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Abstract
Recently developed single-cell RNA sequencing methods allow the simultaneous profiling of the transcriptomes of
thousands of individual cells. However, current methods still require advanced equipment or entail substantial waste
of reagents. Here, we introduce magnetic bead-assisted parallel single-cell gene expression sequencing (MAPS-seq), a
microwell-based method that pools samples before the reverse transcription step, increasing the ease of sample
preparation and reducing reagent waste. Moreover, because this method uses universal reagents and standard
molecular biology lab instruments, it is easy to implement, even in labs that have not previously conducted single-cell
RNA sequencing. We validated our method by demonstrating that it can generate gene expression data at the single-
cell level. We then applied the MAPS-seq method to analyze 237 human myelogenous leukemia cells treated with one
of three different drugs or dimethyl sulfoxide. We observed transcriptional changes and identified marker genes that
indicate a drug response. Furthermore, the MAPS-seq method produced data of comparable quality to those of
existing single-cell RNA sequencing methods. Consequently, we expect that our method will provide researchers with
a more accessible, less wasteful, and less burdensome method for investigating the transcriptomes of individual cells.

Introduction
Organisms contain various types of cells with distinct

cellular functions1. Given that the transcriptional state of
a cell is closely related to its cellular function, cells can be
investigated by profiling their transcriptomes. Specifically,
cellular identity can be established with enhanced reso-
lution by profiling the transcriptome of individual cells2–6.
Research on single-cell transcripts has recently and
rapidly expanded in various fields, such as the study of
developmental processes in heterologous tissues of plants
and the study of rare subspecies of cancer cells7,8.
In particular, as the need for single-cell research has

become more important, various single-cell RNA
sequencing (scRNA-seq) methods have been developed9.
Representative scRNA-seq library generation methods

include microwell-based methods, such as CEL-Seq and
MARS-Seq10,11, and microfluidic platforms, such as Drop-
seq, inDrop, and 10x genomics12–15. In microwell-based
methods, the transcripts of cells are separated into
microwells and individually reverse transcribed. However,
these methods require a significant amount of labor and
reagents because the samples must be processed sepa-
rately before they are pooled. Microfluidic platforms are
based on the separation of individual cells using nanoliter-
sized droplets. However, this process requires complex
equipment with high setup costs16.
In this work, we developed a new method, magnetic

bead-assisted single-cell gene expression sequencing
(MAPS-seq), which can be used to simultaneously analyze
hundreds of cells with greater convenience and at lower
cost than those of existing scRNA-seq methods. A com-
parison of MAPS-seq with representative scRNA-seq
methods is presented in Table 1. We used streptavidin-
coated magnetic beads bound with biotinylated cell-
specific primers to pool samples at an early stage and
applied the beads’ magnetism to increase the efficiency of
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the washing process. We validated our method by separ-
ating human and mouse cell lines. Furthermore, we
demonstrated that our method can be applied to drug
response studies. Using MAPS-seq, we observed tran-
scriptional changes in the drug-treated K562 cells and
detected expression markers that indicate a drug response.
This convenient new method expands the ability of
microwell-based methods and will vitalize diverse areas of
biological study related to cellular transcription.

Materials and methods
Cell lines and cell culture
All cell lines were obtained from the Korean Cell Line

Bank and maintained at 37 °C with 5% CO2. The human
embryonic kidney 293T (HEK293T) cell line and the
mouse embryo fibroblast NIH/3T3 cell line were cultured
in Dulbecco’s modified Eagle’s medium (Gibco, USA)
supplemented with 10% fetal bovine serum (FBS; Gibco,
USA) and 1% penicillin/streptomycin (Thermo Fisher
Scientific, USA). The human chronic myelogenous leu-
kemia K562 cell line was cultured in Roswell Park
Memorial Institute medium (Gibco, USA) supplemented
with 10% FBS and 1% penicillin/streptomycin.

