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Objective: Based on non-contrast-enhanced (NCE)/contrast-enhanced (CE) computed
tomography (CT) images, we try to identify a combined-radiomics model and evaluate its
predictive capacity regarding response to anti-PD1 immunotherapy of patients with non-
small-cell lung cancer (NSCLC).

Methods: 131 patients with NSCLC undergoing anti-PD1 immunotherapy were
retrospectively enrolled from 7 institutions. Using largest lesion (LL) and target lesions
(TL) approaches, we performed a radiomics analysis based on pretreatment NCE-CT
(NCE-radiomics) and CE-CT images (CE-radiomics), respectively. Meanwhile, a
combined-radiomics model based on NCE-CT and CE-CT images was constructed.
Finally, we developed their corresponding nomograms incorporating clinical factors. ROC
was used to evaluate models’ predictive performance in the training and testing set, and a
DeLong test was employed to compare the differences between different models.

Results: For TL approach, both NCE-radiomics and CE-radiomics performed poorly in
predicting response to immunotherapy. For LL approach, NCE-radiomics nomograms
and CE-radiomics nomograms incorporating with clinical factor of distant metastasis all
showed satisfactory results, reflected by the AUCs in the training (AUC=0.84, 95% CI:
0.75-0.92; AUC=0.77, 95% CI: 0.67-0.87) and test sets (AUC=0.78, 95% CI: 0.64-0.92,
AUC=0.73, 95% CI: 0.57-0.88), respectively. Compared with the NCE-radiomics
nomograms, the combined-radiomics nomogram showed incremental predictive
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capacity in the training set (AUC=0.85, 95% CI: 0.77-0.92) and test set (AUC=0.81, 95%
CI: 0.67-0.94), respectively, but no statistical difference (P=0.86, P=0.79).

Conclusion: Compared with radiomics based on single NCE or CE-CT images, the
combined-radiomics model has potential advantages to identify patients with NSCLC
most likely to benefit from immunotherapy, and may effectively improve more precise and
individualized decision support.
Keywords: immunotherapy, non-small-cell lung cancer, radiomics, computed tomography, response prediction
INTRODUCTION
Immunotherapy has revolutionized the therapeutic strategies for
non-small cell lung cancer (NSCLC) (1–4). More recently,
immune checkpoint inhibitors (ICIs) antibodies targeting the
PD-(L)1 axis have revolutionized cancer treatment and
improved long-term survival among some patients with locally
advanced and metastatic NSCLC (5, 6). Unfortunately, only a
small proportion (20-50%) of patients with advanced solid
tumors respond to immunotherapy (7–9). Moreover, due to
multiple mechanisms of immunotherapy (10), atypical patterns
produced by immunotherapy (e.g., durable and/or delayed
responses, pseudoprogression, and hyperprogression) cannot
be adequately captured by traditional response criteria (11, 12).
As immunotherapy is expensive and could bring serious
immune-related adverse events (irAEs, such as pneumonitis), it
is necessary to stratify patients according to potential benefit
before immunotherapy.

Currently, different biomarkers have been investigated with
variable success in the selection of patients eligible for cancer
immunotherapy, such as FDA-approved PD-L1 expression,
microsatellite instability-high and/or mismatch repair status,
and tumor mutation burden (TMB) (13–15). However, due to
the intratumoral heterogeneity and evolution over time (16, 17),
the effective use of these biomarkers as predictive biomarkers is
seriously affected by sampling bias (18) and the absence of
standardization between different tests (19). Another issue is
that patients with negative PD-L1 status may still benefit from
anti-PD(L)1 immunotherapy (4, 20, 21). To better predict
response to immunotherapy, there is an urgent need to
identify alternative predictive biomarkers.

Radiomics can extract quantitative imaging features in a high-
throughput manner and assess tumor microenvironment and
heterogeneity (22). In recent years, radiomics-based biomarkers
have shown success in predicting response to ICIs (23–27).
Nevertheless, previous studies have focused on the role of
radiomics based on single CE-CT or NCE-CT images,
especially CE-CT images (28, 29). A recent study about the
diagnosis of solitary pulmonary nodule indicated that the tumor
biological heterogeneity depicted by radiomics features may be
confounded by the intravenously injected contrast material (30).
However, a study suggested there may be a potential
complementary value between CE-CT and NCE-CT radiomics
in predicting colorectal cancer survival (31). Currently, it is still
unknown whether NCE-CT or CE-CT is more favorable for
extracting radiomics features in predicting response to ICIs.
2

In the current study, we compared the efficacy of radiomics
models based on NCE and CE-CT images from largest target
lesion (LL) and target lesions (TL) approaches in predicting
response to ICIs in NSCLC, respectively. At the same time, we
also developed a combined-radiomics model based on both
NCE-CT and CE-CT images from the LL approach to further
improve the prediction efficiency. Finally, we aimed to develop
and validate combined-radiomics nomograms based on
pretreatment NCE-CT and CE-CT images incorporating
clinical factors to predict response to NSCLC immunotherapy.
The workflow is presented in Figure 1.
MATERIALS AND METHODS

Immunotherapy Dataset
This retrospective multicenter study (NCT04079283) was
approved by the institutional ethics committee of each
participating hospital, and the requirement for informed
consent was waived. This study was performed according with
the ethical standards of the Declaration of Helsinki. Initially, a
total of 285 patients with advanced NSCLC treated with a PD-1/
PD-L1 ICIs therapy (nivolumab/pembrolizumab) from August
1, 2016 to February 28, 2019 in 7 participating institutions were
enrolled according to the inclusion criteria (Appendix S1 and
Figure 2). According to the exclusion criteria (Appendix S1 and
Figure 2), 154 patients were excluded. Finally, the study included
the remaining 131 patients. The entire cohort was randomly
divided into a training set (n = 92) and an independent testing set
(n = 39) at a ratio of 7:3.

