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Purpose: Static and dynamic analyses for identifying functional connectivity (FC) have

demonstrated brain dysfunctions in amyotrophic lateral sclerosis (ALS). However, few

studies on the stability of dynamic FC have been conducted among ALS patients.

This study explored the change of functional stability in ALS and how it correlates with

disease severity.

Methods: We gathered resting-state functional magnetic resonance data from 20

patients with ALS and 22 healthy controls (HCs). The disease severity was assessed

with the Revised ALS Functional Rating Scale (ALSFRS-R). We used a sliding window

correlation approach to identify dynamic FC and measured the concordance of dynamic

FC over time to obtain the functional stability of each voxel. We assessed the

between-group difference in functional stability by voxel-wise two-sample t-test. The

correlation between the functional stability index and ALSFRS-R in ALS patients was

evaluated using Spearman’s correlation analysis.

Results: Compared with the HC group, the ALS group had significantly increased

functional stability in the left pre-central and post-central gyrus and right temporal pole

while decreased functional stability in the right middle and inferior frontal gyrus. The

results revealed a significant correlation between ALSFRS-R and the mean functional

stability in the right temporal pole (r = −0.452 and P = 0.046) in the ALS patients.

Conclusions: ALS patients have abnormal stability of brain functional architecture,

which is associated with the severity of the disease.

Keywords: amyotrophic lateral sclerosis, dynamic, functional connectivity, functional stability, functional magnetic

resonance imaging

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative motor neuron disorder.
Progressive upper and lower motor neuron involvement occurs during the course of the disease
(1–3). ALS is considered to be a multisystem disorder with substantial extra-motor involvement,
such as in the cognitive system and behavioral system; however, the etiology of ALS remains unclear
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(2–4). The course of ALS progresses rapidly, and most patients
suffer respiratory failure and die within 3–5 years of the onset of
symptoms (2, 4). There is still no effective treatment for ALS, and
timely diagnosis of ALS is the key to early intervention and the
improvement of the prognosis (5). Hence, it is important to find
new neuroimaging signs that can reveal the pathogenesis of ALS
and monitor the disease progress.

Resting-state functional magnetic resonance imaging (fMRI),
which is based on blood oxygen level-dependent effects, has
been widely used to record spontaneous brain activity signals
(6). Because of the ease of application of resting-state fMRI and
its ability to characterize complex brain circuits, it has been
used in many neuroimaging studies (7). Functional connectivity
(FC), which is measured based on resting-state fMRI signals,
has shown promise as a potential biomarker for its association
with neurological disorders (8). For example, the presence of
the widespread reorganization of FC has been documented in
ALS patients and reveals the potential severing as a biomarker
for monitoring disease development (8). By measuring the static
FC (the index reflecting the averaged strength of functional
coordination among distinct brain regions), resting-state fMRI
studies have found significantly reduced FC in sensorimotor
networks (SMNs) and brain networks related to cognition and
behavior in ALS (9–11). The FC alterations in ALS are in keeping
with the change of structural connections in the motor system
and extra-motor systems (12). In addition, a recent study has
revealed the alteration of dynamic FC properties in ALS, which
is correlative with the severity of motor dysfunction (13). Taken
together, both static and dynamic FC analyses hold great promise
to explain the mechanisms underlying ALS.

In a wide range of task states and unrestricted resting states,
the brain is always in an active state and the neural signals are
spontaneous and highly dynamic (14, 15). Complex cognitive
and motor functions necessitate the brain’s coordination of
information from multiple modes over time (16, 17). Although
the functional architecture of the brain is dynamic in nature,
its functional stability in a continuous state is critical for
maintaining normal brain functions (18). For example, the
property of functional stability is an important feature of
consciousness. For conscious processing to occur, the stable and
reproducible representation of high-quality information by a
distributed activity pattern in the higher cortical areas is critical
(19). In addition, the nervous system requires functional stability
in order to integrate information (19) and maintain cognitive
acuity (20). In addition, the stability of the activation pattern in
the primary motor cortex is thought to be associated with motor
function (21, 22).