Sequence of biotinylated cell-specific barcode oligos
We designed biotinylated cell-specific barcode oligos

(BCOs) as follows: 5′-/biotin/AGTGGTATCAACGCA-
GAGTAC/JJJJJJ/NNNNNNN/(T)26-3′. Each oligo con-
tains one biotin molecule on its 5′ end, followed by a
SMART PCR primer17,18 binding site with the sequence
AGTGGTATCAACGCAGAGTAC (Supplementary
Table 1). JJJJJJ represents a 6-bp cell-specific barcode, and
NNNNNNN represents a 7-bp unique molecular identi-
fier (UMI) for each mRNA in an individual cell. Next,
there is a polythymidine tail (T)26, which captures the
poly-A tail of mRNA and is the start site of reverse

transcription (Integrated DNA Technologies, USA)
(Supplementary Fig. 1, Supplementary Table 2).

Procedure of MAPS-seq
Streptavidin C1 beads (Invitrogen, USA) were washed

and added to a 96-well plate (10 μg per well). BCOs were
added to each well, resulting in the formation of BCO-
conjugated streptavidin beads. The procedure for washing
and combining the beads with BCOs was conducted
according to the manufacturer’s instructions.
Four microliters of cell lysis buffer (10 mM Tris-HCl,

pH 7.4; 10 mM NaCl; 3 mM MgCl2, and 0.1% IGEPAL
CA-630)19 was added to each well of a new 96-well plate.
Then, one cell was added to each well using an Aria II
fluorescence-activated cell sorting (FACS) sorter (BD
Biosciences, USA). The first was gated using the forward
scatter (FSC) area vs. the side scatter (SSC) area (FSC-A
vs. SSC-A) to remove dead cells or debris from the
sample. The doublet was then removed using the FSC
height vs. the FSC width (FSC-H vs. FSC-W) and the SSC
height vs. the SSC width (SSC-H vs. SSC-W). After cell
sorting, the plate was briefly centrifuged at 4 °C to allow
the cells to sink into the lysis solution.
BCO-conjugated streptavidin beads were added to each

cell well, adjusting the final volume of each well to 10 μL.
The 96-well plate was then incubated at 55 °C for 5 min to
allow the BCOs to capture mRNAs, and the plate was
immediately placed on ice for at least 1 min. The beads
were immobilized on the magnetic stand, and super-
natants were removed. The beads were then washed twice
and resuspended in ice-cold 6× saline-sodium citrate
(SSC) buffer. All beads from the 96-well plate were then
pooled into a microtube and washed once again with ice-
cold 6× SSC buffer.
A reverse transcriptase (RTase) mixture was prepared

with the following composition and added to the pooled

Table 1 Comparison of MAPS-seq with other representative scRNA-seq methods.

Method CEL-Seq2 MARS-Seq2 Drop-seq MAPS-seq

Region 3′ end 3′ end 3′ end 3′ end

Cell isolation Manual FACS Microfluid FACS

Cell barcode Yes Yes Yes Yes

UMI Yes Yes Yes Yes

Sample pooling After cDNA

amplification

After RT Before RT Before RT

Amplification IVT IVT PCR PCR

Fragmentation Chemical Chemical Tn5 transposase Tn5 transposase

Feature Linear amplification Automated massively parallel

scRNA-seq

Nanoliter-sized droplet based high-

throughput microfluidic equipment

Using magnetic beads for

sample pooling

FACS fluorescence-activated cell sorting, UMI unique molecular identifier, RT reverse transcription, IVT in vitro transcription.
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beads (50 μL of mixture per microtube): 20 μL of
nuclease-free water (Invitrogen, USA), 10 μL of 20% Ficoll
PM400, 10 μL of 5× Maxima RT buffer, 5 μL of 10mM
dNTPs, 1.25 μL of RNase inhibitor, 1.25 μL of 100 μM
template-switching oligo (TSO), and 2.5 μL of Maxima H
Minus RTase (Thermo Scientific, USA). Reverse tran-
scription was performed at 25 °C for 30 min. Then, the
beads were washed twice with TE-TW buffer (10 mM Tris
pH 8.0, 1 mM EDTA, and 0.01% Tween-20) and once with
10mM Tris pH 8.0.
Exonuclease I mixture was prepared with the following