Chemotherapy Dataset
Refer to the previous research (25), to verify the specificity of the
radiomic model in predicting response to immunotherapy, we
retrospectively collected 32 patients with stage III-IV NSCLC
undergoing platinum-based chemotherapy at Tianjin Medical
University Cancer Institute and Hospital between 2017 and 2020
as an additional testing set (Figure 2), according to the inclusion
criteria (Appendix S2).

Images Acquisition and Harmonizing
Pre-treatment NCE-CT and CE-CT images were acquired on a
varied set of CT scanners (Appendix S3). Because slice thickness
images may have adverse effects on radiomics feature extraction
(22, 30, 32–34), we preprocessed the images. All CT images were
January 2022 | Volume 11 | Article 688679
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resampled in three directions with a resolution of 1.5 mm to
standardize the patient’s voxel size. In addition, Z-score
normalization was applied to unify the CT value scale of
the scanner.

Lesion Segmentation and Response
Kinetics
Three experienced readers reviewed baseline NCE-CT and CE-
CT images and defined the target lesions according to RECIST
(35) consensus, and then the largest lesion was chosen from
target lesions of each patient by measuring two-dimensional
maximum diameter. All target lesions on NCE-CT and CE-CT
CT images were manually segmented via ITK-SNAP (www.
itksnap.org) by two readers. If there is a dispute between two
Frontiers in Oncology | www.frontiersin.org 3
readers, a third reader with 13 years of experience in thoracic
radiology will judge and modify it. To narrow the difference in
tumor boundaries between the pulmonary window and
mediastinal window images, the window width and window
level of NCE-CT and CE-CT images were uniformly set at
1200 and -500.

Clinically, immunotherapy response assessment is often
performed six months after treatment (23, 36). Therefore,
treatment response on images at follow-up six months after
therapy according to iRECIST (37) served as the endpoint of our
study. Response status was dichotomized as follows: Complete
response (iCR), partial response (iPR) or stable disease (iSD)
were classified as “response”; Confirmed progressive disease
(iCPD) were considered as “non-response”. For patients who
FIGURE 1 | Radiomics workflow. The workflow presents a summary of data collection, study approaches and semi-automatic delineation, modeling schemes of
radiomics and specificity verification. NCE-CT, non contrast enhanced CT; CE-CT, contrast enhanced CT.
January 2022 | Volume 11 | Article 688679
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were considered to be unconfirmed progression (iUPD) at
follow-up 6 months after treatment, their treatment responses
needed to be further determined with additional follow-ups to
ensure that iUPD would not be used as labels for model training.
For the chemotherapy dataset, treatment response was evaluated
using RECIST 1.1 (35).

Feature Engineering and Signature
Building
A total of 1316 radiomics features (RFs) were extracted from all
target lesions of baseline NCE-CT and CE-CT images of the
training set using Artificial Intelligence Kit software version 3.3.0
(GE Healthcare, China) (Table S1). Firstly, 107 hand-craft RFs
were extracted from CT images, including 24 gray level co-
occurrence matrix features, 18 first-order histogram features, 16
gray level size zone matrix features, 16 gray level run length
matrix features, 14 shape features, 14 gray level dependence
matrix features, 5 neighboring gray tone difference matrix
Frontiers in Oncology | www.frontiersin.org 4
features. After wavelet, LoG and LBP transform based on CT
images, 744 wavelet features, 186 laplacian (LoGsigma=2.0/3.0)
features, and 279 local binary pattern features were obtained
respectively. Firstly, Minimum Redundancy Maximum
Relevance (mRMR) was used to preprocess these extracted
features to remove redundant and irrelevant features. Then,
Least Absolute Shrinkage and Selection Operator (LASSO)
logistic regression was performed to choose the optimized
subset of features. A linear combination of selected features
and coefficient vector was used to calculate the radiomics
signature (radscore) for each patient. Largest lesion (LL) and
target lesions (TL) approaches were used to construct the
radiomics modes toward individual-wise analysis. LL approach:
radscore of largest target lesion is regarded as individual
radiomics signature to predict immunotherapy response; TL
approach: average radscore of all target lesions served as a
global radiomics signature to predict therapy response. The
formula was as follows:
FIGURE 2 | Inclusion and exclusion diagram. Training and testing sets were randomly divided in a proportion of 7:3 respectively as well.
January 2022 | Volume 11 | Article 688679
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Average Radscore

= (RadscoreLesion 1 + RadscoreLesion 2 + RadscoreLesion n)=n (n ≤ 5)

RFs extracted from baseline NCE-CT and CE-CT images
were used to construct radiomics model based on NCE-CT
image (NCE-radiomics) and radiomics model based on CE-CT
image (CE-radiomics), respectively. Finally, the combined-
radiomics model based on both NCE-CT and CE-CT images
was constructed, and the combined-radscore was calculated by
summing the optimal radscores based on NCE-CT and CE-CT
images weighted by their coefficients (38).