Currently, the functional stability property of the brain has
attracted increasing attention (18). A recent study conducted a
voxel-wise analysis of resting-state fMRI data and characterized
the stability of the brain’s functional architecture by assessing
the concordance of dynamical functional connections over time

Abbreviations: ALS, amyotrophic lateral sclerosis; fMRI, functional magnetic

resonance imaging; FC, functional connectivity; SMN, sensorimotor network;

ALSFRS-R, revised ALS Functional Rating; FD, frame-wise displacement; KCC,

Kendall consistency coefficient; EEG, electroencephalography.

(18). The results indicated that high stability was found in
high-order association regions, while unimodal regions exhibited
lower stability during resting-state scans (18). The higher the
stability value, the more concordant and stable the dynamic
functional architecture configuration is over time, indicating the
maturity of the FC mode of high-order association regions. The
lower the stability value, the lower the capacity is to coordinate
information over time, indicating that it can frequently and
quickly transfer from one brain state to another. Indeed, the
connections between the unimodal regions and other brain
regions change constantly with different tasks or states so that
the brain can adapt to different timescales (23). Of note, a recent
resting-state fMRI study has shown that the analysis of functional
stability contributes to exploring the mechanisms underlying
various neuropsychiatric disorders (24).

Herein, we conducted the first analysis of functional stability
based on resting-state fMRI data; and we aimed to contribute new
understandings of the mechanism about functional stability in
ALS and investigate its correlation with disease severity.

METHODS

Subjects
The subjects included in this investigation comprised 20 patients
diagnosed with sporadic ALS and 22 healthy controls (HCs).
We used the El Escorial criteria (25) for the diagnosis of
ALS, and implemented the revised ALS Functional Rating Scale
(ALSFRS-R) to assess the severity of the disease. The lower
ALSFRS-R score indicated the increased severity of disease.
Of the patients, 5 ones were taking Riluzole when they were
recruited. The age, sex, and education levels of the subjects
in the two groups were comparable (Table 1). We used the
following exclusion criteria: (1) other neuropsychiatric disorders,
including Alzheimer’s disease, Parkinson’s disease, epilepsy, or
depression; (2) patients undergoing treatment with psychotropic
medications; (3) patients who developed respiratory failure or
other serious disorders, including heart failure or cancer; and
(4) patients with contraindication of MRI examination. The local
Research Ethics Committee approved this study, and all study
participants gave written informed consent.

MRI Data Acquisition
The MRI data were acquired using a 3.0T scanner (Prisma,
Siemens Medical Systems, Erlangen, Germany). Resting-state
functional images were captured with the multiband slice
acquisition method using the echo-planar imaging sequence, and
the parameters were as follows: multiband factor = 4, TR =

500ms, TE = 30ms, matrix = 76 × 76, flip angle = 50◦, FOV
= 228 × 228mm, slice thickness = 4.5mm (without interslice
gap), 32 axial slices, and 800 volumes. All participants were
instructed to keep their eyes closed, think of nothing in particular,
and remain still. In order to carry out spatial normalization of
functional images, we collected three-dimensional T1-weighted
images (resolution = 1 mm3) with the magnetization-prepared
rapid gradient-echo (MPRAGE) sequence.

Frontiers in Neurology | www.frontiersin.org 2 October 2021 | Volume 12 | Article 744688

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Wei et al. Abnormal Functional Stability in ALS

TABLE 1 | Demographic and clinical data of the study participants.

Healthy

controls

(n = 22)

ALS

patients

(n = 20)

P-value

Age (years) 56.4 ± 4.9 57.2 ± 4.7 0.45

Sex (females/males) 8/14 6/14 0.66

Education (years) 8.1 ± 3.0 7.1 ± 3.0 0.32

Site of onset

(bulbar/cervical/lumbosacral)

– 2/12/6 –

Diagnostic category

(definite/probable/possible)

– 6/7/7 –

ALSFRS-R score – 39.5 ± 6.8 –

Disease duration

(months)

– 16.2 ± 13.8 –

Disease progression

rate

– 0.77 ± 0.60 –

ALS, amyotrophic lateral sclerosis; ALSFRS-R, revised ALS Functional Rating Scale. The

following equation was used to estimate the rate of disease progression: (48–ALSFRS-

R)/Disease duration. “–” indicates that no data are available.