composition and added to the pooled beads (50 μL of
mixture per microtube): 42.5 μL of nuclease-free water,
5 μL of 10× Exo I buffer, and 2.5 μL of Exo I nuclease
(NEB, USA). After incubation at 37 °C for 45min, the
beads were washed twice with TE-TW buffer and once
with nuclease-free water.
The PCR mixture was prepared as follows: 24.6 μL of

nuclease-free water, 0.4 μL of SMART primer (Integrated
DNA Technologies, USA), and 25 μL of 2× KAPA HiFi
HotStart ReadyMix (Roche, Switzerland). Then, 120 μg of
beads was aliquoted into PCR tubes, and 50 μL of the PCR
mixture was added to each tube, completely resuspending
the beads in the PCR reaction mixture. PCR amplification
was carried out using the following thermal cycler pro-
gram: 3 min at 95 °C; 4 cycles of (20 s at 98 °C, 45 s at
60 °C, 3 min at 72 °C); 12-15 cycles of (20 s at 98 °C, 20 s at
67 °C, 3 min at 72 °C); and 5min at 72 °C. The PCR pro-
ducts were double-purified with 0.6× AMPure XP beads
(Beckman Coulter, USA) according to the manufacturer’s
instructions.
A Nextera XT DNA library preparation kit (Illumina,

USA) was used for transposition and library amplification.
In that process, 0.6 ng of cDNA per sample was used.
Then, the amplified libraries were purified, quantified, and
sequenced on an Illumina NextSeq 500/550 system using
custom procedures: read 1 was 20 bp (1–6 bases of cell
barcode and 7–13 bases of UMI); read 2 was 50 bp to a
paired end.

Drug screening experiment
K562 human myelogenous leukemia cells were dis-

pensed into a six-well plate (TPP, Switzerland) at 30%
confluency and treated with 1 μM imatinib, rapamycin, or
vinorelbine. A control sample was treated with 1 μM
dimethyl sulfoxide (DMSO). After 48 h, the drug-treated
cells and the control sample were analyzed by MAPS-seq.

Single-cell transcriptome data processing
Demultiplexing, trimming, alignment, and annotation

were performed according to the modified Drop-seq
pipeline (http://mccarrollab.com/dropseq)13. Briefly,
reads in the standard Drop-seq pipeline were modified by
tagging according to the 6-bp cell-specific barcode

sequence and the 7-bp UMI found in the 20-bp sequence
from the 3′ end of “Read 1”. Then, “Read 2”, the paired
end, was aligned with the hg19 (drug screening experi-
ment) or hg19-mm10 (the other experiment) con-
catenated reference sequence, depending on the
experiments, and collapsed onto 6-bp cell barcodes that
corresponded to individual cells. A Hamming distance of
1 was used to collapse UMIs within each transcript and to
collapse cell-specific barcodes within each cell. A digital
expression matrix was obtained by collapsing the filtered
and mapped reads for each gene by the UMI sequence
within each cell barcode20.

Analysis of drug screening data
After obtaining a digital expression matrix for the

single-cell drug screening experiment, the following ana-
lysis was performed using the R package Seurat21. The
data for each cell were quality controlled based on the
mitochondrial read ratio and the number of genes. The
mitochondrial read ratio is the ratio of mitochondrial
reads to the total reads in each cell. Cells were kept if the
number of genes exceeded 500 (the upper boundary was
6000–10,000 depending on the experiment) and if the
mitochondrial read ratio was below 0.05. Principal com-
ponent analysis (PCA) was performed using a variable
gene, and t-distributed stochastic neighbor embedding (t-
SNE)22 was performed to visualize the clusters.
After performing PCA and t-SNE using principal

components from 1 to 4, we used Seurat’s FindCluster
function21 to identify six clusters with a resolution of 1.5.
For generation of a hierarchical cluster heatmap, the p
value of a Wilcoxon rank-sum test was adjusted to 0.05,
and the expression for each drug was confirmed. A total
of 262 genes were identified by the expression of the three
drugs (Supplementary Table 3). To determine the cell
cycle phase of each cell23, we assigned cell cycle phase
scores using cell cycle markers and classified each cell as
G2/M, S, or G1 phase.
Before comparing our data set with the Drop-seq data

set, we removed the batch effect that can arise between
data produced by two different methods using the
removeBatchEffect function in the R package edgeR24.
The average expression level for each drug in each cell
was calculated from the datasets created by each method.
The expression level of each drug was calculated as
log2[counts per million (CPM)+ 1].

