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Abstract: A combined Lewis acid system comprising of two or more Lewis acids occasionally exhibits
augmented catalytic activity in organic transformations which are otherwise unrealizable by either
of the components exclusively. On the other hand, the efficient construction of multiple new C-C
bonds and polycyclic structures in minimal steps remains a subject of great interest in both academia
and industry. Herein we report an efficient method to assemble aryldihydronaphthalene derivatives
via a cascade reaction of diarylalkynes with acrylates under the catalysis of a combined Lewis acid
derived from In(III) salt and TMSBr.
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1. Introduction

In the context of green chemistry, efficient methods to forge multiple new C-C bonds and to
introduce molecular complexity in minimal steps have been a long-standing and important goal in the
development of modern organic chemistry [1,2]. In this regard, aryldihydronaphthalene derivatives
are particularly attractive targets mainly due to their widespread occurrence in natural products and
bioactive compounds (Figure 1) [3–7]. They are also employed as fluorescent ligands in biochemistry
studies or building blocks towards the synthesis of several biologically-active cyclic molecules [8–11].
Consequently, their significant roles have driven the establishment of several synthetic methodologies
for their preparation. Prominently, the intramolecular hydroarylation of 4-phenyl-1-butyne or its
derivatives is one of the most versatile protocols for the construction of aryldihydronaphthalene
derivatives [12–15]. Since the pioneering studies by Fujiwara et al. [16,17], numerous catalytic methods
have been developed in this field in which a series of transition metals, Lewis and Bronsted acids have
been found effective for catalyzing the hydroarylation [18–39]. More recently, Corey [24] and Pérez
Sestelo and Martínez [38,39] have independently reported the formation of six-membered oxa- and
carbocycles by an In(III)-catalyzed hydroarylation of acetylenic substrates.
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Figure 1. Representative natural products and bioactive compounds containing 
aryldihydronaphthalene structures [3–7]. 

On the other hand, although indium(III) salts (InX3 (X = Cl, Br, I, OTf, NTf2, etc.)) have been 
widely applied as Lewis acids in organic synthesis [40–42], their relatively weak Lewis acidity 
nonetheless limit their applications. Unlike other group III elements, such as aluminum and boron, 
trimethylsilyl halide is often employed together with InX3 as a robust combined Lewis acid catalyst, 
as observed in various reactions developed by Baba [43,44], Lee [45], Corey [24,46], our group 
[47–49], and others. As a continuation of our research interest in the application of indium in 
organic synthesis [47–51], herein we wish to report the first example of the In(III)-TMSBr-catalysed 
cascade reaction of diarylalkynes with acrylates to access a series of dihydronaphthalene 
derivatives in a one-pot manner (Scheme 1). 
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Scheme 1. In(III)-TMSBr-catalysed cascade reaction of diarylalkynes with acrylates for the synthesis 
of dihydronaphthalene derivatives. 

2. Results 

2.1. Preliminary Result of In(III)-TMSBr-Catalyzed Cascade Reaction of Diarylalkynes with Acrylates 

More recently, our group has demonstrated that the combined Lewis acid of In(III) salt and 
TMSBr could effectively activate acrylate component for the reaction with aryl alkynes [49]. 
Inspired by this activation mode, we envisaged a cascade reaction between diarylalkyne 1 and 
acrylate 2 to prepare aryldihydronaphthalene derivatives with this combined Lewis acid via the 
reaction sequence shown in Scheme 2. Initially, an intramolecular Friedel-Crafts type arylation 
reaction might occur, to give alkenyl indium species int-1 which will then undergo nucleophilic 
attack on the activated acrylate 2 to give the dihydronaphthalene enolate int-2. A further enolate 
protonation will give the final 1,2-dihydronaphthalene derivative 3. 

Figure 1. Representative natural products and bioactive compounds containing aryldihydronaphthalene
structures [3–7].

On the other hand, although indium(III) salts (InX3 (X = Cl, Br, I, OTf, NTf2, etc.)) have been widely
applied as Lewis acids in organic synthesis [40–42], their relatively weak Lewis acidity nonetheless limit
their applications. Unlike other group III elements, such as aluminum and boron, trimethylsilyl halide
is often employed together with InX3 as a robust combined Lewis acid catalyst, as observed in various
reactions developed by Baba [43,44], Lee [45], Corey [24,46], our group [47–49], and others. As a
continuation of our research interest in the application of indium in organic synthesis [47–51], herein we
wish to report the first example of the In(III)-TMSBr-catalysed cascade reaction of diarylalkynes with
acrylates to access a series of dihydronaphthalene derivatives in a one-pot manner (Scheme 1).
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Figure 1. Representative natural products and bioactive compounds containing 
aryldihydronaphthalene structures [3–7]. 
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Scheme 1. In(III)-TMSBr-catalysed cascade reaction of diarylalkynes with acrylates for the synthesis 
of dihydronaphthalene derivatives. 