Functional MRI Data Pre-processing
The functional MRI data pre-processing was conducted using
Statistical Parametric Mapping software (SPM 12, http://www.fil.
ion.ucl.ac.uk/spm) as well as the Data Processing and Analysis
of Brain Imaging toolbox (DPABI, Version6.0, http://rfmri.
org/DPABI). The initial 40 volumes were excluded while the
signal reached equilibrium and the participants adapted to the
scanning noise. Realignment was carried out to correct the
motion between time points. The head motion parameters were
calculated by estimating the translation in each direction and
the angular rotation on each axis for each volume. In addition,
the frame-wise displacement (FD), which indexes the volume-
to-volume changes in head position, was calculated. None of
the participants had a range of movement >3mm translation
or 3 degrees of rotation, and all fMRI data included in the
final sample were within the defined motion thresholds of mean
FD lesser than 0.15mm. Nuisance covariates, which included
the linear trend, the estimated motion parameters based on the
Friston-24 model, the white matter signal, and the cerebrospinal
fluid signal, were regressed out from the functional signal.
During normalization, the individual structural images were co-
registered with the mean functional image. The transformed
structural images were then segmented and normalized to
the Montreal Neurological Institute (MNI) space through the
use of a high-level non-linear warping algorithm, that is, the
Diffeomorphic Anatomical Registration Through Exponentiated
Lie algebra (DARTEL) method (26). Then, the deformation
parameters that were estimated in the aforementioned step
were used to spatially normalize each functional volume to
MNI space, and the functional volumes were resampled into
a 3-mm cubic voxel. The datasets were subsequently band-
pass temporal filtered (0.01–0.1Hz) and spatially smoothed
with a Gaussian kernel (full-width at half maximum =

6 mm).

Functional Stability Calculation
The calculation of functional stability was performed according
to methods used in recent studies (18, 24) and implemented by
the DPABI toolbox. We used a sliding-window approach to carry
out a dynamic functional connectivity analysis, with a window
size of 64 s and a sliding step of 4 s (18, 24). As the parameter
setting in the sliding-window approach remains controversial
(15), the additional following procedures were performed to
further verify our results. First, the analyses were performed with
three different window lengths (=35, 50, and 80 s) to examine
whether the results were influenced by the choice of window
length. Second, the analyses were conducted with different sliding
steps (=2 s) to identify whether the results were dependent on the
selection of different sliding steps.

For a given voxel j, the Pearson’s correlation coefficients
between its time course and those of all other voxels within
the gray matter mask were calculated. This yielded a series of
dynamic functional connectivity maps across time windows for
voxel j. The functional stability of voxel j was subsequently
quantified with the Kendall’s concordance coefficient (KCC) of
these dynamic functional connectivity maps using time windows
as raters. KCC is calculated with the following equation:

KCC =

∑N
n=1 R

2
n −

1
N

(

∑N
n=1 Rn

)2

1
12K

2 (

N3 −N
)

,

where K is the number of time windows, N is the number of
connections between voxel j and all other voxels within the
gray matter mask, and Rn is the sum of rank for the n-th
connection across all windows. The connections for each window
are ranked across all voxels based on their functional connectivity
strength. The gray matter mask that was employed to confine the
analyses in this work was generated by thresholding the mean
gray matter density map across participants at 0.2. After deriving
the functional stability maps, they were further standardized into
z-scores by subtracting the mean and dividing by the standard
deviation of global values within the gray matter mask. They
could then be averaged and compared across subjects. A higher
stability value (KCC) for a voxel or a region indicates that
its dynamic functional architecture configuration remains more
consistent and stable over time, while a lower stability value is
indicative of its ability to frequently and rapidly shift between one
brain state and another.

Statistical Analysis
The between-group comparison of demographic variables such
as age and education level was performed using the non-
parametric Mann–Whitney U-test, and the chi-square test was
used to compare the categorical variables (e.g., sex); the statistical
significance was set at P < 0.05.

For each group, the one-sample t-test was conducted to
investigate the profile of intrinsic functional stability across the
brain. The two-sample t-test was used to assess the difference
in functional stability between the two groups in a voxel-
wise manner. The statistical threshold was set at P < 0.05
corrected by the Gaussian Random Field (GRF) method (with
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the voxel-level P < 0.001). Following the two-sample t-test,
the areas that exhibited significant differences in functional
stability were regarded as the regions of interest (ROIs) and
the mean values of functional stability in these ROIs were
calculated. Subsequently, Spearman’s correlation analyses were
used to evaluate the relationship between the functional stability
index and ALSFRS-R among the ALS patients; a P < 0.05 was
regarded as statistically significant.

