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Abstract

Stroke is a frequently-occurring disease threatening the human nervous system. As a serious debilitation affecting a large-
scale, hierarchical, and vastly complex electrochemical system, stroke remains relatively misunderstood. Rehabilitation
mechanisms and means have suffered from this lack of systematic understanding. Here we propose an evolution model to
simulate the dynamic actual evolvement process of functional brain networks computationally in an effort to address
current shortcomings in the state of the field. According to simulation results, we conclude that the brain networks of
patients following acute stroke were characterized by lower small worldness and lower quantity of long-distance
connections compared with the healthy condition. Moreover, distance penalization may be used to describe the general
mechanism of brain network evolution in the acute period after stroke.
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Introduction

Stroke is a common, debilitating disease threatening the human

nervous system. Among 731,000 incidents of stroke and 4 million

stroke survivors recorded in the United States annually [1], 25% of

patients return to a level of daily physical function [2]. Indeed, the

process and mechanism of nervous system rehabilitation after

stroke are still not very clear. Addressing this issue and its

complications has direct benefits for the state of patient care and

recovery.

Neuroimaging technology has been widely used to investigate

changes in nervous system function after brain injury. Such studies

indicate that the functions of the nervous system change greatly in

both the acute period and chronic rehabilitation process after

stroke [3–5], and also show that after a subcortical stroke brain

activity changes in most of related cortical regions rather than the

perilesional area [6,7].

Recently, complex network theory has been applied to

neuroscience research and has produced meaningful results [8].

Graph theory is a natural framework for the mathematical

representation of complex networks. According to this theory, the

brain can be described as a graph consisting both of nodes

representing regions or voxels as well as connections representing

structural or functional connectivity between nodes [9]. Mean-

while, other studies have demonstrated that brain activation

changes are closely related to brain functional connectivity

resulting from changes in neural pathways between cortical

regions of the brain after neural injury [10,11]. Carter et al.

suggested that cortical activation after stroke could be assessed

with greater accuracy at the level of an entire brain network rather

than just through qualitative analysis limited to the site of

structural damage [12]. Furthermore, recent studies [13–15]

indicate that the function of any brain regions must be resolved in

conjunction with other brain regions (the ‘network’) with which it

interacts both while at rest and during active behavior. Some of

these implications were forecasted many years ago by early

neurologists such as Jackson, Andral, Prince, von Monakoff, and

Head [16], who proposed that neurological deficits do not simply

reflect the primary effect of a lesion but also the secondary effects

of the lesion on other structures. Using resting fMRI data from 3

week-old to 2 year-old neonates, Gao et al. found that the brain

possessed small-world topology features immediately after birth,

characterized by a remarkable improvement in whole brain wiring

efficiency in 1 year olds gaining stability in 2 years olds [17].

Although graph theory has attracted considerable attention in

brain network research [18,19], it has seldom been applied to the

study of changes in brain connectivity following stroke [20]. In one

study, a motor execution network was found to gradually shift

towards a random mode during the recovery process after stroke,

which suggested a less optimal reorganization of functional

rehabilitation of affected limbs [21]. This study compares the

topological profiles of patients and controls, simulating the

dynamic evolution process of brain network after stroke.

Network evolution, as a new approach developed in complex

network theory, has previously been shown to be an effective

method for simulating the dynamic changing process of complex

networks. Gross used network evolution principles to explore the

formation process of networks based on the network formation

mechanism [22]. A large number of studies in network evolution

of real systems have been published [23–27], and the concept of

network evolution introduced by De Vico Fallani [28] shows that
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the brain network approaches an optimal structure [29] and that

the coupling strength is inversely proportional to the distance

between nodes [30]. Vertes et al. used brain anatomy distance and

node degree as parameters to calculate the connection probability

between nodes in brain networks, and then established a

hemisphere-brain network from isolated nodes through simulation

from scratch, showing that the evolved brain network is similar to

the real human brain network at a macro level [31]. While current

brain network evolution studies consider connection probability, it

has been demonstrated that couplings or connections between

regions in brain or nodes in brain network are not fixed, but

change dynamically as a result of aging or disease [32,33] ie., they

possess a high disconnection probability. Our study attempts to

consider the occurrence of disconnection besides connection and

simultaneously emphasize the impact of haphazard factors during

the evolution process of brain networks.