2. Results 

2.1. Preliminary Result of In(III)-TMSBr-Catalyzed Cascade Reaction of Diarylalkynes with Acrylates 

More recently, our group has demonstrated that the combined Lewis acid of In(III) salt and 
TMSBr could effectively activate acrylate component for the reaction with aryl alkynes [49]. 
Inspired by this activation mode, we envisaged a cascade reaction between diarylalkyne 1 and 
acrylate 2 to prepare aryldihydronaphthalene derivatives with this combined Lewis acid via the 
reaction sequence shown in Scheme 2. Initially, an intramolecular Friedel-Crafts type arylation 
reaction might occur, to give alkenyl indium species int-1 which will then undergo nucleophilic 
attack on the activated acrylate 2 to give the dihydronaphthalene enolate int-2. A further enolate 
protonation will give the final 1,2-dihydronaphthalene derivative 3. 

Scheme 1. In(III)-TMSBr-catalysed cascade reaction of diarylalkynes with acrylates for the synthesis of
dihydronaphthalene derivatives.

2. Results

2.1. Preliminary Result of In(III)-TMSBr-Catalyzed Cascade Reaction of Diarylalkynes with Acrylates

More recently, our group has demonstrated that the combined Lewis acid of In(III) salt and TMSBr
could effectively activate acrylate component for the reaction with aryl alkynes [49]. Inspired by this
activation mode, we envisaged a cascade reaction between diarylalkyne 1 and acrylate 2 to prepare
aryldihydronaphthalene derivatives with this combined Lewis acid via the reaction sequence shown
in Scheme 2. Initially, an intramolecular Friedel-Crafts type arylation reaction might occur, to give
alkenyl indium species int-1 which will then undergo nucleophilic attack on the activated acrylate
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2 to give the dihydronaphthalene enolate int-2. A further enolate protonation will give the final
1,2-dihydronaphthalene derivative 3.Molecules 2018, 23, x FOR PEER REVIEW  3 of 11 
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Scheme 2. Proposed In(III)-TMSBr-catalysed cascade reaction of diarylalkynes with acrylates. 

To begin with, the model reaction involving but-1-yne-1,4-diyldibenzene (1a) and methyl 
acrylate (2a) were investigated to probe the proposed cascade reaction. In the presence of InBr3 and 
TMSBr, a 1,2-dihydronaphthalene derivative 3aa with two propionate motifs was obtained in 
moderate yield with trace amounts of intractable mixture of 1,2-dihydronaphthalene derivatives 
containing more propionate motifs (Scheme 3). Interestingly, no 1,2-dihydronaphthalene derivative 
with a single propionate motif in original proposal could be obtained. 
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Scheme 3. Initial results of In(III)-TMSBr-catalysed cascade reaction of but-1-yne-1,4-diyldibenzene 
(1a) with methyl acrylates (2a). 

2.2. Optimization of In(III)-TMSBr-Catalyzed Cascade Reaction of Diarylalkynes with Acrylates 

We subsequently optimized the reaction conditions by using but-1-yne-1,4-diyldibenzene (1a) 
and methyl acrylate (2a) as model substrates. The results are summarized in Table 1. At the outset, 
it was found that both In(III) catalyst and TMSBr were indispensable for the efficient progress of 
this reaction, because the reaction could not take place in the absence of either of them (entries 2–3). 
Among the different indium catalysts studied (entries 1 and 4–8), In(tfacac)3 was found to exhibit 
the best catalytic activity to afford the desired product 3aa with 61% yield (entry 7). Other common 
Lewis acid catalysts (e.g., AlBr3 and ZnCl2, entries 9 and 10) were also screened, which mostly 
resulted in no product formation. In addition, this reaction was found to proceed only in 
chlorinated solvents, such as CH2Cl2 or 1,2-dichloroethane, with the latter giving a higher yield of 
70% (entry 7 vs. entry 11). In comparison, when TMSBr was replaced by TMSCl, the product yield 
eroded significantly to less than 5% (entry 12). An attempt to decrease the amount of TMSBr or 
In(tfacac)3 led to lower yields (entries 13–14). Finally, reducing the stoichiometry of methyl acrylate 
(2a) to only one equivalent resulted in a significantly decreased yield of 3aa, and 
1,2-dihydronaphthalene derivative with a single propionate motif remained absent (entry 15). 