RESULTS

The profiles of intrinsic functional stability within each group
are shown in Figure 1. By visual inspection, a set of brain areas
with relatively higher values of functional stability were bilaterally
observed in the HC group. These areas mainly involved the
lateral pre-frontal cortex, superior and inferior parietal lobule,
posterior cingulate cortex and precuneus, medial pre-frontal

FIGURE 1 | The profile of intrinsic functional stability within each group. The

results of one-sample t-tests on functional stability in the resting-state are

shown in brain maps of T-values. Red and blue indicate high and low stability,

respectively. HC, healthy control; ALS, amyotrophic lateral sclerosis; L, left; R,

right.

cortex, occipital cortex, and lateral temporal cortex. In contrast,
relatively lower functional stability was observed in several
brain areas, including the orbitofrontal cortex, pre-central and
post-central cortex, paracentral lobule, temporal pole, medial
temporal cortex, and subcortical nucleus. This profile of intrinsic
functional stability was consistent with previous reports (18,
24). Additionally, the ALS group exhibited a similar spatial
distribution of functional stability.

Compared with the HC group, the ALS group had
significantly increased functional stability in the left pre-central
and post-central gyrus and right temporal pole and showed
significantly decreased functional stability in the right middle
and inferior frontal gyrus (Figure 2 and Table 2). The analyses
performed using different sliding-window parameter settings
revealed very similar patterns of between-group difference in
functional stability, thereby verifying the robustness of the results
(Supplementary Figure 1).

Correlation analyses were performed and indicated a
significant negative correlation (r = −0.452 and P = 0.046)
between the mean functional stability in the right temporal pole
and the ALSFRS-R score in the ALS group (Figure 3).

FIGURE 2 | Regions with between-group differences in functional stability. The

red and blue color indicate the regions with the decreased and increased

functional stability in the patients with amyotrophic lateral sclerosis,

respectively. The distribution and between-group differences are shown in the

violin and box plots (all P < 0.0001) of mean value of functional stability in

these regions. L, left; R, right.
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TABLE 2 | Regions with between-group difference in functional stability.

Regions Voxels Brodmann area MNI coordinates Peak T value

x y z

Left pre-central and post-central gyrus 45 3/4 −45 −18 48 −5.72

Right middle and inferior frontal gyrus 33 10 39 54 6 4.45

Right temporal pole 31 38 36 9 −24 −5.03

FIGURE 3 | The correlation between functional stability and disease severity

reflected by ALSFRS-R score. ALSFRS-R, revised ALS Functional Rating

Scale.

DISCUSSION

To our knowledge, our study details the first use of resting-state
fMRI to perform functional stability analysis in ALS. The main
findings were as follows. (1) The within-group analysis indicated
that higher functional stability was primarily distributed in the
default mode network and the frontal parietal network, while
lower functional stability was mainly distributed in the SMN,
auditory network, and limbic network. For the most part, this
profile was in accordance with the stability pattern found in
previous studies (18, 24, 27, 28). (2) ALS patients exhibited
altered functional stability characteristics during the resting
state. The sensorimotor region, including the left pre-central
and post-central gyrus, had increased functional stability, while
the non-sensorimotor areas, including the right temporal pole
and the right middle and inferior frontal gyrus, had increased
and decreased functional stability, respectively, in ALS. These
findings indicate that ALS is a neurodegenerative disease that
affects multi-systems. (3) The disease severity was significantly
correlated with themean functional stability in the right temporal
pole, which suggested the potential of functional stability as an
indicator of disease progression.

Our findings of abnormal stability of dynamic FC in ALS
can be supported by studies related to neurophysiology. Resting-
state EEG studies have found the dominance of slower EEG
frequencies in their oscillatory activity (29) and increased
global gamma power in ALS (30). Additionally, resting-state

EEG has revealed that ALS patients have an increment in
the intra-motor cortical FC (31). Furthermore, EEG-related
studies have demonstrated alteration in cortical networks, such
as the frontoparietal network, frontotemporal network, and
sensorimotor network, in ALS (32, 33). It is worth noting that
simultaneous resting-state EEG-fMRI studies have revealed a link
between dynamic FC in fMRI data and concurrent EEG signals
(34, 35). Because functional stability represents the coherence of
dynamic FC over time, the above EEG studies may suggest the
changes in functional stability in ALS that can be expected.