In this paper, we establish a computational experiment platform

utilizing brain network evolution to simulate the dynamic actual

evolvement process of functional brain networks after stroke.

Firstly, using task-based fMRI data, the functional brain networks

of controls and patients following acute stroke were characterized

by graph theory respectively. By comparing the topological

parameters of the brain network between the two groups, common

features of topological alteration after stroke were extracted, and

the evolution rules and strategies in accordance with healthy

persons and patients in the acute period were established. The

connection probability and disconnection probability were both

considered in the evolution rules to simulate nodal coupling and

decoupling in brain network evolvement processes after stroke.

Materials and Methods

1. Participant
Five right-handed patients (4 male and 1 female; mean age 52.4

years; range 31–65 years) with stroke were enrolled from the

inpatient services at the Tongji Hospital of Huazhong University

of Science and Technology (Wuhan, P.R.China). Five right-

handed healthy controls (4 male and 1 female; mean age

49.4 years; range 30–62 years) were also recruited. There were

no group-differences in understanding or education background.

The fMRI data of all patients were acquired when they were just

admitted to hospital. All subjects gave their written informed

consent and the study protocol was approved by the Ethics

Committee of Tongji Medical College, Huazhong University of

Science and Technology.

All patients exhibited the following inclusion criteria: 1) first

occurrence of ischemic stroke; 2) study participation within two

weeks after stroke; 3) motor deficiency with acute unilateral loss of

hand strength (Gradeƒ4 with the Medical Research Council

(MRC) scale (0–5, 5=Normal)); 4) regular motor function of the

ipsilateral hand. Exclusion criteria were as follows: 1) language or

cognitive deficits which would impact cooperation in fMRI

examination; 2) significant somatosensory (light touch or propri-

oception) deficits of the stroke-affected hand; 3) mirror move-

ments; and 4) contraindication to magnetic resonance imaging.

The clinical characteristics and the medication of the patients

are summarized in Table 1. All five patients had local areas of

infarction on the left side of brain and had contralateral motor

deficit (Table 1). The illustration of lesion location is shown in red

in Figure 1.

2. Experimental Paradigm
All the subjects were instructed to execute alternating unilateral

finger-to-thumb opposition movements at a frequency of 1 Hz in a

block-design fMRI paradigm. The task occurred in 20-s blocks of

movements alternated with 20-s intervals rest periods. The whole

fMRI procedure lasted for 260 s as shown in Figure 2. During

fMRI procedure, the subjects kept their eyes open and their head

motionless. The motor task was performed by subjects following

visual cues. Prior to scanning, the subjects were instructed and

trained in the task in the same way until they understood the task

and were able to adequately follow visual cues and instructions.

The performance of the motor task was monitored by a doctor in

the inspection room.

3. Data Acquisition
MRI scans were acquired on a 3T GE Signaxs scanner (General

Electric) with a custom-built head coil. A high resolution T1-

weighted SPGR (spoiled grass gradient recalled) inversion

recovery 3D MRI sequence was performed for each subject with

the following parameters (TI = 400 msec; TR=6.5 ms;

TE=2.1 ms; Flip Angle = 15 degrees; FOV=25.6 cm; 132 slices

in coronal plane; 2566256 matrix; 1NEX, Acquired Resolu-

tion= 16161.1 mm).

Blood oxygenation level dependent (BOLD) signal was collected

with a T2-weighted gradient echo spiral in-out pulse sequence [34]

with the following parameters (TR=2,000 ms, TE= 30 ms; Flip

Angle = 90 degrees; 1 Interleave; FOV=24 cm; 64664 matrix). A

total of 32 axial slices (5.0 mm thickness, 0 mm skip) parallel to the

AC-PC line with whole brain coverage were obtained with a

temporal resolution of 2 s. 120 images were obtained from a task

lasting 4 min. Structural and functional scans were acquired in

each scan session.

4. Preprocessing of Functional MRI Data
The functional MRI data set was preprocessed using SPM8.

First, the dicom data set was converted into a *.img/*.hdr

document. Then, slice timing was used to correct for time-domain.