Comparison of data trends between MAPS-seq and Drop-
seq
We downloaded Drop-seq single-cell RNA sequencing

data from NCBI GEO (accession GSE63473) to use as a
human and mouse mixed species data set for comparison
to our mixed species MAPS-seq data. To compare single-
cell gene and transcript numbers between the Drop-seq
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data and the MAPS-seq data, we selected three repre-
sentative cells (one human, one mouse, and one uni-
dentified). We then compared the numbers of genes,
transcripts, and read counts and the ratio of transcripts to
read counts among the cells having at least 5000 tran-
scripts from each data set.

Results
Overview of MAPS-seq
MAPS-seq consists of the following steps (Fig. 1): (i)

Cells were distributed to a 96-well plate, one cell per well,
using FACS. The cells were lysed by predispensed cell
lysis buffer in each well. (ii) The BCO-conjugated beads
were transferred to wells containing lysed cells. Each well
(and thus each cell) received beads conjugated with BCOs
containing a different cell-specific barcode. The BCOs
then captured the mRNAs in each well, labeling them
with a cell-specific barcode and UMI. This labeling
assigned each transcript a unique barcode and UMI
combination, making it possible to pool all the wells into a
single tube. (iii) All BCO-conjugated streptavidin beads
from one 96-well plate were pooled. This pooling is much
more efficient than previous microwell-based methods
because it reduces the number of samples handled in later
steps from 96 to 1 (ref. 11). Reverse transcription (RT) was
used to synthesize first-strand cDNA from each mRNA
and extend its 3′ end with a complementary sequence of
TSO. To efficiently amplify cDNA, we chose PCR over
in vitro transcription (IVT). Although both methods are
commonly used for RNA amplification, in a previous
study comparing those two methods, IVT produced a
relatively small amount of product, whereas PCR showed
greater reproducibility among replicates25. Therefore, the
PCR method is a better option when working with small
starting amounts of RNA. In addition, a magnet was used
to fix the beads, facilitating the washing process to remove
unwanted residual reagents remaining after RT. (iv) The
template-switching reaction proceeds to PCR. Only one
primer is required; the single primer is complementary to
the TSO sequence introduced at the 3′ end of cDNA and
to the matching BCO sequence introduced at the 5′ end of
the cDNA during RT17,18. Although we started with small
amounts of mRNA, amplification by PCR produced suf-
ficient cDNA for sequencing. (v) After PCR amplification,
the cDNA libraries were subjected to transposition with
transposon 5 (Tn5) transposase, which cleaves cDNA and
adds specific sequences, making it easy to create NGS
libraries. A final PCR amplification was then performed to
prepare for massively parallel sequencing. (vi) Amplicons
were sequenced by NGS, and the 3′ end sequences of the
mRNAs were produced. These 3′ end sequences were
transformed into a digital gene expression (DGE) matrix,
which contains all cell-specific gene expression numbers.
Further analysis was then performed using this matrix.

Validation of MAPS-seq
To assess the performance of MAPS-seq, we tested the

method with 96 HEK293T cells and 96 NIH/3T3 cells. To
determine whether the cells were properly inserted into
each well by FACS and captured by BCOs, we added 32
negative control wells where cells were not added. After
sequencing of the library, we obtained a mean of 6.0 × 104

reads per barcode for the 192 cells, excluding the negative
controls. We removed cells with low or abnormally high
numbers of transcripts so that the number of transcripts
per cell was between 5 × 103 and 6 × 104. This process left
180 of 192 cells. Ninety-five of the 96 HEK293T cells and
84 of the 96 NIH/3T3 cells were clearly separated from
their designated species (Fig. 2a). Among these cells, 162
cells had a human or mouse specificity over 0.95 (Fig. 2b).
The human specificity was determined as the ratio of the
number of human transcripts to the total number of
transcripts. The mouse specificity was obtained in the
same way. If the human specificity was greater than 0.9,
the cells were identified as human cells. Conversely, if the
mouse specificity was greater than 0.9, the cells were
identified as mouse cells. Cells that did not meet these
criteria were labeled unidentified. On average, per cell, the
cells identified as a single species contained 6.3 × 103