The patients with ALS exhibited higher functional stability in
the left pre-central and post-central gyrus, which is responsible
for somatosensory and motor functions. The increase of
functional stability may indicate the limited ability of these
areas to quickly transfer from one brain state to another
(18). In accordance with our findings, several studies from a
dynamic perspective have found a reduction in ReHo (regional
homogeneity, a functional index reflecting the regional coherence
of brain activity) in bilateral sensorimotor cortices in ALS (36,
37). From the perspective of static FC, previous studies have
reported decreased connectivity in SMN (9, 10, 38, 39); moreover,
from a dynamic point of view, a recent FC study based on resting-
state fMRI also found that SMN was involved in ALS (13). These
reports in static and dynamic FC studies are in keeping with
our findings. Given that somatosensory and motor dysfunctions
are often observed in ALS (3), it was implied that the altered
functional stability in the sensorimotor region may be one of the
underlying pathophysiological mechanisms of sensory andmotor
dysfunction in ALS.

ALS patients showed a higher stability of FC in the right
temporal pole, indicating that this region may be one of the
pathological nodes of ALS. In agreement with our results,
it has been revealed that the perfusion of bilateral temporal
poles is decreased in ALS (40). In addition, the previous study
demonstrated the correlation between the altered metabolism of
the right temporal pole and cognitive dysfunction in ALS (41).
The temporal pole is thought to be a node of the paralimbic
cortex that plays a key role in language and memory functions
(42, 43). Abnormal functional stability in this region might lead
to the deficits in semantic processing and memory, all of which
are observed in ALS (44).

In addition, the right middle and inferior frontal gyrus
[Broadmann area (BA) 10] were found to show decreased
functional stability in ALS in this study. The reduction of
stability may lead to a lower ability to maintain the consistent
functional coordination of these frontal areas with other brain
regions (18). Consistent with our findings, a positron emission
tomography study found pre-frontal (BA 9 and 10) dysfunction
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(reflected by glucose hypometabolism) in ALS (45). In addition,
an fMRI study observed decreased FC in frontal areas including
the middle and inferior frontal gyrus (46). The pre-frontal
cortex is an important component of the neural circuitry that
processes top-down behavioral control and functions in cognitive
control (47). Thereby, it is implied that the decreased functional
stability in the right middle and inferior frontal gyrus might
lead to cognitive (such as attention and executive function)
and behavioral impairments, all of which are often observed in
ALS (48).

Our work herein has several limitations. The sample size was
relatively small, which may have limited the generalizability of
the findings. To better explore the subtle brain abnormalities
in ALS, further studies are needed to consider larger samples
to provide sufficient statistical power. Second, to better explore
the biological significance of altered functional stability in ALS,
future works are recommended to combine electrophysiological
methods such as EEG and resting-state fMRI. Third, we adopted
the sliding window method to extract dynamic FC, which is
widely used in current research. To avoid potential bias, future
research can consider using other extraction approaches [e.g., the
point-processmethod (49)] to analyze dynamic FC in ALS. Forth,
the current study did not conduct cognitive assessment in ALS
patients; thereby, the speculation about the relationship between
cognitive dysfunction and the altered functional stability should
be further verified in the future study.

In summary, our observations revealed that the abnormal
pattern of FC stability involved sensorimotor regions (i.e., the
left pre-central and post-central gyrus) and non-sensorimotor
areas (i.e., the right temporal pole and middle/inferior frontal
gyrus) in ALS patients. These results provide additional evidence
to support the idea that ALS is a multi-system disorder. Our
preliminary findings also suggest the possibility that functional
stability may serve as a biomarker for monitoring the progression
of ALS.
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Supplementary Figure 1 | The effect of different sliding-window parameter

settings on functional stability analysis. The sliding-window approach was used for

the dynamic functional connectivity analysis, with the following parameter settings:

(A) window size = 35 s and sliding step = 4 s; (B) window size = 50 s and sliding

step = 4 s; (C) window size = 80 s and sliding step = 4 s; (D) window size = 64 s

and sliding step =2 s. The main findings of the between-group comparison could

be reproduced by performing analyses of functional stability based on different

window lengths and sliding steps, suggesting that different sliding-window

parameter settings did not significantly influence the results.
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