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been desired, since bacteria cause many infectious diseases such
as dental caries, periodontal disease, and endodontic infections.
Singlet oxygen (1O2) is attractive, because it is toxic to prokaryotic
cells, but not to eukaryotic cells. We selected irradiation of
titanium dioxide (TiO2) as a source of 1O2, because it has been
used in sunscreens and cosmetic products without complications.
In order to establish the optimal oral photodynamic therapy
conditions, we measured the rate of 1O2 formation from the
irradiated anatase or rutile forms of TiO2 using 365 or 405 nm
lamps. The rate of 1O2 formation decreased in the following order:
anatase, 365 nm > rutile, 405 nm > rutile, 365 nm > anatase, 405 nm.
Therefore, we concluded that irradiation of the rutile form of TiO2

by a 405 nm lamp is the most favorable photodynamic therapy
condition, because visible light is more desirable than UV light
from the viewpoint of patient safety. We also confirmed that
there was no direct HO• formation from the irradiated TiO2.
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IntroductionOral bacteria cause many infectious diseases such as dental
caries, periodontal disease, and endodontic infections.(1,2) It

has also been demonstrated that oral bacteria are involved in
various systemic diseases such as endocardial inflammation,
aspiration pneumonitis, and diabetes,(3–5) and controlling these
bacteria is a major challenge in dental therapy. Conventional
chemical disinfection causes problems such as tissue damage and
accidental injury due to the leakage of chemicals.(6,7) A material
that causes no damage to the body and possesses selective bacteri-
cidal properties is highly desired.

Exogenous singlet oxygen (1O2) is toxic to prokaryotic cells, but
is almost nontoxic to eukaryotic cells.(8,9) Nakano et al.(8) reported
that exogenous 1O2 induces damage to the electron transport
systems located on the surface membrane of prokaryotic cells,
but in eukaryotic cells, the electron transport systems is stored in
the inner mitochondria membrane, which is inaccessible to the
short-lived 1O2.(9)

Recently, oral photodynamic therapy (PDT) utilizing 1O2 has
gained significant attention. 1O2 is generated by irradiating
photosensitizers such as methylene blue. Although this form of
PDT is effective to eliminate oral bacteria,(2,10,11) methylene blue
has been reported to be carcinogenic.(12) On the other hand, titanium
dioxide (TiO2) also produces 1O2 following irradiation,(13–17) but it
has been used in sunscreen for humans without complications.(13,15)

Therefore, we evaluated the potential of using TiO2 as a new
photosensitizer for oral PDT.

TiO2 has two crystal structures, the anatase and rutile. In order
to establish the optimal PDT condition, we measured the rate of
1O2 formation from irradiated anatase or rutile forms. We also
compared the difference resulting from using the irradiation
wavelengths between 365 and 405 nm.

Materials and Methods

Materials and light source. TiO2 (anatase and rutile, particle
size of 5 μm), 2,2,6,6-tetramethyl-4-piperidone (4-oxo-TMP)
hydrochloride, and 2,6-di-tert-butyl-4-methylphenol (butylated
hydroxytoluene, BHT) were purchased from Wako Pure Chem.
Ind. Ltd. (Osaka, Japan). 5-(2,2-Dimethyl-1,3-propoxycyclophos-
phoryl)-5-methyl-1-pyroline-N-oxide (CYPMPO) was purchased
from Radical Research (Tokyo, Japan). Superoxide dismutase
(SOD) and 2,2,6,6-tetramethy-4-piperidone-N-oxyl (4-oxo-
TEMPO) were purchased from Sigma Aldrich (St. Louis, MO).
All other reagents were of analytical grade. The two LED light
sources, λmax = 365 nm (2.18 mw/cm2) and 405 nm (8.69 mw/
cm2), were obtained from J. Morita Mfg. Corp. (Kyoto, Japan).

ESR measurement. A suspension of TiO2 (0.4–4 mg/ml) in
phosphate buffer was mixed with 4-oxo-TMP or CYPMPO; the
concentrations of 4-oxo-TMP and CYPMPO were 40 and
100 mM, respectively. A solution of SOD (10 U/ml) was added if
necessary. All solutions were freshly prepared, mixed, and
immediately transferred into a flat quartz ESR cell, and measured
using an ESR spectrometer (JES JFA-200, JEOL, Tokyo, Japan).
The ESR measurements were conducted under the following
conditions: magnetic field, 330 ± 5 mT; modulation width,
0.05 mT; time constant, 0.03 s; microwave frequency, 9.420 GHz;
microwave power, 4 mW; sweep width, 5 mT; sweep time, 1 min;
and amplitude, 500. Signal intensities were normalized to a MnO
marker, and the concentrations of stable radical products were
determined by using an external standard based on the signal
height.(18)

Photooxidation of uric acid and BHT. The photooxidation
of 100 μM uric acid or BHT was conducted in the presence of
TiO2 (4.0 mg/ml) at room temperature under aerobic condi-
tions.(13,15) Uric acid was quantified by HPLC separation on an
aminopropylsilyl column (5 μm, 4.6 × 250 mm, Supelco, Sigma-
Aldrich, Tokyo, Japan) using methanol/40 mM aqueous monobasic
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sodium phosphate (90/10) as the mobile phase (1 ml/min) with
detection at 291 nm. BHT was measured similarly by UV detec-
tion at 277 nm after separation on an octadecylsilyl column (5 μm,
4.6 × 250 mm, Supelco, Sigma-Aldrich, Tokyo, Japan) using
methanol/water (95/5) as the mobile phase (1 ml/min).