Statistical Analysis
The inter-observer reproducibility evaluation of lesion
segmentation was quantitatively measured using the Dice
Similarity Coefficient. The Chi-square test and Mann-Whitney
U test were used to test differences of categorical variables and
continuous variables, respectively. To construct the best
nomograms incorporating clinical factors and radiomics
models, multivariate logistic regression analysis with backward
elimination method was employed. The area under the curve of
the ROC curve (AUC) and its confidence interval were
determined according with the DeLong test. The predictive
accuracy of the nomogram was evaluated by calibration curves.
Decision curve analysis (DCA) was performed by quantifying the
net benefits at different threshold probabilities to evaluate the
clinical utility of the radiomics nomogram. P values less than
0.05 were regarded as significant. Statistical analyses were
performed using R (version 3.5.1) and Python (version 3.5.6).
RESULTS

Clinical Characteristics
Among the enrolled 131 patients, a total of 235 target lesions were
identified for all patients. Themost common lesion site was the lung
(n=158, 67%), followed by a small portion of lymph nodes (n=65,
28%) and other organs (n=12, 5%), including liver, adrenal glands,
Frontiers in Oncology | www.frontiersin.org 5
kidneys, and spleen. Among the 131 retrospective patients, 48.85%
patients (n=64) showed iPR, 41.22% patients (n=54) showed iPD,
and the rest of patients presented iCR (n=3, 2.29%) or iSD (n=10,
7.63%) at the sixth month. The overall disease control rate (DCR)
remained at 58.8% (77 of 131). The training set and the test set had
identical distributions in clinical characteristics, and the differences
were not statistically significant, which proved that they can be used
as training set and testing set (Table 1). The differences in clinical
characteristics between response and non-response were statistically
insignificant, except for distant metastasis (P=0.001) (Table 1).
Among the enrolled 32 patients with chemotherapy, the
differences of clinical characteristics between response and non-
response were not statistically significant (Table S2). No significant
statistical differences in clinical characteristics were observed
between chemotherapy data and training set, except for
pathological type (P=0.016) (Table 2).

Reader Reproducibility
The agreement between the two readers was good. The dice
scores of inter-observer lesion segmentation were 0.94 and 0.96
for NCE-CT and CE-CT, respectively.

Response Status Prediction Nomogram
With NCE-RFs or CE-RFs
For the LL approach, there was a significant difference in
radscore from NCE-CT images (NCE-radscore) (Equation 1,
Appendix S5) between responders and non-responders in the
training set (P<0.001), which was then confirmed in the testing
set (P<0.05) (Figure 3A). Responders also presented a lower level
of radscore from CE-CT images (CE-radscore) (Equation 2,
Appendix S5) in the training set (P<0.001), and the difference
was borderline significant in the testing set (P=0.05) (Figure 4A).
The NCE-radiomics signature exhibited significant AUCs value
of 0.78 (95% CI, 0.69 to 0.88) and 0.74 (95% CI, 0.58 to 0.91) in
the training set and testing set respectively (Figure 3C, Table 3),
as did the CE-radiomics signature (0.72, 95% CI, 0.62 to 0.83;
0.69, 95% CI, 0.52 to 0.86) (Figure 4C and Table 3). The
difference of AUCs for two signatures in training and testing
TABLE 1 | Baseline clinical characteristics comparison of the 131 cases between training set and testing set, and responders and non-responders.

Variables Sample Training set Testing set P Value Responders Non-responders P Value

Age, median 62 (57, 68) 62 (55, 68) 0.554 62 (55, 69) 62 (57, 66) 0.99
Sex, No. (%) 0.915 0.21
Male 112 78 (85.71%) 34 (85.00%) 70 (88.61%) 42 (80.77%)
Female 19 13 (14.29%) 6 (15.00%) 9 (11.39%) 10 (19.23%)

Smoking history, No. (%) 0.397 0.49
Non-smokers 36 27 (29.67%) 9 (22.50%) 20 (25.32%) 16 (30.77%)
Smokers 95 64 (70.33%) 31 (77.50%) 59 (74.68%) 36 (69.23%)

Pathological type, No. (%) 0.954 0.32
Adenocarcinoma 66 46 (50.55%) 20 (50.00%) 37 (46.84%) 29 (55.77%)
Others 65 45 (49.45%) 20 (50.00%) 42 (53.16%) 23 (44.23%)

Distant metastasis, No. (%) 0.655 0.001
Absence 26 19 (20.88%) 7 (17.50%) 23 (29.11%) 3 (5.77%)
Presence 105 72 (79.12%) 33 (82.50%) 56 (70.89%) 49 (94.23%)