Table 1. The In(III)-TMSBr-catalyzed cascade reaction of diarylalkyne 1a with methyl acrylate (2a) a. 
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Scheme 2. Proposed In(III)-TMSBr-catalysed cascade reaction of diarylalkynes with acrylates.

To begin with, the model reaction involving but-1-yne-1,4-diyldibenzene (1a) and methyl acrylate (2a)
were investigated to probe the proposed cascade reaction. In the presence of InBr3 and TMSBr, a
1,2-dihydronaphthalene derivative 3aa with two propionate motifs was obtained in moderate yield with
trace amounts of intractable mixture of 1,2-dihydronaphthalene derivatives containing more propionate
motifs (Scheme 3). Interestingly, no 1,2-dihydronaphthalene derivative with a single propionate motif in
original proposal could be obtained.
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Scheme 3. Initial results of In(III)-TMSBr-catalysed cascade reaction of but-1-yne-1,4-diyldibenzene (1a)
with methyl acrylates (2a).

2.2. Optimization of In(III)-TMSBr-Catalyzed Cascade Reaction of Diarylalkynes with Acrylates

We subsequently optimized the reaction conditions by using but-1-yne-1,4-diyldibenzene (1a)
and methyl acrylate (2a) as model substrates. The results are summarized in Table 1. At the outset,
it was found that both In(III) catalyst and TMSBr were indispensable for the efficient progress of
this reaction, because the reaction could not take place in the absence of either of them (entries 2–3).
Among the different indium catalysts studied (entries 1 and 4–8), In(tfacac)3 was found to exhibit the
best catalytic activity to afford the desired product 3aa with 61% yield (entry 7). Other common Lewis
acid catalysts (e.g., AlBr3 and ZnCl2, entries 9 and 10) were also screened, which mostly resulted in no
product formation. In addition, this reaction was found to proceed only in chlorinated solvents, such
as CH2Cl2 or 1,2-dichloroethane, with the latter giving a higher yield of 70% (entry 7 vs. entry 11).
In comparison, when TMSBr was replaced by TMSCl, the product yield eroded significantly to less
than 5% (entry 12). An attempt to decrease the amount of TMSBr or In(tfacac)3 led to lower yields
(entries 13–14). Finally, reducing the stoichiometry of methyl acrylate (2a) to only one equivalent
resulted in a significantly decreased yield of 3aa, and 1,2-dihydronaphthalene derivative with a single
propionate motif remained absent (entry 15).
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Table 1. The In(III)-TMSBr-catalyzed cascade reaction of diarylalkyne 1a with methyl acrylate (2a) a.
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Table 1. The In(III)-TMSBr-catalyzed cascade reaction of diarylalkyne 1a with methyl acrylate (2a) a. 
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CO2Me

+

O
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3 aa1a 2a 
( 3 eq)

catalyst (20 mol%)
TMSX (3 equiv)

solvent
0 oC-rt, 2 h

 

entry Catalyst Solvent TMSX Yield (%) b Entry Catalyst Solvent TMSX Yield (%) b

1 InBr3 CH2Cl2 TMSBr 50
2 InBr3 CH2Cl2 - 0
3 - CH2Cl2 TMSBr 0 c

4 InCl3 CH2Cl2 TMSBr 14
5 InI3 CH2Cl2 TMSBr 47
6 In(OTf)3 CH2Cl2 TMSBr 37
7 In(tfacac)3 CH2Cl2 TMSBr 61
8 In(acac)3 CH2Cl2 TMSBr 0
9 AlBr3 CH2Cl2 TMSBr 0

10 ZnCl2 CH2Cl2 TMSBr 0
11 In(tfacac)3 ClCH2CH2Cl TMSBr 70
12 In(tfacac)3 ClCH2CH2Cl TMSCl <5
13 In(tfacac)3 ClCH2CH2Cl TMSBr 60 c

14 In(tfacac)3 ClCH2CH2Cl TMSBr 57 d

15 In(tfacac)3 ClCH2CH2Cl TMSBr 33 e

a Unless otherwise noted, all reactions were performed with 1a (0.4 mmol), 2a (1.2 mmol), catalyst (20 mol %),
TMSX (3 equiv), 0 ◦C-rt, 2 h, N2. b Isolated yields. c 2.0 equiv of TMSBr was added. d 10 mol % of In(tfacac)3 was
added. e 1.0 equiv of 2a was added.