Afterwards, all image volumes were realigned to the mean volume.

Subjects whose head displacement were more than 2 mm in x,y,z

direction or whose head rotation exceeded 1u were excluded (2

patients were excluded under this criteria and are not shown in

Table 1). Using the unified segmentation approach [35], function

images were normalized to the MNI template (voxel 36363 mm).

In order to decrease spatial noise, volumes were smoothed by a 6-

mmfull-width half maximum Gaussian kernel. Finally, datasets

were drifted and filtered with 0.01 Hz–0.08 Hz. Covariates were

removed after preprocessing.

5. Construction of Functional Brain Network
Pearson correlation between BOLD time courses of brain

regions were used to construct functional brain networks. The

effect of covariance was eliminated from the image after

pretreatment by de-noising, and each brain was divided into 90

regions according to the AAL template. Then Pearson correlation

was calculated between BOLD time courses of any pair of regions.

High negative correlation is also regarded as a close relation

between brain regions. The weights in adjacency matrixes were

absolute values of correlation between brain regions. A 90*90

adjacency matrix was acquired, and each unit was assigned a value

from 0 to 1. Bullmore has shown that each region conforms to the

profile of a realistic brain model when the density of functional

brain network varies between 8% and 16% [36,37]. Hence,

strongest links were preserved to construct functional brain

networks with densities ranging from 8% to 16% for subsequent

analysis.

Graph theory is the natural framework for the exact mathe-

matical treatment of complex networks. Thus, the functional brain

Brain Network Evolution
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network was described by a graph in this study. A graph consists of

a set of vertices (or nodes) and a set of edges (or connections)

indicating the presence of some sort of interaction between the

vertices. The adjacency matrix A contains the information about

the connectivity structure of the graph. When a link connects two

nodes i and j, the corresponding entry of the adjacency matrix is

aij~1; otherwise aij~0.

6. Small-World Network
Watts and Strogatz [38] have shown that well-ordered networks

are characterized by a high cluster index C and a short

characteristic path length L. Such near optimal models are

designated as ‘‘small-world’’ networks. When the threshold is

exceedingly high, some nodes may become disconnected from the

graph which poses problems with regards to the computation of C

and L. Latora and Marchiori [39] have proposed the concept of

network efficiency to address this problem. The clustering

coefficient C and characteristic path length L of unweighted

networks conceptually correspond to the local and global efficiency

of weighted networks, respectively. The efficiency of the path

between two nodes is the inverse of the shortest length (disti,j )

between the nodes. In cases where a path does not exist, the length

is considered to be infinite, and the efficiency is zero. The average

of all pair-wise efficiencies is the global efficiency of the graph:

Eglob ~
1

N(N{1)

X

i=j[V

1

disti,j
ð1Þ

Furthermore, the local efficiency for each node can calculated

as the global efficiency of the neighborhood subgraph Gi of the

node. The local efficiencies across all nodes within the network are

further averaged to estimate the network local efficiency Eloc as

follows:

Eloc ~
1

N

X

i[V

Eglob(Gi) ð2Þ

In terms of network efficiency, a small world network is the one

with high Eglob and Eloc (i.e., very efficient both in global and local

information transfer) [40]. So the small worldness (SW) is then

defined [41] as:

SW ~
Eglob

:Eloc

Egrandom
:Elrandom

ð3Þ

Egrandom and Elrandom denote the global efficiency and local

efficiency averaged over surrogate random networks, where each

edge was randomly rewired in a graph.

7. Evolution Model
In order to simulate the dynamic evolvement process of the

brain nervous system in the acute period, an evolution model was

presented as follows:

CPi,j ~ exp ({a:di,j) ð4Þ

Here, CPi,j is used to control the occurrence of connection and

disconnection between the node i and the node j, di,j is the

anatomical distance between the node i and the node j, a is the

penalty parameter of the connection distance.

In this model, the occurrence probability of connection between

nodes is inversely proportional to the anatomical distance between

nodes. Constrastingly, the occurrence probability of disconnection

Figure 1. Illustration of lesion location in red for each patient.
doi:10.1371/journal.pone.0082845.g001

Table 1. Clinical and demographic data.