Treatment strategy, No. (%) 0.903 0.31
Immunotherapy 71 49 (53.85%) 22 (55.00%) 40 (50.63%) 31 (59.62%)
Combination therapy 60 42 (46.15%) 18 (45.00%) 39 (49.37%) 21 (40.38%)
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sets all have no significance (P=0.44; P=0.66). The developed
NCE-radiomics nomogram (Figure 3B) that combined NCE-
radscore with the clinical factor of distant metastasis achieved the
highest AUCs of 0.84 (95% CI, 0.75 to 0.92) and 0.78 (95% CI,
0.64 to 0.92) in training and testing sets respectively (Figure 3C
and Table 3). The calibration curves of the NCE-radiomics
nomogram (Figure 3D) showed good agreements between the
nomogram prediction and actual observation in the training set
(P=0.84) and testing set (P=0.16), respectively. The DCA shown
in Figure 3E indicated that the NCE-radiomics nomogram from
the LL approach had the highest overall net benefit across the
majority of the range of reasonable threshold probabilities in all
the patients compared with NCE-radiomics or clinical signatures
alone. The developed CE-radiomics nomogram (Figure 4B) also
showed a good result in predicting response status with AUCs of
0.77 (95% CI, 0.67 to 0.87) and 0.73 (95% CI, 0.57 to 0.88) in
training and testing sets respectively (Figure 4C and Table 3).
The difference of AUC for two nomograms in training and
testing sets all have no significance (P=0.30; P=0.62). The
calibration curves of the CE-radiomics nomogram (Figure 4D)
showed good agreements between the nomogram prediction and
actual observation in the training set (P=0.54) and testing set
(P=0.74), respectively. The DCA indicated that the CE-radiomics
nomogram (Figure 4E) adding more net benefit than the CE-
radiomics or clinical signatures alone had a smaller threshold
probability range for a patient than the NCE-radiomics
nomogram (Figure 3E).

For the TL approach, two NCE-RFs and seven CE-RFs were
selected through the LASSO logistic regression analysis (Figure
S1Aa and Figure S1Ba). The radscore of non-responders was
slightly higher than responders in the training set (P=0.008) from
NCE-radscore (Equation 3, Appendix E4), but did not reach a
significant difference in the testing set (P=0.23) (Figure S1Ab).
The NCE-radiomics signature carried out no superior prediction
value in training and testing sets (AUC=0.66, 95% CI, 0.55 to
0.78; AUC=0.63, 95% CI, 0.41 to 0.85) (Figure S1Ac and
Table 4). The CE-radscore (Equation 4, Appendix S5) was
significantly higher in nonresponders than in responders in the
training set (P<0.001), and the difference was slightly significant
in the testing set (P=0.04) (Figure S1Bb). The CE-radiomics
signature exhibited AUCs value of 0.75 (95% CI, 0.65 to 0.85)
Frontiers in Oncology | www.frontiersin.org 6
and 0.68 (95% CI: 0.49-0.88) in training and testing sets
respectively (Figure S1Bc and Table 4).

Combined-Radiomics Nomogram Building
and Evaluation With Both NCE-CT and
CE-CT Radscore
Because radiomics models from the TL approach did not exhibit a
higher predictive value than that from the LL approach, combined-
radscore was calculated by summing the NCE-radscore and CE-
radscore weighted by their coefficients from the LL approach
(Equation 5, Appendix E4). There was a significant statistical
difference in combined-radscore between responders and non-
responders in the training set (P<0.001) and testing set (P=0.003),
respectively (Figure 5A). The combined-radiomics model yielded
significantly strong prediction results with an AUC of 0.79 (95% CI,
0.77 to 0.92) in the training set and 0.79 (95%CI, 0.67 to 0.94) in the
testing set (Figure 5C and Table 3). This combined-radiomics
model did perform better prediction performance in the testing set
than the NCE-radiomics model and CE-radiomics model, but the
improvement did not reach significance in the Delong Test (P=0.67,
P=0.37, respectively). Interestingly, the specificity and sensitivity of
the model to predict immunotherapy responses were optimized by
combining NCE-CT and CE-CT images (Table 3).

A combined-radiomics nomogram (Figure 5B) which
incorporated the combined-radiomics model based on NCE-
CT and CE-CT images with the clinical factor of distant
metastasis was chosen as the best response status classifier. The
combined-radiomics nomogram showed significantly strong
prediction results with an AUC of 0.83 (95% CI, 0.75-0.91) in
the training set and an AUC of 0.81 (95% CI, 0.69-0.93) in the
testing set (Figure 5C). The difference of AUC between
combined-radiomics nomogram and NCE-radiomics
nomogram in training and testing sets all have no significance
(P=0.86, P=0.79). The prediction accuracy of the nomogram was
0.75 in the testing set (Table 3). The calibration curves of the
combined-radiomics nomogram (Figure 5D) showed good
agreements between the nomogram prediction and actual
observation in the training set (P=0.81) and testing set
(P=0.58), respectively. The DCA indicated that the combined-
radiomics nomogram from the LL approach had the highest
overall net benefit across the majority of the range of reasonable
TABLE 2 | Baseline clinical characteristics comparison of patients between immunotherapy training set and chemotherapy cohorts.

Variables Sample Immunotherapy Chemotherapy P Value

Age, median 62 (56, 68) 60 (55, 65) 0.165
Sex, No. (%) 0.769
Male 102 76 (83.52%) 26 (81.25%)
Female 21 15 (16.48%) 6 (18.75%)

Smoking history, No. (%) 0.157
Non-smokers 35 29 (31.87%) 6 (18.75%)
Smokers 88 62 (68.13%) 26 (81.25%)

Pathological type, No. (%) 0.016
Adenocarcinoma 70 46 (50.55%) 24 (75.00%)
Others 53 45 (49.45%) 8 (25.00%)

Distant metastasis, No. (%) 0.8
Absence 25 18 (19.78%) 7 (21.88%)
Presence 98 73 (80.22%) 25 (78.12%)
January 2022 | Volume 11 | Article
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threshold probabilities in all the patients compared with
combined-radiomics or clinical signatures alone (Figure 5E).