2.3. Substrate Scope of In(III)-TMSBr-Catalysed Cascade Reaction of Diarylalkynes with Acrylates

With the optimized reaction conditions in hand (Table 1, entry 11), the generality of diarylalkyne
substrate scope of this reaction with respect to methyl acrylate (2a) was investigated, and the results
are listed in Figure 2a. Various substituted but-1-yne-1,4-diyldibenzene derivatives on the phenyl ring
were well suited for this protocol, producing the corresponding product 3 in 47% to 73% yields (3aa-ja).
Expectedly, substrates with orth-substituent on phenyl ring gave respective products in lower yields
than those with meta- or para-substituents (3ga vs. 3ba and 3ha, 3fa vs. 3ia) and no cyclization product
could be detected when 1l was used under the same conditions. Additionally, the incompatibility
of 4-phenyl-1-butyne (1k) with the current transformation emphasized the importance of the phenyl
ring moiety for this reaction. Finally, a substrate with a strong aryl electron-withdrawing substituent
(e.g., 1m) was also unsuitable for this reaction.
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Figure 2. Substrate scope for the In(III)-TMSBr-catalysed cascade reaction of diarylalkyne with
acrylates a,b. a Unless otherwise noted, all reactions were performed with 1 (0.4 mmol), 2 (1.2 mmol),
In(tfacac)3 (20 mol %), TMSBr (3 equiv), 0 ◦C-rt, N2. b Isolated yields.

With but-1-yne-1,4-diyldibenzene (1a) as the standard coupling partner, next, the scope of
acrylate 2 in the present protocol was examined (Figure 2b). In addition to methyl acrylate (3a),
acrylates carrying longer O-alkyl chains also reacted smoothly to give 1,2-dihydronaphthalene products
3ab-ad, albeit in relatively low yields (37–60%). Aside from the alkyl chain, reactions of acrylates
tethering the chloroethyl group proceeded well to give 3ae in moderate yield (50%). However, the use
of other olefinic substrates, such as ethyl methacrylate (2g), ethyl but-2-enoate (2h), and but-3-en-
2-one (2i), could not provide any desired product.
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3. Discussion

On the basis of above experimental results and precedent literature reports [38,39,43,44,49],
a plausible reaction pathway for this In(tfacac)3-TMSBr-catalyzed cascade reaction of diarylalkynes
with acrylates was put forward in Scheme 4: In(tfacac)3 and TMSBr would first form a combined Lewis
acid complex (LA) with heightened acidity than either of them solely; second, an intramolecular
Friedel-Crafts type arylation reaction takes place to generate an alkenyl indium species int-1;
this is followed by a nucleophilic attack of int-1 onto activated acrylate 2, giving rise to int-2,
which subsequently attacks another molecule of acrylate to give int-3; finally, the int-3 is quenched by
the proton generated from the first step to furnish the final product 3.
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diarylalkynes with acrylates.

4. Materials and Methods

4.1. General Information

Unless otherwise noted, all reagents and solvents were purchased from commercial sources
and used as received. The TMSBr and InBr3 used was purchased from Sigma-Aldrich, Singapore.
The In(tfacac)3 used was purchased from Strem Chemicals (Newburyport, MA, USA) and its purity
is 99%. Thin layer chromatography (TLC) was used to monitor the reaction progress on Merck
(Frankfurter Strasse, Darmstadt, Germany) 60 F254 precoated silica gel plates (0.2 mm thickness).
TLC spots were visualized by UV-light irradiation on a Spectro line model ENF-24061/F (Spectroline,
Westbury, NY, USA) at 254 nm. Anther visualization method was staining with a basic solution of
potassium permanganate or acidic solution of ceric molybdate, followed by heating. Flash column
chromatography was performed using Merck silica gel 60 (Frankfurter Strasse, Darmstadt, Germany)
with analytical grade solvents as eluents. 1H-NMR, 13C-NMR, and 2D NMR spectra were recorded
using Bruker Avance 400 MHz spectrometers (Bruker Corporation, Billerica, MA, USA). Corresponding
chemical shifts are reported in ppm downfield relative to TMS and were referenced to the signal of
chloroform-d (δ = 7.26, singlet). Multiplicities were given as: s = singlet, d = doublet, t = triplet,
q = quartet, m = multiplet, brs = broad singlet, dd = doublet of doublets, and td = triplet of doublets.
Values of coupling constants are reported as J in Hz.
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4.2. General Procedure for In(III)-TMSBr-Catalysed Cascade Reaction of Diarylalkyne with Acrylates

A dry reaction tube was charged with aryl alkyne 1 (0.4 mmol), acrylate 2 (1.2 mmol), indium(III)
trifluoroacetylacetonate (In(tfacac)3, 20 mol %, 0.08 mmol, 45.9 mg) and DCE (1 mL) under N2

atmosphere at 0 ◦C. Bromotrimethylsilane (TMSBr, 3 equiv, 1.2 mmol, 183.6 mg) was added and
the reaction mixture was stirred at room temperature for 2 h. Upon completion of the reaction as
indicated by TLC analysis, the residue was directly purified by flash column chromatography on silica
gel (eluent: hexane/ethyl acetate 10:1) to afford the desired product 3.