Patient
number Age Sex

Affected
hand

Barthel
Index

Fugl-Meyer
Assessment of
Motor Function NIHSS Localization of infarct Medication

1 65 M Right 80 69 3 Left thalamus aspirin and atorvastatin

2 46 M Right 60 63 2 Left caudate nucleus aspirin and atorvastatin

3 60 F Right 65 78 1 Left paraventricular corona
radiata

aspirin and atorvastatin

4 31 M Right 75 86 1 Left thalamus and corpus
callosum

aspirin and atorvastatin

5 60 M Right 55 53 3 Left thalamus aspirin and atorvastatin

doi:10.1371/journal.pone.0082845.t001

Brain Network Evolution
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of an edge between two nodes is proportional to the anatomical

distance between nodes.

A random function was applied to imitate the influences of

haphazard factors to connection and disconnection. If Eq.5 is

satisfiable and there is no edge between nodes i and j, then a link

between the nodes i and j will be established. And if Eq.6 is

satisfiable and there is just an edge between nodes i and j, then the

link between the nodes i and j will break. The indexes i and j are
selected randomly and repeatedly to ensure the evolvement

process is rational. Following this approach, the larger CPi,j , the

greater the probability of establishing a link between nodes i and j.

CPi,jwrand(0,1) ð5Þ

CPi,jvrand(0,1) ð6Þ

Here the function rand(0,1) picks a random number in (0, 1)

that is in the interval from zero exclusive to one exclusive.

To find an appropriate value of a which best fits the data, we

applied a differential evolution algorithm (DE) to a cost function

(Eq.7) based on the P value for the difference in distance

distribution between a set of simulated networks and the data

derived from patients. A differential evolution algorithm (DE) is a

stochastic direct search method to handle such problems with

nonlinear cost function [42].

max : P~PswzPlong ð7Þ

Here, Psw~Psw p{Psw c and Plong~Plong p{Plong c. Psw p

and Plong p are P values of Wilcoxon rank tests comparing the

small worldness and the number of long-distance connection

between simulated networks and brain networks of patient group.

Psw c and Plong c are P values of Wilcoxon rank tests comparing

the small worldness and the number of long-distance connection

between simulated networks and brain networks of control group.

P values of the networks were obtained by varying each parameter

around the optimal value (a~0:10) (Fig. 3).

8. Computational Experiments of Network Evolution
Studies of brain injury and their impacts remain extremely

difficult due to the following two facts: 1) trauma cannot be

reduced to simple cases and must be integrated as a whole, and 2)

situations or events are not repeatable or re-constructible such that

discrete experiments are virtually identical. While traditional

approaches are not effective for addressing these problems, new

concepts and methods developed in complex systems may provide

a potential solution [10–12,17,43]. This consideration is the

motivation for establishing a computational platform to simulate

the dynamic evolvement process of functional brain network after

brain injury based on a newly developed computational theory of

complex systems using computational experiments.

Computational experiments method was firstly proposed by

Bankes in 1993 to investigate highly complex systems. He implied

that it was difficult to construct a deterministic model to accurately

simulate a highly complex system consisting of numerous self-

adaptive agents. The computational experiments method provided

a solution for such problems in the form of a computation platform

[44]. This is a natural extension of computer simulations in the

sense that accuracy to real systems is no longer the only criterion

for model construction. Instead, a ‘‘model’’ can be considered as

an alternative to the reality and, for experimental purposes, the

‘‘equivalent’’ of a real system.

In our study, the initial phase of the evolution is the brain

network of a healthy control, and the evolution ends when the

difference between the simulated network and brain networks of

patients following stroke is at a minimum. According to this

procedure, the simulated evolution can be implemented repeatedly

until a brain networks corresponding to patient controls reappear.

Multiple evolutions yield multiple brain-like networks, and are

limited in the sense that individual brain-like networks do not

necessarily correspond with the discrete outcomes inherent in a

small patient set.