Proposed Combined-Radiomics Features
as a Set of ICI-Specified Biomarkers
The proposed combined-radscore (Figure 6Aa) did not show
any significant predictive value in predicting response status of
Frontiers in Oncology | www.frontiersin.org 7
chemotherapy at the sixth month (AUC=0.57, P=0.17)
(Figure 6Ab and Table S3), nor did NCE-radiomics and CE-
radiomics signature (AUC=0.61, P=0.98; AUC=0.49, P=0.69)
(Figures 6B, C and Table S3). The developed combined-
radiomics nomogram, NCE-radiomics nomogram, and CE-
radiomics nomogram still achieved low AUCs (Figures 6Ab,
Bb, Cb and Table S3). The calibration curves of the three
A B

C

D E

FIGURE 3 | Performance of the NCE-radiomic models from largest lesion approach in training and testing sets. (A) Box and whisker plots depict radscore
comparison between responders and non-responders. (B) NCE-radiomic nomogram developed in training set. (C) ROC curves of radiomics signatures in training
and testing sets. (D) Calibration curve analysis for the nomogram in training set and testing set. (E) Decision curve analysis for the nomogram (red), radscore (purple),
and clinical model (green). The y-axis indicates the net benefit; x-axis indicates threshold probability. The blue line represents the assumption that all patients were
responders. The black line represents the hypothesis that no patients were responders.
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nomograms (Figures 6Ac, Bc, Cc) all showed very poor
agreements between the nomogram prediction and actual
observation in chemotherapy cohorts (P<0.001).
DISCUSSION

In recent years, radiomics studies of immunotherapy mainly
extracted features from CE-CT images (25, 26, 28, 29), but few
Frontiers in Oncology | www.frontiersin.org 8
studies fromNCE-CT images. However, it has been suggested that
NCE-CT images is more conducive to the feature extraction of
radiomics (30). We first compared the NCE-radiomics model with
the CE-radiomics model in predicting response to
immunotherapy. NCE-radiomics model showed better
performance in predicting response to immunotherapy, which
was inconsistent with prior studies (25). NCE-radiomics
nomogram showed better performance compared with CE-
radiomics nomogram. The underlying reason may be that
A B

C

D E

FIGURE 4 | Performance of the CE-radiomic signature from largest lesion approach in training and testing sets. (A) Box and whisker plots depict radscore
comparison between responders and non-responders. (B) Radiomic nomogram developed in training set. (C) ROC curves of radiomics signatures in training and
testing sets. (D) Calibration curve analysis for the nomogram in training set and testing set. (E) Decision curve analysis for the nomogram (red), radscore (purple), and
clinical model (green). The y-axis indicates the net benefit; x-axis indicates threshold probability. The blue line represents the assumption that all patients were
responders. The black line represents the hypothesis that no patients were responders.
January 2022 | Volume 11 | Article 688679
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contrast material injected in intravenous had adverse effects on the
extraction of radiomics features depicting the biological
heterogeneity within the tumor (39–41). In addition, the
scanning scheme was preset, and different patients have different
hemodynamic characteristics, so the RFs based on CT value were
affected to some extent. Although the original images were
preprocessed, the problem could not be fundamentally solved.
Our results were similar to those observed in a previous study (30)
which showed that NCE-radiomics signature was more
informative on the differential diagnosis of the solitary
pulmonary nodule (SPN) than CE-radiomics signature.

Typically, radiomics studies of lung cancer focused on
extracting features from a primary lung tumor, largest lung
lesion, or one of the target lesions (23, 26, 27, 29). By contrast,
target lesions were all included in our analysis. We assumed that
the TL approach which was more consistent with clinical
RECIST1.1 could reflect total tumor burden to some extent.
Under the circumstance of a mix-response pattern (present both
responding and progressive lesions), the TL approach could
avoid potential selection bias compared with the LL approach.
However, in our study, radiomics models for the TL approach
did exhibit lower predictive value. A previous study suggested
that the predictive performance of the radiomics model from all
lesions on metastases from different organs is different (25). Such
a discrepancy can be explained in part by the fact that the low
number of samples with 8% (11 of 131) mixed response, which
suggests that a large number of mixed responses are necessary for
the TL approach. Another possible reason might be the low
number of metastases (5%, 12 of 235) from organs other than the
lungs and lymph nodes. We believed that the lower 95%
confidence interval of AUC (0.41 and 0.49 in the testing set)
Frontiers in Oncology | www.frontiersin.org 9
for NCE-radscore and CE-radscore indicated an insufficient
predictive efficiency. NCE-radscore between the responders
and non-responders had no significant difference in the testing
set (P=0.23). Compared with the LL approach, the TL approach
is inconvenient and time-consuming. Therefore, we have
reasonably chosen the LL approach to further construct the
combined-radiomics with NCE-radscore and CE-radscore.

Although radiomics based on single NCE-CT or CE-CT images
are conventionally used for prediction, NCE-radiomics and CE-
radiomics may contain complementary information regarding
treatment response (31). To further improve the prediction effect
of the radiomics model based on the baseline images, a combined-
radiomics nomogram based on both NCE-radscore and CE-
radscore for LL was built to predict response to immunotherapy.
Excitingly, the combined-radiomics model showed better
performance in predicting response to immunotherapy than the
radiomics model based on single NCE-CT or CE-CT images,
suggesting a potential complementarity between RFs based on
NCE-CT and CE-CT images (31). In addition, the tumor
boundaries of patients with advanced NSCLC are mostly
unclear, so simple NCE-CT images cannot accurately delineate
the tumor boundaries. Therefore, integrating radiomics features of
NCE-CT and CE-CT images into a predictive panel as a radiomics
model may be a robust approach for predicting response to
immunotherapy. Compared our previous study (42), the
combined-radiomics models based on only NCE/CE-CT images
of baseline from the single largest lesion approach may be more
promising for clinical application and early prediction.