Results and Discussion

In order to establish the optimal PDT condition, we measured
the rate of 1O2 formation from the irradiated anatase or rutile forms
of TiO2 using 365 or 405 nm LED lamps. The production of 1O2

was evaluated by the 1O2 specific oxidation of 4-oxo-TMP to 4-
oxo-TEMPO, which is detectable by ESR (eq. 1). Fig. 1 illustrates
the time-dependent increase in ESR spectra obtained upon the
irradiation of TiO2 with 4-oxo-TMP. The ESR signal displayed a
1:1:1 triplet signal characteristic of 4-oxo-TEMPO having a
hyperfine splitting constant (hfsc, aN = 1.608 mT).(16) Upon
irradiation of the anatase form of TiO2, the signal intensity was
stronger when the 365 nm lamp was used instead of the 405 nm
lamp (Fig. 1). However, the order was the opposite for the irradia-
tion of the rutile form of TiO2 (Fig. 1). These results were repro-
ducible, as shown in Fig. 2.

(1)

Since uric acid is reactive to 1O2, we compared the rate of uric
acid consumption following the irradiation of TiO2 (anatase or
rutile) with the 365 or 405 nm sources (Fig. 3). The rate of uric
acid consumption decreased in the order of the following combi-
nation: anatase, 365 nm > rutile, 405 nm > rutile, 365 nm > anatase,
405 nm. This order was identical to the order observed in the 1O2

specific oxidation of 4-oxo-TMP (Fig. 2). It is noteworthy that the
band gap energies of the anatase and rutile forms of TiO2 are 3.2
and 3.0 eV, and therefore, photo-excitation should occur at wave-
lengths below 387 and 413 nm, respectively.(19,20) These values are
consistent with the rate of 1O2 formation observed in this study.

Based on the above results, we concluded that the irradiation of
the rutile form of TiO2 using a 405 nm lamp is the most favorable
PDT condition, because visible light is more desirable than UV
light from the viewpoint of patient safety. We are planning to
apply these PDT conditions for oral bacterial disinfection.

To establish a safe method for PDT utilizing 1O2, we need to
confirm that there were no formation of hydroxyl radical (HO•)
following the irradiation. We used CYPMPO as an ESR spin-
trapping probe, since it can distinguish between the formation of
HO• and superoxide (O2•−).(21–23) The observed ESR spectrum
following the irradiation of TiO2 showed CYPMPO-OH adducts
in all groups (Fig. 4).(21,24) However, this signal disappeared when
SOD was added to the reaction. This implies that the CYPMPO-
OH adduct was derived from O2•−, and OH• was not generated
directly from the irradiated TiO2.

To obtain more direct evidence of confirming that there was no
formation of HO• in this system, we photooxidized BHT in an
aqueous methanol solution in the presence of TiO2.(13,15) If HO• is

Fig. 1. The EPR spectra for the production of 4-oxo-TEMPO following irradiation of the 1O2-specific reagent, 4-oxo-TMP (40 mM) with TiO2 (4.0 mg/ml)
for 5 min.

Fig. 2. The formation of 4-oxo-TEMPO upon irradiation of 4-oxo-TMP (40 mM) with TiO2 (4.0 mg/ml). The data points are the mean values (n = 3)
with standard deviation bars.

(1)
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formed, it would abstract the hydrogen atom from the methanol to
produce hydroxymethyl radicals (•CH2OH) and methoxyl radicals
(CH3O•) (eqs. 2 and 3). Methoxyl radicals give formaldehyde
(HCHO) and hydrogen radicals (H•) by β-scission (eq. 4). The
addition of oxygen to H• and •CH2OH produces peroxyl radicals
(HOO• and HOCH2OO•), respectively (eqs. 5 and 6). These per-
oxyl radicals should be trapped by BHT, leading to an apparent
decrease in the BHT concentration. However, BHT remained
unchanged in our study (Fig. 5), thus suggesting that HO• was not
formed upon the irradiation of TiO2 (rutile). This was also the case
for the irradiation of the anatase with the 365 and 405 nm lamps
(data not shown).

HO• + CH3OH → H2O + •CH2OH (2)

HO• + CH3OH → H2O + CH3O• (3)

CH3O• → HCHO + H• (4)

H• + O2 → HOO• (5)

•CH2OH + O2 → HOCH2OO• (6)

In conclusion, we measured the rate of 1O2 formation by two
methods. The identical results suggest that irradiation of the rutile
form of TiO2 using the 405 nm lamp is the most favorable PDT
condition for bacterial killing. We also confirmed that there was
no direct HO• formation from the irradiated TiO2 (rutile). These
data support the application of this PDT method for oral bacterial
disinfection.

Fig. 3. The photooxidation of uric acid (100 mM) in the presence of TiO2 (4.0 mg/ml). The values are the means of two independent and reproducible
analyses.

Fig. 4. The formation of OH adducts and their disappearance following the addition of 10 U/ml SOD after the photooxidation of 100 mM CYPMPO
in the presence of 0.4 mg/ml TiO2.
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Abbreviations

BHT 2,6-di-tert-butyl-4-methylphenol
•CH2OH hydroxymethyl radicals
CH3O• methoxyl radicals
CYPMPO 5-(2,2-dimethyl-1,3-propoxycyclophosphoryl)-

5-methyl-1-pyrroline-N-oxide
H• hydrogen radicals
HO• hydroxyl radicals
1O2 singlet oxygen
O2•− superoxide
4-oxo-TEMPO 2,2,6,6-tetramethy-4-piperidone-N-oxyl
4-oxo-TMP 2,2,6,6-tetramethyl-4-piperidone
PDT photodynamic therapy
SOD superoxide dismutase
TiO2 titanium dioxide
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