Results

1. The Comparison between Patients and Controls
To evaluate simulation accuracy, we quantified the changes

which occurred in the topological profile of the patient group

relative to the control group. We found that the small worldness

of a brain network in the control group is greater than that of

one in the patient group (Fig. 4A), and that the difference is

significant when the density of brain network is between 9%

and 10%. We observed that the number of long-distance

connections (dw80mm) of the patients decreased, relative to

the controls (Fig. 4B). Only in the case of network density

equalling 9% do both the small worldness and the number of

long-distance connections show a statistical difference between

patients and controls. A brain network of 9% density was

therefore chosen for brain network evolution. In Fig. 5, a

histogram was used to graphically summarize and display the

distribution of the connection distance of brain networks of 9%

density. The distance between connections of brain networks

derived from all subjects in the control group and the patient

group was calculated. A Kolmogorov-Smirnov test was also

used to compare the probability distribution for connection

distance between brain networks of control group and patient

group. The P value from the Kolmogorov-Smirnov test is very

small (P~8:63|10{8), which shows that the probability

distributions of controls and patients cannot be drawn from

the same contiguous population.

Figure 2. Paradigm design.
doi:10.1371/journal.pone.0082845.g002
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2. Simulation Results
The evolution model was used to simulate the evolution process

of brain network in the acute period, defined as from pre-stroke to

two weeks after stroke. The evolution of each control subject was

simulated 20 times to obtain 20 networks, resulting in 100

outcomes.

Firstly, we measured the distance distribution (the probability

distribution of Euclidean distance between connected pairs of

regions) of a set of simulated networks and brain networks derived

from experimental fMRI data (Fig. 6). The distance distribution of

simulated networks captured by the evolution model was found to

approach that of the patient group. The probability distribution

curve of the connection distance of simulated networks was almost

Figure 3. P values of simulated networks obtained by varying each parameter. P with higher value means the feature of simulated
networks is more similar to that of brain networks derived from patients.
doi:10.1371/journal.pone.0082845.g003

Figure 4. The small worldness (A) and the number of long-distance connections (dw80mm) (B) of brain networks in the control
group and the patient group. Vertical lines denote the standard deviation of each group. Asterisks denote significant differences (Wilcoxon rank
test, Pv0:05) between two groups at corresponding network densities.
doi:10.1371/journal.pone.0082845.g004

Brain Network Evolution
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equal to that of brain networks of patients following stroke. The

results of the Kolmogorov-Smirnov test show that the two

independent distance distributions of patient group and simulated

networks are drawn from the same underlying continuous

population. Additionally, the Kolmogorov-Smirnov test was

performed between the simulated brain networks and the control

brain networks. The results indicate that the distance distributions

of the control group and simulated networks are not drawn from

the same population.

Secondly, the small worldness and the number of long-distance

connection were compared between two groups (patient and

control) and the simulated networks (Fig. 7). The small worldness

was significantly lower in patient group (P~0:016) and simulated

networks (P~1:85|10{4) than in control group (Fig. 7A). The

number of long-distance connections has the same property as the

SW index (P~2:51|10{4 for patient group; P~0:016 for

simulated networks) (Fig. 7B). Figure 8 simultaneously displays the

small worldness and the number of long-distance connections in

the two groups (patient and control) studied with those obtained

from the simulated networks having the same number of nodes

and links. It was found that all scatters representing simulated

networks are distributed in the region which corresponds with the

features of patients, that is, the lower small worldness and the

lower quantity of long-distance connections (dw80mm) with

respect to control group (Fig. 7 and Fig. 8).

Finally, we used an independent fMRI dataset (n~4 healthy

controls) to simulate the evolution process after stroke using our

evolution model. In this way we tested the appropriateness of the

fit of the model parameter on an independent set of experimental

data that had not been used for model estimation. The evolution

model generated a good approximation between the simulated

networks evolved by the independent fMRI dataset and brain

networks of patients (Fig. 6, Fig. 7, Fig. 8).

Discussion

1. The Comparison of the Functional Brain Network
between Controls and Strokes
In a functional brain network, varying topological properties are

due to the ocurrence of differing arrangements of connections

between brain regions after onset of stroke, although the number

of connections before and after stroke remains the same in both

healthy subjects and patients. The arrangement of functional links

between different brain sites can affect the level of information

processing and signal synchronization, and have a large influence

on experimental results.