What is unique about this study is that we conducted a single
radiomics analysis based on NCE-CT and CE-CT images
separately and combined-radiomics analysis based on NCE/
TABLE 3 | ROC analysis for NCE-radiomics, CE-radiomics and combined-radiomics models from largest lesion approach.

Variables NCE-radscore NCE-radiomics
nomogram

CE-radscore CE-radiomics
nomogram

Combined-radscore Combined-radiomics
nomogram

Training set
AUC (95% CI) 0.78

(0.69-0.88)
0.84 (0.75-0.92) 0.72 (0.62-0.83) 0.77 (0.67-0.87) 0.79 (0.70-0.88) 0.85 (0.77-0.92)

Specificity 0.80 0.79 0.74 0.76 0.68 0.84
Sensitivity 0.66 0.77 0.68 0.73 0.79 0.74
Accuracy (95% CI) 0.74 (0.63-0.82) 0.78 (0.68-0.86) 0.71 (0.61-0.80) 0.75 (0.65-0.83) 0.73 (0.62-0.81) 0.80 (0.71-0.88)
Testing set
AUC (95% CI) 0.74 (0.58-0.91) 0.78 (0.64-0.92) 0.69 (0.52-0.86) 0.73 (0.57-0.88) 0.79 (0.65-0.93) 0.81 (0.67-0.94)
Specificity 0.79 1.00 0.56 1.00 0.67 0.76
Sensitivity 0.58 0.46 0.73 0.50 0.63 0.74
Accuracy (95% CI) 0.73 (0.56-0.85) 0.65 (0.48-0.79) 0.62 (0.46-0.77) 0.63 (0.46-0.77) 0.65 (0.48-0.79) 0.75 (0.59-0.87)
January 2022 | Volu
TABLE 4 | ROC analysis for the NCE-radiomics and CE-radiomics models from target lesions approach.

Variables NCE-radscore CE-radscore

Training set Testing set Training set Testing set

AUC (95% CI) 0.66 (0.55-0.78) 0.63 (0.41-0.85) 0.75 (0.65-0.85) 0.68 (0.49-0.88)
P 0.008 0.23 <0.001 0.041
Specificity 0.70 0.65 0.67 0.52
Sensitivity 0.61 0.64 0.72 0.61
Accuracy (95% CI) 0.66 (0.55-0.76) 0.65 (0.48-0.79) 0.69 (0.59-0.78) 0.55 (0.38-0.71)
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CE-CT images. The results highlighted the feasibility and
validity of the utility of combined-radiomics with NCE/CE-CT
images analysis from the largest lesions. Meanwhile, we also
conducted radiomics analysis on both NCE and CE for target
lesions. Despite the poor results, it provides a meaningful
Frontiers in Oncology | www.frontiersin.org 10
indication for radiomics study of target lesions studies in
immunotherapy. The next step is to construct a large sample
composite model of target lesions from different organs, which
may provide a consistent framework for RECIST1.1 and
overcome the adverse effects of the mixed response pattern
A B

C

D E

FIGURE 5 | Performance of the combined-radiomic signature from largest lesion approach in training and testing sets. (A) Box and whisker plots depict radscore
comparison between responders and non-responders. (B) Radiomic nomogram developed in training set. (C) ROC curves of radiomics signatures in training and
testing sets. (D) Calibration curve analysis for the nomogram in training set and testing set. (E) Decision curve analysis for the nomogram (red), radscore (purple), and
clinical model (green). The y-axis indicates the net benefit; x-axis indicates threshold probability. The blue line represents the assumption that all patients were
responders. The black line represents the hypothesis that no patients were responders.
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of immunotherapy in patients with NSCLC on radiomics
features extraction.

Our study also possessed some limitations. First, the
heterogeneity of the cohorts from multicenter, particularly for
enhancement imaging parameters, could affect radiomics
features extraction and analysis process, even though some
efforts had been made to weaken the multicenter effect.
Second, given that the fact of a limited number of complex
responses and metastases outside the lung, the results of
radiomics analysis for target lesions may be affected to some
extent. Third, the combined-radiomics nomogram was not
combined with currently known clinical biomarkers.
Integrating data from different disciplines might construct a
fully integrated model that can be applied to the clinical
workflow. Fourth, the performance of clinical predictive
models would decline over the continuous improvement of
immunotherapy methods.