4.3. Product Characterization

Dimethyl 2-((1-phenyl-3,4-dihydronaphthalen-2-yl)methyl)pentanedioate (3aa). Colorless oil, 106.2 mg,
0.281 mmol, 70% yield. 1H-NMR (400 MHz, CDCl3): δ (ppm) 7.45–7.41 (m, 2H), 7.38–7.34 (m, 1H),
7.18–7.10 (m, 4H), 7.05–7.02 (m, 1H), 6.58 (d, J = 7.5 Hz, 1H), 3.67 (s, 3H), 3.65 (s, 3H), 2.91 (t, J = 7.7 Hz,
2H), 2.66–2.61 (m, 1H), 2.44–2.31 (m, 4H), 2.22–2.18 (m, 2H), 1.79–1.76 (m, 2H); 13C-NMR (100 MHz,
CDCl3): δ (ppm) 175.4, 173.3, 139.2, 136.7, 136.3, 135.2, 134.3, 130.2, 128.4, 127.0, 126.9, 126.4, 126.2,
125.8, 51.6, 51.5, 43.5, 37.0, 31.6, 28.4, 27.4, 26.7.

Dimethyl 2-((1-(p-tolyl)-3,4-dihydronaphthalen-2-yl)methyl)pentanedioate (3ba). Colorless oil, 114.5 mg,
0.292 mmol, 73% yield. 1H-NMR (400 MHz, CDCl3): δ (ppm) 7.24–7.22 (m, 2H), 7.17–7.12 (m, 1H),
7.11–7.08 (m, 1H), 7.05–7.01 (m, 3H), 6.60 (d, J = 7.0 Hz, 1H), 3.67 (s, 3H), 3.65 (s, 3H), 2.89 (t, J = 7.8 Hz,
2H), 2.66–2.62 (m, 1H), 2.44 (s, 3H), 2.43–2.35 (m, 4H), 2.22–2.18 (m, 2H), 1.79–1.74 (m, 2H); 13C-NMR
(100 MHz, CDCl3): δ (ppm) 175.5, 173.3, 136.8, 136.4, 136.2, 136.0, 135.2, 134.2, 130.1, 129.1, 127.0, 126.3,
126.2, 125.9, 51.6, 51.5, 43.4, 37.0, 31.6, 28.4, 27.4, 26.6, 21.2.

Dimethyl 2-((1-([1,1′-biphenyl]-4-yl)-3,4-dihydronaphthalen-2-yl)methyl)pentanedioate (3ca). Colorless oil,
116.3 mg, 0.256 mmol, 64% yield. 1H-NMR (400 MHz, CDCl3): δ (ppm) 7.71–7.66 (m, 4H), 7.51–7.47 (m, 2H),
7.44–7.37 (m, 2H), 7, 23 (brs, 2H), 7.15–7.11 (m, 1H), 7.08–7.04 (m, 1H), 6.67 (d, J = 7.6 Hz, 1H), 3.66 (s, 3H),
3.65 (s, 3H), 2.94–2.90 (m, 2H), 2.70–2.66 (m, 1H), 2.50–2.41 (m, 4H), 2.25–2.19 (m, 2H), 1.83–1.77 (m, 2H);
13C-NMR (100 MHz, CDCl3): δ (ppm) 175.5, 173.3, 140.9, 139.6, 138.2, 136.7, 135.9, 135.2, 134.5, 130.7 (×2),
128.8, 127.3, 127.1 (×2), 126.4, 126.2, 125.9, 51.7, 51.6, 43.5, 37.0, 31.6, 28.4, 27.4, 26.6.