Figure 5. Comparison of the connection distance between
controls and patients. The distance of connections in brain networks
of control group (blue) and patient group (red) were shown.
doi:10.1371/journal.pone.0082845.g005

Figure 6. Comparison of distance distribution between networks simulated by the evolution model and brain networks derived
from experimental fMRI data from the patient group of 5 subjects. The distance distribution of the overall connections in the brain networks
of the control group (blue line) and the patient group (red line) are shown in the graph. The dashed green line shows the distance distribution of the
overall connections in networks simulated by the evolution model. The dashed purple line shows the distance distribution of the simulated networks
evolved by a second independent dataset.
doi:10.1371/journal.pone.0082845.g006

Brain Network Evolution
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Small worldness is an index of small world structure, reflecting

an optimal structure associated with rapid synchronization and

information transfer, minimal wiring costs, as well as a balance

between local processing and global integration. Our results

suggest that small worldness significantly decreases after stroke

(Fig. 4A). This finding has been described in previous studies. De

Vico Fallani et al. proved that small worldness decreases

significantly in evolution networks of patients compared with

controls, reflecting a lower capacity among patients for informa-

tion transfer between distant brain regions after stroke [45]. A

recent study of his group found that patients with subacute stroke

have significantly lower small worldness of the affected hand when

compared with the unaffected hand during the motor imagery

[46]. And Tsirka demonstrated that patients with brain injury

have sub-optimal network organization, as reflected by a decrease

in small worldness value [47]. Therefore, small worldness is a

useful index to evaluate brain function.

We also found that the number of long-distance connections

(dw80mm) decreased after stroke (Fig. 4B). Stam [8] hypothe-

sized that the topological structure of functional networks is

probably restrained by anatomical factors. Furthermore, Alexan-

der-Bloch verified this forecast by comparing the connection

distance in functional brain network between healthy controls and

patients with childhood-onset schizophrenia. He argues that

topological disturbances of functional network organization can

be caused by excessive ‘‘pruning’’ of short-distance functional

connections in schizophrenia [30]. Thus, the significant decrease

in small worldness after stroke may arise from reduction of long-

distance connections in patients (Fig. 7).

2. The Evolution Model
Our evolution model emphasizes a property of the brain

network: the anatomical distance between nodes. According to our

evolution rules, the attributes of all vertices and edges are

modifiable, implying that all the regions of cortex are probably

impacted after stroke. These evolution rules are consistent with

some results of previous studies using models to simulate the

dynamic effects of brain injuries. Honey and Sporns implemented

Figure 7. Mean values of the small worldness (A) estimated from the experimental fMRI data and the simulated networks.
Rectangular boxes indicate the standard deviations and dots indicate the mean values. Asterisks denote significant (Wilcoxon rank test, Pv0:05)
difference between conditions. The same applies for rectangular boxes, dots and asterisks in panel B. Mean values of the number of long-distance
connection (B) estimated from the experimental fMRI data and the simulated networks.
doi:10.1371/journal.pone.0082845.g007

Brain Network Evolution
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two models of oscillatory cortical interactions and found that lesion

effects extend beyond the immediate neighbors of the lesioned site,

and that the amplitude and dispersal of nonlocal effects are

influenced by cluster patterns in the network [48]. Alstott et al.

adopted a computational model to simulate the dynamic effects of

lesions placed in different regions of the cerebral cortex, and found

that lesions produce specific patterns of altered functional

connectivity among distant regions of cortex, supporting the claim

that lesions affect both cortical hemispheres [49].

It has been reported that small world structure is one of the

most important features of the human brain, which has been

shown to pursue a balance between local processing and global

integration with information transfer at a minimal energy cost

[47,50,51]. In mammalian brain networks, it has been shown that

energy consumption is proportional to the physical distance

between brain regions in information transfer [52]. Castellanos

et al. reported that the energetic cost is one of the most altered

topological parameters after brain injury [53], implying that

energy consumption related to information processing in a brain

network changes greatly after brain injury. Therefore, the

Euclidean distance of connections in the brain network is useful

for showing the alteration of energy consumption during post-

stroke brain network evolution.