In conclusion, the results from our pilot study showed that
the combined-radiomics nomogram incorporating the NCE/CE-
CT images with the clinical factor of distant metastasis could
serve as a non-invasive and cost-effective decision-support tool
for better stratification of patients receiving immunotherapy
with ICIs.
Frontiers in Oncology | www.frontiersin.org 11
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Pembrolizumab Versus Docetaxel for Previously Treated, PD-L1-Positive,
Advanced Non-Small-Cell Lung Cancer (KEYNOTE-010): A Randomised
Controlled Trial. Lancet (2016) 387(10027):1540–50. doi: 10.1016/s0140-6736
(15)01281-7

22. Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More Than Pictures,
They Are Data. Radiology (2016) 278(2):563–77. doi: 10.1148/
radiol.2015151169

23. Mu W, Tunali I, Gray JE, Qi J, Schabath MB, Gillies RJ. Radiomics of (18)F-
FDG PET/CT Images Predicts Clinical Benefit of Advanced NSCLC Patients
to Checkpoint Blockade Immunotherapy. Eur J Nucl Med Mol Imaging (2020)
47(5):1168–82. doi: 10.1007/s00259-019-04625-9

24. Humbert O, Cadour N, Paquet M, Schiappa R, Poudenx M, Chardin D, et al.
(18)FDG PET/CT in the Early Assessment of Non-Small Cell Lung Cancer
Response to Immunotherapy: Frequency and Clinical Significance of Atypical
Evolutive Patterns. Eur J Nucl Med Mol Imaging (2020) 47(5):1158–67.
doi: 10.1007/s00259-019-04573-4

25. Trebeschi S, Drago SG, Birkbak NJ, Kurilova I, Calin AM, Delli Pizzi A, et al.
Predicting Response to Cancer Immunotherapy Using Noninvasive Radiomic
Biomarkers. Ann Oncol (2019) 30(6):998–1004. doi: 10.1093/annonc/mdz108

26. Sun R, Limkin EJ, Vakalopoulou M, Dercle L, Champiat S, Han SR, et al. A
Radiomics Approach to Assess Tumour-Infiltrating CD8 Cells and Response
to Anti-PD-1 or Anti-PD-L1 Immunotherapy: An Imaging Biomarker,
Retrospective Multicohort Study. Lancet Oncol (2018) 19(9):1180–91.
doi: 10.1016/s1470-2045(18)30413-3

27. Tunali I, Gray JE, Qi J, Abdalah M, Jeong DK, Guvenis A, et al. Novel Clinical
and Radiomic Predictors of Rapid Disease Progression Phenotypes Among
Lung Cancer Patients Treated With Immunotherapy: An Early Report. Lung
Cancer (2019) 129:75–9. doi: 10.1016/j.lungcan.2019.01.010

28. Schraag A, Klumpp B, Afat S, Gatidis S, Nikolaou K, Eigentler TK, et al.
Baseline Clinical and Imaging Predictors of Treatment Response and Overall
Survival of Patients With Metastatic Melanoma Undergoing Immunotherapy.
Eur J Radiol (2019) 121:108688. doi: 10.1016/j.ejrad.2019.108688

29. Khorrami M, Prasanna P, Gupta A, Patil P, Velu PD, Thawani R, et al.
Changes in CT Radiomic Features Associated With Lymphocyte Distribution
Predict Overall Survival and Response to Immunotherapy in Non-Small Cell
Lung Cancer. Cancer Immunol Res (2020) 8(1):108–19. doi: 10.1158/2326-
6066.CIR-19-0476
January 2022 | Volume 11 | Article 688679

https://www.frontiersin.org/articles/10.3389/fonc.2021.688679/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2021.688679/full#supplementary-material
https://doi.org/10.1016/s2213-2600(18)30500-9
https://doi.org/10.1016/s1470-2045(15)70054-9
https://doi.org/10.1056/NEJMoa1606774
https://doi.org/10.1056/NEJMoa1504627
https://doi.org/10.6004/jnccn.2019.0059
https://doi.org/10.1093/annonc/mdy275
https://doi.org/10.1200/JCO.2017.74.3062
https://doi.org/10.1056/NEJMoa1507643
https://doi.org/10.1056/NEJMoa1507643
https://doi.org/10.1056/NEJMoa1501824
https://doi.org/10.1001/jama.2015.11929
https://doi.org/10.1016/j.ejca.2008.10.026
https://doi.org/10.1200/JCO.2015.61.6870
https://doi.org/10.1016/j.jtho.2019.12.107
https://doi.org/10.1016/j.jtho.2019.12.107
https://doi.org/10.1056/NEJMoa1801946
https://doi.org/10.1038/s41568-019-0116-x
https://doi.org/10.1148/radiol.2018181349
https://doi.org/10.1148/rycan.2019190031
https://doi.org/10.21037/jtd.2019.10.80
https://doi.org/10.21037/tlcr.2018.08.04
https://doi.org/10.1038/nature14011
https://doi.org/10.1016/s0140-6736(15)01281-7
https://doi.org/10.1016/s0140-6736(15)01281-7
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1007/s00259-019-04625-9
https://doi.org/10.1007/s00259-019-04573-4
https://doi.org/10.1093/annonc/mdz108
https://doi.org/10.1016/s1470-2045(18)30413-3
https://doi.org/10.1016/j.lungcan.2019.01.010
https://doi.org/10.1016/j.ejrad.2019.108688
https://doi.org/10.1158/2326-6066.CIR-19-0476
https://doi.org/10.1158/2326-6066.CIR-19-0476
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wu et al. Radiomics Predicting NSCLC Immunotherapy Response
30. He L, Huang Y, Ma Z, Liang C, Liang C, Liu Z. Effects of Contrast-
Enhancement, Reconstruction Slice Thickness and Convolution Kernel on
the Diagnostic Performance of Radiomics Signature in Solitary Pulmonary
Nodule. Sci Rep (2016) 6:34921. doi: 10.1038/srep34921

31. Badic B, Desseroit MC, Hatt M, Visvikis D. Potential Complementary Value
of Noncontrast and Contrast Enhanced CT Radiomics in Colorectal Cancers.
Acad Radiol (2019) 26(4):469–79. doi: 10.1016/j.acra.2018.06.004