Dimethyl 2-((1-(4-fluorophenyl)-3,4-dihydronaphthalen-2-yl)methyl)pentanedioate (3da). Colorless oil, 90.3 mg,
0.228 mmol, 57% yield. 1H-NMR (400 MHz, CDCl3): δ (ppm) 7.18–7.16 (m, 1H), 7.14–7.10 (m, 5H),
7.07–7.03 (m, 1H), 6.56–6.54 (d, J = 7.5 Hz, 1H), 3.68 (s, 3H), 3.65 (s, 3H), 2.90 (t, J = 7.9 Hz, 2H),
2.66–2.61 (m, 1H), 2.44–2.29 (m, 4H), 2.24–2.19 (m, 2H), 1.80–1.73 (m, 2H); 13C-NMR (100 MHz, CDCl3):
δ (ppm) 175.3, 173.3, 161.9 (d, JC-F = 243.7 Hz), 136.5, 135.3, 135.2, 134.9 (d, JC-F = 4.0 Hz), 134.8, 131.8 (d, JC-F

= 7.8 Hz), 127.1, 126.5, 126.2, 125.7, 115.3 (d, JC-F = 21.1 Hz), 51.7, 51.6, 43.4, 37.0, 31.5, 28.3, 27.4, 26.7.

Dimethyl 2-((1-(4-chlorophenyl)-3,4-dihydronaphthalen-2-yl)methyl)pentanedioate (3ea). Colorless oil, 107.1 mg,
0.26 mmol, 65% yield. 1H-NMR (400 MHz, CDCl3): δ (ppm) 7.61–7.59 (m, 2H), 7.22–7.14 (m, 3H),
7.10–7.06 (m, 2H), 6.58 (d, J = 7.6 Hz, 1H), 3.72 (s, 3H), 3.69 (s, 3H), 2.93 (t, J = 7.8 Hz, 2H), 2.71–2.67 (m, 1H),
2.48–2.41 (m, 4H), 2.37–2.32 (m, 2H), 1.83–1.77 (m, 2H); 13C-NMR (100 MHz, CDCl3): δ (ppm) 175.3, 173.2,
138.1, 136.2, 135.2, 135.1, 134.8, 132.0, 131.6, 127.1, 126.6, 126.3, 125.7, 121.0, 51.7, 51.6, 43.3, 37.0, 31.5, 28.3,
27.3, 26.7.

Dimethyl 2-((1-(4-bromophenyl)-3,4-dihydronaphthalen-2-yl)methyl)pentanedioate (3fa). Colorless oil, 122.2 mg,
0.268 mmol, 67% yield. 1H-NMR (400 MHz, CDCl3): δ (ppm) 7.41–7.39 (m, 2H), 7.17–7.02 (m, 5H),
6.54 (d, J = 7.6 Hz, 1H), 3.67 (s, 3H), 3.65 (s, 3H), 2.89 (t, J = 7.9 Hz, 2H), 2.68–2.61 (m, 1H), 2.43–2.26 (m, 4H),
2.24–2.19 (m, 2H), 1.79–1.75 (m, 2H); 13C-NMR (100 MHz, CDCl3): δ (ppm) 175.3, 173.2, 137.6, 136.3, 135.1,
134.9, 132.9, 131.7, 128.7 (×2), 127.1, 126.6, 126.3, 125.7, 51.7, 51.6, 43.3, 37.0, 31.5, 28.3, 27.3, 26.7.

Dimethyl 2-((1-(o-tolyl)-3,4-dihydronaphthalen-2-yl)methyl)pentanedioate (3ga). Colorless oil, 73.7 mg,
0.188 mmol, 47% yield. 1H-NMR (400 MHz, CDCl3): δ (ppm) 7.28–7.22 (m, 3H), 7.18–7.17 (m, 1H),
7.12–7.08 (m, 2H), 7.03–7.00 (m, 1H), 6.49 (d, J = 7.4 Hz, 1H), 3.66 (s, 3H), 3.65 (s, 3H), 2.92–2.90 (m, 2H),
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2.64–2.61 (m, 1H), 2.46–2.29 (m, 4H), 2.19–2.15 (m, 2H), 2.05 (s, 3H), 1.79–1.72 (m, 2H); 13C-NMR (100 MHz,
CDCl3): δ (ppm) 175.7, 173.3, 138.3, 136.8, 135.8, 135.4, 135.1, 134.2, 130.6, 130.4, 130.1, 127.3, 127.0, 126.4,
125.8, 125.1, 51.6, 51.5, 43.3, 36.8, 31.5, 28.4, 27.1, 26.5, 19.3.

