated by
incorporating datasets generated from other platforms and
technologies (e.g. RNASeq) or deposited in other databases
such as GEO (28) which, in turn, can facilitate the discov-
ery of novel genes as well as allow us to add new indica-
tions and validate the current mechanisms identified in our
analysis, respectively. However, conducting such an analy-

sis would require extensive harmonization efforts at both
the data and metadata level given the differences across
chips and technologies, and the lack of structured meta-
data present in transcriptomic experiments. Secondly, the
disease-specific co-expression networks generated in this
work could be compared against well-established databases
such as DisGeNet (67) and OMIM (68) to propose novel
gene-disease associations that can be integrated into these
resources. Thirdly, other advanced network analysis meth-
ods could be conducted to analyze specific network mo-
tifs in the future. Fourthly, with prior enrichment of the
presented networks with drug-target information, network-
based drug discovery methods can be applied to identify
candidate drugs and druggable pathways for the particular
disease condition(s) (69–72). Finally, another potential line
of research would be to apply our methodology on datasets
generated from a variety of cell lines to identify cell-specific
transcriptional patterns.
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