genes and 2.5 × 104 transcripts, the negative controls
contained 8.9 × 102 genes and 1.1 × 103 transcripts, and
the unidentified cells contained 2.2 × 103 genes and 7.5 ×
103 transcripts (Fig. 2c, d). One of the unidentified cells
had an abnormally high number of transcripts, which we
assumed to be the result of that cell actually being a
heterogeneous doublet. Except for the presumed doublet,
the unidentified cells contained 9.6 × 102 genes and 1.3 ×
103 transcripts per cell on average, which were similar to
those of the negative controls. We introduced a negative
control to examine the possibility of false outcomes due to
ambient RNA produced by transient DNA:RNA dis-
sociation during the pooling process. As a result, we
detected a small amount of ambient RNA, which was
approximately 4.86% of the mean number of transcripts
per cell.
To compare the MAPS-seq data with data produced by

another single-cell RNA sequencing method, we used
Drop-seq data from human and mouse cells. The pattern
of transcript numbers for all the genes from selected
representative human, mouse, and unidentified cells was
similar between the two sequencing methods (Supple-
mentary Fig. 2a–d). Additionally, the gene, transcript, and
read count numbers from selected representative human,
mouse, and unidentified cells were similar between the
two sequencing methods. The read count numbers,
however, were approximately three times higher in the
Drop-seq data than in the MAPS-seq data, but the ratio of
read counts to transcripts per cell was 0.15 for Drop-seq
and 0.40 for MAPS-seq. MAPS-seq could detect more
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Fig. 1 Principle and workflow of MAPS-seq. a Cells were dispensed into 96-well plates using a FACS sorter. b The binding reaction of streptavidin
beads with biotin forms strong noncovalent bonds. Streptavidin beads conjugated with biotinylated cell-specific barcode oligos (BCOs) are added to
each well. c Streptavidin beads conjugated with BCOs capture the poly-A sequence of mRNA transcripts. d All wells are pooled into a single tube. e
Reverse transcription, cDNA amplification, and NGS library preparation were performed as in the standard Drop-seq method. f Sequencing was
conducted using an Illumina 75 bp NGS system. “Read 1” contains information about the cell barcode and UMI; “Read 2” contains information about
the transcript. g Data are demultiplexed and assigned to the originating cell. After postprocessing, these data can be expressed in various ways.
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Fig. 2 Species-mixing experiment using MAPS-seq. a The species-mixing experiment used 96 HEK293T and 96 NIH/3T3 cells, and the species of
each cell was identified using its specificity. b Plot of the specificity values for each cell (180 cells), determined after quality control for the transcripts.
The x-axis represents each cell, and the y-axis represents specificity. c, d Boxplots showing the total number of transcripts (c) and genes (d) found in
the species-mixing experiment. Single species: human and mouse samples, identified by the specificity of each cell. Unidentified: mixed species
identified by the specificity of each cell. Negative: control samples obtained by inserting empty beads. Each y-axis value is transformed to log10.
Significance (****) is indicated when p ≤ 0.0001. e t-SNE visualization of single cells identified by performing unsupervised clustering analysis using
digital gene expression (DGE) data before sample filtering. Cluster names were specified by random numbers. f Overlay of the original information
about the sample in e. g t-SNE visualization performed after removing the low-quality sample.

Park et al. Experimental & Molecular Medicine (2020) 52:804–814 809

Official journal of the Korean Society for Biochemistry and Molecular Biology



genes than Drop-seq because MAPS-seq had a relatively
smaller amplification bias, so there were not many over-
lapping UMIs (Supplementary Fig. 2e–i).
Next, we performed PCA and t-SNE on the MAPS-seq

transcriptome data from all 224 wells. By performing
unbiased clustering, we could observe three clusters (Fig. 2e).
When we labeled each cell with its original information, it
was confirmed that the three clusters represented human,
mouse, and negative control cells (Fig. 2f). Most of the
cells that were removed by transcript-number filtering
were negative control cells (Fig. 2g). Twelve of the cells
removed with the negative controls were identified as
mixed. We assumed that these wells did not actually
contain any cells because of FACS errors and became
contaminated by minute amounts of mRNA during the
pooled RT step, which was bound by the BCOs after the
pooling step, resulting in false-positive results. Our results
demonstrated that it is possible to eliminate false results
due to technical errors by using transcript-number filters.
Overall, we demonstrated that MAPS-seq performed

well, leading to clear separation by species, despite the
pooling of the cells. We also showed that data resulting
from FACS errors can be easily removed with gene
number filtering, thus preserving the overall data quality.