Dimethyl 2-((1-(m-tolyl)-3,4-dihydronaphthalen-2-yl)methyl)pentanedioate (3ha). Colorless oil, 90.9 mg,
0.232 mmol, 58% yield. 1H-NMR (400 MHz, CDCl3): δ (ppm)7.32–7.30 (m, 1H), 7.17–7.15 (m, 2H),
7.12–7.08 (m, 1H), 7.05–7.01 (m, 1H), 6.97–6.93 (m, 2H), 6.59 (d, J = 7.5 Hz, 1H), 3.66 (s, 3H), 3,65 (s, 3H),
2.91–2.87 (m, 2H), 2.65–2.62 (m, 1H), 2.43–2.34 (m, 4H), 2.39 (s, 3H), 2.22–2.17 (m, 2H), 1.79–1.76 (m, 2H);
13C-NMR (100 MHz, CDCl3): δ (ppm) 175.6, 173.3, 139.0, 136.7, 136.3, 135.1, 134.1, 130.8, 128.2,
127.6 (×2), 127.2, 127.0, 126.3, 126.2, 125.9, 51.6, 51.5, 43.4, 36.9, 31.6, 28.4, 27.3, 26.6, 21.5.

Dimethyl 2-((1-(4-bromo-2-methylphenyl)-3,4-dihydronaphthalen-2-yl)methyl)pentanedioate (3ia). Colorless oil,
97.8 mg, 0.208 mmol, 52% yield. 1H-NMR (400 MHz, CDCl3): δ (ppm) 7.44 (s, 1H), 7.38 (d, J = 8.1 Hz, 1H),
7.17 (d, J = 7.1 Hz, 1H), 7.13–7. 10 (m, 1H), 7.04–7.00 (m, 1H), 6.97 (d, J = 8.1 Hz, 1H), 6.45 (d, J = 7.4 Hz,
1H), 3.67 (s, 3H), 3.66 (s, 3H), 2.92–2.88 (m, 2H), 2.64–2.62 (m, 1H), 2.46–2.34 (m, 4H), 2.22–2.11 (m, 2H),
2.03 (s, 3H), 1.80–1.70 (m, 2H); 13C-NMR (100 MHz, CDCl3): δ (ppm) 175.5, 173.2, 139.4, 137.3, 135.3, 135.1,
134.8, 134.3, 133.0, 132.1, 129.0, 127.2, 126.6, 126.4, 124.9, 121.1, 51.7, 51.6, 43.2, 36.9, 31.5, 28.3 (×2), 27.0, 26.5.

Dimethyl 2-((1-(3,5-dimethylphenyl)-3,4-dihydronaphthalen-2-yl)methyl)pentanedioate (3ja). Colorless oil,
89.4 mg, 0.220 mmol, 55% yield. 1H-NMR (400 MHz, CDCl3): δ (ppm) 7.17–7.15 (m, 1H), 7.12–7.08 (m, 1H),
7.06–7.02 (m, 1H), 6.98 (s, 1H), 6.78 (s, 1H), 6.73 (s, 1H), 6.62 (d, J = 7.5 Hz, 1H), 3.67 (s, 3H), 3.66 (s, 3H),
2.91–2.86 (m, 2H), 2.66–2.61 (m, 1H), 2.44–2.37 (m, 4H), 2.35 (s, 6H), 2.24–2.14 (m, 2H), 1.81–1.75 (m, 2H);
13C-NMR (100 MHz, CDCl3): δ (ppm) 175.7, 173.3, 139.0, 137.7, 136.8, 136.4, 135.1, 133.9, 128.4, 127.9, 126.9,
126.2, 126.1, 125.9, 51.6, 51.5, 43.5, 37.0, 31.6, 28.4, 27.3, 26.6, 21.3.

Diethyl 2-((1-phenyl-3,4-dihydronaphthalen-2-yl)methyl)pentanedioate (3ab). Colorless oil, 97.5 mg, 0.240 mmol,
60% yield. 1H-NMR (400 MHz, CDCl3): δ (ppm) 7.44–7.40 (m, 2H), 7.37–7.33 (m 1H), 7.18–7.16 (m, 3H),
7.12–7.09 (m, 1H), 7.05–7.01 (m, 1H), 6.58 (d, J = 7.6 Hz, 1H), 4.17–4.08 (m, 4H), 2.90 (t, J = 8.3 Hz, 1H),
2.65–2.58 (m, 1H), 2.43–2.30 (m, 4H), 2.21–2.14 (m, 2H), 1.79–1.74 (m, 2H), 1.29–1.27 (m, 6H); 13C-NMR
(100 MHz, CDCl3): δ (ppm) 175.1, 172.9, 139.2, 136.7, 136.2, 135.2, 134.5, 130.3, 128.4, 127.0, 126.8, 126.3,
126.2, 125.8, 60.4, 60.3, 43.5, 37.0, 31.8, 28.4, 27.4, 26.8, 14.2.