32. Nguyen P, Bashirzadeh F, Hundloe J, Salvado O, Dowson N, Ware R, et al.
Optical Differentiation Between Malignant and Benign Lymphadenopathy by
Grey Scale Texture Analysis of Endobronchial Ultrasound Convex Probe
Images. Chest (2012) 141(3):709–15. doi: 10.1378/chest.11-1016

33. Zhao B, Tan Y, Tsai WY, Schwartz LH, Lu L. Exploring Variability in CT
Characterization of Tumors: A Preliminary Phantom Study. Transl Oncol
(2014) 7(1):88–93. doi: 10.1593/tlo.13865

34. Tan Y, Guo P, Mann H, Marley SE, Juanita Scott ML, Schwartz LH, et al.
Assessing the Effect of CT Slice Interval on Unidimensional, Bidimensional
and Volumetric Measurements of Solid Tumours. Cancer Imaging (2012)
12:497–505. doi: 10.1102/1470-7330.2012.0046

35. Schwartz LH, Litiere S, de Vries E, Ford R, Gwyther S, Mandrekar S, et al.
RECIST 1.1-Update and Clarification: From the RECIST Committee. Eur J
Cancer (2016) 62:132–7. doi: 10.1016/j.ejca.2016.03.081

36. NA R, MD H, A S, P K, V M, JJ H, et al. Mutational Landscape Determines
Sensitivity to PD-1 Blockade in Non-Small Cell Lung Cancer. Science (2015)
348(6230):124–8. doi: 10.1126/science.aaa1348

37. Seymour L, Bogaerts J, Perrone A, Ford R, Schwartz LH, Mandrekar S, et al.
iRECIST: Guidelines for Response Criteria for Use in Trials Testing
Immunotherapeutics. Lancet Oncol (2017) 18(3):e143–52. doi: 10.1016/
s1470-2045(17)30074-8

38. Zhang Y, He K, Guo Y, Liu X, Yang Q, Zhang C, et al. A Novel Multimodal
Radiomics Model for Preoperative Prediction of Lymphovascular Invasion in
Rectal Cancer. Front Oncol (2020) 10:457. doi: 10.3389/fonc.2020.00457

39. Ganeshan B, Miles KA. Quantifying Tumour Heterogeneity With CT. Cancer
Imaging (2013) 13:140–9. doi: 10.1102/1470-7330.2013.0015
Frontiers in Oncology | www.frontiersin.org 13
40. Ganeshan B, Miles KA, Young RC, Chatwin CR. Texture Analysis in Non-
Contrast Enhanced CT: Impact of Malignancy on Texture in Apparently
Disease-Free Areas of the Liver. Eur J Radiol (2009) 70(1):101–10.
doi: 10.1016/j.ejrad.2007.12.005

41. Goh V, Ganeshan B, Nathan P, Juttla JK, Vinayan A, Miles KA. Assessment of
Response to Tyrosine Kinase Inhibitors in Metastatic Renal Cell Cancer: CT
Texture as a Predictive Biomarker. Radiology (2011) 261(1):165–71.
doi: 10.1148/radiol.11110264

42. Liu Y, Wu M, Zhang Y, Luo Y, He S, Wang Y, et al. Imaging Biomarkers to
Predict and Evaluate the Effectiveness of Immunotherapy in Advanced
Non-Small-Cell Lung Cancer. Front Oncol (2021) 11:657615. doi: 10.3389/
fonc.2021.657615

Conflict of Interest: Authors SW and YG were employed by company GE
Healthcare China.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Wu, Zhang, Zhang, Zhang, Wang, Chen, Luo, He, Liu, Yang, Li,
Wei, Zhang, Lu, Wang, Guo, Ye and Liu. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication in
this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.
January 2022 | Volume 11 | Article 688679

https://doi.org/10.1038/srep34921
https://doi.org/10.1016/j.acra.2018.06.004
https://doi.org/10.1378/chest.11-1016
https://doi.org/10.1593/tlo.13865
https://doi.org/10.1102/1470-7330.2012.0046
https://doi.org/10.1016/j.ejca.2016.03.081
https://doi.org/10.1126/science.aaa1348
https://doi.org/10.1016/s1470-2045(17)30074-8
https://doi.org/10.1016/s1470-2045(17)30074-8
https://doi.org/10.3389/fonc.2020.00457
https://doi.org/10.1102/1470-7330.2013.0015
https://doi.org/10.1016/j.ejrad.2007.12.005
https://doi.org/10.1148/radiol.11110264
https://doi.org/10.3389/fonc.2021.657615
https://doi.org/10.3389/fonc.2021.657615
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	A Combined-Radiomics Approach of CT Images to Predict Response to Anti-PD-1 Immunotherapy in NSCLC: A Retrospective Multicenter Study
	Introduction
	Materials and Methods
	Immunotherapy Dataset
	Chemotherapy Dataset
	Images Acquisition and Harmonizing
	Lesion Segmentation and Response Kinetics
	Feature Engineering and Signature Building
	Statistical Analysis

	Results
	Clinical Characteristics
	Reader Reproducibility
	Response Status Prediction Nomogram With NCE-RFs or CE-RFs
	Combined-Radiomics Nomogram Building and Evaluation With Both NCE-CT and CE-CT Radscore
	Proposed Combined-Radiomics Features as a Set of ICI-Specified Biomarkers

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