In our study, the concept of disconnection was emphasized and

probabilistic factors were introduced to the simulated evolution

process. If connection takes place in the evolution process solely

without disconnection, the network density will necessarily

increase on account of the increase on edges. Moreover, Gong

and Wang demonstrated that the interactions or connections

between nodes in a brain network are not invariable, but change

dynamically with age [32,33]. Links with high connection

probability CPi,j between nodes i and j are likely but not

guaranteed to be established. The same situation arises for the

condition of disconnection. According to figure 8, the results

simulated from each control are very similar, but not exactly

uniform. We considered that this might be due to a small group

size in this study.

3. The Evaluation of the Evolution Networks
The nervous system is a large-scale, hierarchical and self-

adapting complex system [54], which consists of vast numbers of

neurons connected closely through electrochemical action. Deter-

ministic and probabilistic factors coexist in the plastic process of

the nervous system. This duality is a function of uncertainty in the

evolution of brain networks. The computational experiments

method is therefore an effective approach to explore this complex

system. Using the computational experiments method, we have

simulated the evolution process of brain networks repeatedly

impacted by deterministic and probabilistic factors, and obtained

experimental results of brain network evolution with not only

common features but also intrinsic uncertainties aroused by

probabilistic factors (Fig. 8).

The networks simulated by the evolution model confirmed our

hypothesis that a decrease in small worldness can arise from the

reduction of long-distance connections in the networks of patients

following stroke (Fig. 7). Simulation results show that the distance

distribution of evolution networks evolved from the brain networks

of controls is very similar to the distance distributions of brain

networks of patients (Fig. 6). Meanwhile, a decrease in small

worldness is associated with a reduction of long-distance connec-

tions in brain-like networks (Fig. 7). Scatters that represent

evolution networks are distributed in the region which corresponds

with the features of patients (Fig. 8). According to our simulation

results, we conclude that the brain networks of patients following

Figure 8. Scatter plots of the small worldness and the number of long-distance connections. X-axis denotes the small worldness; Y-axis
denotes the number of long-distance connections (dw80mm). All the values are grouped by control group or patient group while the green
triangles represent the distribution of all simulated networks. The purple triangles represent the simulated networks evolved by a second
independent dataset. All patients are labeled in line with the patient numbers in Table 1.
doi:10.1371/journal.pone.0082845.g008
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acute stroke were characterized by lower small worldness and

lower quantity of long-distance connections compared with the

healthy condition. Moreover, our evolution model can succesfully

simulate the dynamic brain network process of post-stroke patients

in the acute period.

4. The Methodology Issues
The connection distance, the primary parameter of the

connection probability function and the disconnection probability

function, is a rough measure representing the information

transmission distance between brain regions. In practice, various

brain regions are connected by nerve fibers which communicate

information. In our models, owing to an absence of high-

resolution brain structural data, the Euclidean distance was used

to estimate the information transmission distance between brain

regions. The Euclidean distance was used as property in a recent

study on the evolution model to simulate the formation of brain

network, and the results are indeed satisfying [31], proving that the

estimation of information transmission distance is feasible.

Brain regions represented by nodes in brain network contained

the area of cerebrum, but not the cerebellum. Because the

cerebellum receives information from cerebrum to control

movement, we considered it outside the focal area. Accordingly,

our brain network consists of cerebrum only and reflects the brain

activities in the finger task.

Conclusion

On the basis of a computational experiment, we have explored

a probabilistic model to parsimoniously simulate the evolution

process of brain networks in the acute period from pre-stroke to

two weeks after stroke. The evolution model has been effectively

applied to simulate the evolution of stroke-affected brain networks

in our study. In cases where experimental data is limited, dynamic

information was obtained by simulation. This paper provides a

novel approach toward investigating mechanisms of brain changes

under conditions of neural development disorder or brain injury.

In the acute period, the action of distance penalization may be

used to describe the general mechanism of brain network

evolution. Our study, through the use of evolution model, may

contribute to a more comprehensive simulation of brain networks

to aid in functional evaluation of stroke patients and is broadly

applicable to research of stroke recovery processes.
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