Dibutyl 2-((1-phenyl-3,4-dihydronaphthalen-2-yl)methyl)pentanedioate(3ac). Colorless oil, 96.2 mg,
0.208 mmol, 52% yield. 1H-NMR (400 MHz, CDCl3): δ (ppm) 7.44–7.40 (m, 2H), 7.37–7.33 (m, 1H),
7.17–7.09 (m, 4H), 7.05–7.01 (m, 1H), 6.58 (d, J = 7.0 Hz, 1H), 4.07–4.03 (m, 4H), 2.91 (t, J = 8.1 Hz,
2H), 2.66–2.57 (m, 1H), 2.47–2.30 (m, 4H), 2.21–2.12 (m, 2H), 1.81–1.73 (m, 2H), 1.65–1.54 (m, 4H),
1.42–1.29 (m, 4H), 0.97–0.89 (m, 6H); 13C-NMR (100 MHz, CDCl3): δ (ppm) 175.1, 173.0, 139.2, 136.7,
136.2, 135.1, 134.4, 130.3, 128.4, 127.0, 126.8, 126.3, 126.2, 125.8, 64.4, 64.3, 43.5, 37.0, 31.9, 30.7, 30.6, 28.4,
27.4, 26.8, 19.1 (×2), 13.7, 13.6.

Dihexyl 2-((1-phenyl-3,4-dihydronaphthalen-2-yl)methyl)pentanedioate(3ad). Colorless oil, 66.1 mg,
0.148 mmol, 37% yield. 1H-NMR (400 MHz, CDCl3): δ (ppm) 7.44–7.40 (m, 2H), 7.37–7.35 (m, 1H),
7.17–7.16 (m, 3H), 7.12–7.08 (m, 1H), 7.05–7.01 (m, 1H), 6.57 (d, J = 7.5 Hz, 1H), 4.09–4.02 (m, 4H),
2.92–2.88 (m, 2H), 2.64–2.62 (m, 1H), 2.45–2.32 (m, 4H), 2.22–2.16 (m, 2H), 1.79–1.71 (m, 2H),
1.65–1.56 (m, 6H), 1.32–1.28 (m, 10H), 0.93–0.87 (m, 6H); 13C-NMR (100 MHz, CDCl3): δ (ppm) 175.1,
173.0, 139.2, 136.7, 136.2, 135.1, 134.4, 130.3, 128.4, 127.0, 126.8, 126.3, 126.2, 125.8, 64.7, 64.6, 43.5, 37.0,
31.8, 31.4, 31.3, 28.6, 28.5, 28.4, 27.4, 26.7, 25.6 (×2), 22.5, 22.4, 14.0 (×2).

Bis(2-chloroethyl) 2-((1-phenyl-3,4-dihydronaphthalen-2-yl)methyl)pentanedioate (3ae). Colorless oil, 89.2 mg,
0.200 mmol, 50% yield. 1H-NMR (400 MHz, CDCl3): δ (ppm) 7.45–7.43 (m, 2H), 7.38–7.36 (m, 1H),
7.18–7.10 (m, 4H), 7.06–7.02 (m, 1H), 6.58 (d, J = 7.6 Hz, 1H), 4.35–4.29 (m, 4H), 3.70–3.63 (m, 4H),
2.94–2.89 (m, 2H), 2.73–2.67 (m, 1H), 2.50–2.33 (m, 4H), 2.31–2.26 (m, 2H), 1.84–1.79 (m, 2H); 13C-NMR
(100 MHz, CDCl3): δ (ppm) 174.6, 172.4, 139.1, 136.6, 136.4, 135.1, 134.0, 130.2, 128.4, 127.0, 126.9, 126.4,
126.2, 125.9, 64.0, 63.9, 43.2, 41.5, 41.4, 36.9, 31.5, 28.4, 27.4, 26.4.
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Product characterization data, and 1H- and 13C-NMR spectra are available from
supplementary material.

5. Conclusions

In a nutshell, we described an efficient method to assemble aryldihydronaphthalene derivatives
via the cascade reaction of diarylalkynes with acrylates employing the catalysis of a combined Lewis
acid system formed from In(III) salt and TMSBr. Both indium(III) and TMSBr are indispensable for
the efficient progress of the reaction. In most cases, the reaction proceeded efficiently to afford the
corresponding aryldihydronaphthalene derivatives in moderate to good yields. With reference to
current experimental observations and literature reports, a possible mechanistic pathway for this
reaction was also provided.

Supplementary Materials: Supplementary materials are available online: general experimental procedures,
product characterization data, and 1H- and 13C-NMR spectra.
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