Optimization of MAPS-seq
To enhance the performance of MAPS-seq, we sought

to optimize the method with various experimental con-
ditions. We first sought to optimize the initial amount of
streptavidin beads dispensed to each cell to maximize the
acquisition of cell information while reducing bead waste.
We tested four different amounts of streptavidin beads (5,
10, 20, and 25 μg per cell) and used a total of 16 cells (8
HEK293T cells and 8 NIH/3T3 cells) for each condition.
We obtained a mean of 5.8 × 104 reads per cell and
observed that when 10, 20, and 25 μg of streptavidin beads
were used per cell, the mean number of transcripts per
cell was similar (2.3 × 104, 2.7 × 104, and 2.4 × 104,
respectively) (Supplementary Fig. 3a). However, the
number of transcripts and genes severely decreased when
5 μg of streptavidin beads was used per cell (mean 9.1 ×
103 transcripts and 3.2 × 103 genes) (Supplementary Fig. 3a).
The Wilcoxon rank-sum test revealed no significant dif-
ferences between each pair of conditions among the three
higher amounts (10, 20, and 25 μg), but there was a sig-
nificant difference in the number of transcripts generated
between the 5 μg condition and the other conditions
(p value < 0.0001). This result confirmed that as the
amount of streptavidin bead increases, the amount of data
obtained increases, but there is no improvement for
amounts of beads greater than 10 μg.
We also investigated the species specificity of each

condition. With 5 µg of streptavidin beads per cell, two
severely deviated cells were observed (Supplementary

Fig. 3b). In contrast, when we used more than 10 µg per
cell, the specificity values were uniform. As a result, at
least 10 μg of streptavidin beads is required to effectively
capture the mRNAs. When examining data from samples
in which 20 or 25 μg of streptavidin beads was used, we
did not observe any significant enhancement of the data
quality compared to that of the 10 μg data. Consequently,
we used 10 μg of streptavidin beads per cell for the most
efficient use of the beads.
Next, we investigated the possibility that a relatively

excessive amount of streptavidin beads in one PCR could
hamper the PCR amplification of reverse-transcribed
templates. To determine the optimal amounts of beads,
we experimented with the same amount of template and
different amounts of beads in each 50 μL PCR mixture. To
confirm the amplification in the absence of beads, we
amplified a control sample without beads. After PCR
amplification, amplicons of each condition were quantified
individually. We then compared the gene and transcript
information obtained from each condition. As expected, the
amplicon concentration was high (>50 ng/μL) when no
beads were present during the PCR. As the amount of
streptavidin beads gradually increased, the amplicon con-
centration decreased because the beads inhibited the PCR
reaction. When the streptavidin bead amount was 200 µg
per PCR, the amplicon concentration was 2.5 ng/μL (Sup-
plementary Table 4). However, when comparing the cor-
relations of gene expression between the condition without
the beads and the conditions with the beads, the Pearson
correlation coefficient was greater than 0.95 for all condi-
tions (Supplementary Fig. 3c), showing that there was no
significant difference in the data among the different con-
ditions. In addition, when beads were present, we observed
2.3 × 104 genes and 9.6 × 105 transcripts on average,
regardless of how many beads were used (Supplementary
Fig. 3d). In summary, although the PCR amplification
process was slightly inhibited by the streptavidin beads, the
amount of streptavidin beads per PCR mixture had little
impact on the outcome of our method within the
investigated range.

Analysis of drug-treated cells using MAPS-seq
The transcriptional response of a cell to a drug can be

powerful evidence to uncover the action of the drug26. To
support the wide applicability of our method, we sought
to demonstrate that MAPS-seq can be applied to single-
cell drug screening analysis. In previous studies, we
identified drugs that cause pronounced changes in gene
expression and used them to determine whether MAPS-
seq can detect those transcriptional changes27. In the
present study, we treated K562 leukemia cells (which
contain a BCR-ABL fusion gene) with one of four treat-
ments: imatinib, an antileukemia drug that targets BCR-
ABL; rapamycin, an antitumor drug that does not
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Fig. 3 Gene expression analysis in drug treatment experiments. a t-SNE visualization of single cells identified by performing unsupervised
clustering analysis using DGE data in drug treatment experiments via MAPS-seq (left). Clusters were numbered randomly. The original information
about the sample is overlaid on the cluster analysis in the right panel. b Hierarchically clustered heatmap of gene expression profiles for drug
treatment experiments in each K562 cell. Each column represents the expression value from the drug, and each row represents a gene. The heatmap
is constructed from differentially expressed genes. c Volcano plot displaying differentially expressed genes of the imatinib-treated cells compared
with the DMSO-treated controls. Genes with a p value <0.05 and an absolute value of log2 fold change (FC) > 0.25 are considered significant.
Upregulated genes are green, downregulated genes are red, and noncritical genes are gray. The ten genes with the lowest p values are labeled. The
cutoff for upregulation was log2 FC > 0.25 and the false discovery rate (FDR) was <0.05. The cutoff for downregulation was log2 FC <−0.25 and the
FDR was <0.05. d Gene expression correlation for imatinib between MAPS-seq and Drop-seq.
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specifically target BCR-ABL; vinorelbine, another anti-
tumor drug that does not target BCR-ABL; or DMSO. We
performed MAPS-seq with 48 cells treated with each drug
and 144 DMSO-treated cells. After the data were filtered
based on gene number and the mitochondrial read ratio,
data remained for 237 cells, which represented 82% of the
sorted cells (Supplementary Fig. 4a). We performed PCA
and t-SNE analysis on the data for these 237 cells. The
cells that were treated with imatinib or vinorelbine
formed separate clusters, while the rapamycin-treated and
DMSO-treated cells were commingled in one cluster
(Fig. 3a). In addition, the G1 phase was dominant in a
large proportion of the imatinib-treated cells (Supple-
mentary Fig. 4a), which is concordant with a previous
study28. Imatinib inhibits cell proliferation and induces
cell cycle arrest in the G0/G1 phase through inactivation
of extracellular signal-regulating kinases and blocking of
the AKT signaling pathway. Differentially expressed genes
were observed in each pair of drug conditions (Fig. 3b).
We next investigated the differentially expressed genes

for each drug group compared with the DMSO group. We
identified significant genes using the p value of the Wil-
coxon rank-sum test: a p value less than 0.05 indicated
that a gene is significant. In the imatinib-treated cells, we
observed that 18 genes were upregulated, and 92 genes
were downregulated [false discovery rate (FDR) < 10−0.05].
The most significantly differentially expressed genes were
related to hemoglobin, such as HBA, HBG, and HBZ
(upregulated) (Fig. 3c). The cells treated with rapamycin,
an inhibitor of mTOR kinase, exhibited increased
expression of RPL and RPS, which encode ribosomal
proteins, and suppressed expression of DDIT4, which is
involved in the mTOR signaling pathway (FDR < 10−0.05;
Supplementary Fig. 4b)29. Vinorelbine acts as an anti-
tumor drug by inhibiting mitosis through interaction with
tubulin30. Consistent with its mechanism, vinorelbine was
associated with the downregulation of tubulin-related
genes in K562 cells, such as TUBA, TUBB, and BEX4
(FDR < 10−0.05, Supplementary Fig. 4b). These results
confirmed that the MAPS-seq transcriptome profiling
data for each drug were consistent with previously
reported drug mechanisms.
We also evaluated the reproducibility of our results by

comparing the MAPS-seq data for single-cell drug
screening analysis to the K562 drug screening data ana-
lyzed in our previous study using Drop-seq27. A previous
study used Drop-seq to analyze the K562 cells treated
with multiple drugs, including imatinib, rapamycin, and
vinorelbine. When comparing the gene expression data
from the two methods, we preferentially eliminated the
batch effect in the data (Supplementary Fig. 4c). We
observed a strong correlation between the two methods
(coefficient of determination R2 > 0.9 for all three drug
conditions; Fig. 3d, Supplementary Fig. 4d). When we

compared the data among the different drug conditions,
we found that the gene expression between rapamycin
and vinorelbine had a stronger correlation than that
between imatinib and the other drugs, and that pattern
was the same in the MAPS-seq data and the Drop-seq
data (Supplementary Fig. 4e). These results indicate that
MAPS-seq produces data comparable to those of other
scRNA-seq methods.
Consequently, we demonstrated that with our method,

transcriptional changes in drug-treated cells can be ana-
lyzed at single-cell resolution, and marker genes that indi-
cate the response of cells to each drug can be identified.

Discussion
Investigation of transcriptomes at single-cell resolution

provides precise insight into cellular functions and
thereby furthers the understanding of larger units such as
tissues and organs. In this study, the samples were pooled
prior to the RT step, thus reducing the reagents and labor
normally required for microwell-based approaches from
96 wells to a single tube. In addition, the use of BCOs and
streptavidin-coated magnetic beads enabled most steps
(such as RT, cDNA amplification, and tagmentation) to be
processed with less labor. The beads were efficiently
cleaned between each step, and the cost of MAPS-seq per
cell was less than $1 (Supplementary Table 5).
Several other aspects of the MAPS-seq method make it

an appealing choice for single-cell RNA sequencing. First,
cDNA preparation by the PCR-based template-switching
method is experimentally easier than that of the IVT
method31. Second, MAPS-seq selectively sequences the 3′
end of the transcripts to obtain transcript data more cost-
effectively than whole-transcriptome sequencing32.
Finally, transposition with the Tn5 transposase in MAPS-
seq makes that method more convenient than other
methods because transposition proceeds in one step
rather than by the two-step chemical fragmentation
required in other methods33,34.
To validate the performance of MAPS-seq, we mixed

two different cell lines and confirmed that little mRNA
exchange between cells occurred when the cells were
pooled. Based on the negative controls, we presume that
the small amount of mRNA exchange was caused by
uncaptured BCOs due to FACS error before the pooling
step. We then demonstrated that MAPS-seq can be used
to produce multiplexed cell drug response data by using
the method in a drug response experiment. Notably, we
retained data for 82% of the initial sorted cells after gene
number filtering; such a high retention rate is difficult to
achieve in a multiplexed drug screening experiment when
conventional high-throughput methods are used. How-
ever, MAPS-seq can be used with high-quality cells
because FACS selects and sorts live cells, excluding debris,
from a population of drug-treated cells. Finally, we
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observed differentially expressed genes among the K562
cells treated with one of three drugs or DMSO. When
comparing data from the imatinib-treated cells to the
control data, we could observe the response of K562 to
imatinib by analyzing the change in the expression level of
related genes. We identified marker genes that exhibited
transcriptional changes consistent with the mechanism of
each drug, thus demonstrating that the MAPS-seq
method is effective. Moreover, by revealing transcrip-
tional changes among samples from the same cell line,
these results showed the fine resolution of our method.
We believe that MAPS-seq is optimal for biological

research on samples containing small numbers of cells.
For example, very small numbers of circulating tumor
cells (CTCs) are present in blood samples from patients
with cancer. MAPS-seq should be able to isolate single
CTCs from blood samples using FACS. For another
example, taste buds with taste receptors are composed of
50–100 cells35. Single-cell studies of taste receptors are
limited by the small numbers of cells in the taste bud.
MAPS-seq will provide an opportunity to perform single-
cell studies on tissues in which the numbers of cells of
interest are limited, such as taste buds. Furthermore,
MAPS-seq will likely be more widely applicable once
other conditions are tested. For example, we expect that
methanol-fixed cells and cell nuclei will be compatible
with the method. Consequently, the potential of MAPS-
seq is broader than the situations shown in this work. As
an accessible, low-cost, and efficient method, MAPS-seq
will be a useful addition to the techniques that have
emerged in the era of single-cell study.
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