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Background: Huntington's disease (HD) is characterised by both regional and generalised neuronal cell loss in the
brain. Investigating functional brain connectivity patterns in rest inHDhas the potential to broaden theunderstand-
ing of brain functionality in relation to disease progression. This study aims to establishwhether brain connectivity
during rest is different in premanifest and manifest HD as compared to controls.
Methods:At the LeidenUniversityMedical Centre study site of the TRACK-HDstudy, 20 earlyHDpatients (disease
stages 1 and 2), 28 premanifest gene carriers and 28 healthy controls underwent 3 TMRI scanning. Standard and
high-resolution T1-weighted images and a resting state fMRI scanwere acquired. Using FSL, group differences in
resting state connectivity were examined for eight networks of interest using a dual regression method. With a
voxelwise correction for localised atrophy, group differences in functional connectivity were examined.
Results: Brain connectivity of the leftmiddle frontal and pre-central gyrus, and right post central gyruswith theme-

dial visual network was reduced in premanifest and manifest HD as compared to controls (0.05 > p > 0.0001). In
manifest HD connectivity of numerous widespread brain regions with the default mode network and the executive
control network were reduced (0.05 > p > 0.0001).
Discussion: Brain regions that show reduced intrinsic functional connectivity are present in premanifest gene car-
riers and to a much larger extent inmanifest HD patients. These differences are present evenwhen the potential
influence of atrophy is taken into account. Resting state fMRI could potentially be used for early disease detection
in the premanifest phase of HD and for monitoring of disease modifying compounds.
© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

Huntington's disease (HD) is an autosomal dominant neurodegen-
erative disease characterised by progressive motor-, behavioural- and
cognitive-dysfunction. The expansion of the HTT gene on chromosome
4 is eventually responsible for neuronal loss and dysfunction through-
out the brain (Ross and Tabrizi, 2011; van den Bogaard et al., 2012).
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Previous studies have demonstrated that atrophy of both the deep grey
matter structures and of the cortex are apparent in patients with HD,
and also to a lesser degree in HD gene carriers prior to disease onset
(Aylward et al., 2000; Rosas et al., 2002; Tabrizi et al., 2011; van den
Bogaard et al., 2010). These premanifest gene carriers, who do not
show symptoms of the disease but are certain of eventual disease onset,
have also been found to show reduced integrity of white matter(Dumas
et al., 2012; Reading et al., 2005; Rosas et al., 2006). In patients with
HD, both extensive white matter integrity loss and atrophy of white
matter have been shown (Beglinger et al., 2005; Dumas et al., 2012;
Weaver et al., 2009).

Clinical assessments inmultiple functional domains have extensively
objectified the impairments reported by patients and their companions
(Caine et al., 1978; Ho et al., 2003; Kirkwood et al., 2001; Snowden et al.,
2001). Also in premanifest gene carriers numerous tests of functioning
have shown diminished performance (Brandt et al., 2002; Paulsen et al.,
2008; Solomon et al., 2008). In an effort to bridge the gap between the
observed clinical deteriorations and structural brain deficits, a number
served.
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of studies have applied clinical assessments whilst observation of brain
activity was performed using functional magnetic resonance imaging
(fMRI).

Four task-based fMRI studies in manifest HD demonstrated a fair-
ly homogenous profile, with reductions in brain activation in numer-
ous cortical and sub-cortical brain regions (Clark et al., 2002; Kim
et al., 2004; Thiruvady et al., 2007; Wolf et al., 2008b). However
the results from the limited number of task-based fMRI studies in
premanifest HD report a more heterogeneous pattern. Increased activa-
tion in several brain regions was found in premanifest gene carriers far
from expected disease onset, and reduced activation was reported in
premanifest gene carriers close to expected disease onset (Paulsen et
al., 2004). These task-based fMRI studies all challenged the brain during
the MRI scanning yielding assessment and performance dependent re-
sults. An alternative approach, which is currently gaining an interest is
to examine the brain connectivity patterns without taxation (Seibert
et al., 2012;Wolf et al., 2011). There aremajor differences in the knowl-
edge base that can be gained from task-based fMRI as opposed to rest-
ing state fMRI. RS fMRI examines the functional interactions between
brain regions, whereas task-based fMRI targets regional differences
activated by a task (Biswal et al., 2010). A further major difference is
that task-based fMRI has the added confounder of interference of dis-
ease state on task performance. This is not the case with resting state
fMRI as no active input is required.

Brain function depends on large-scale brain interactions (Mesulam,
1998). Functional brain connectivity patterns can be examined at rest
with fMRI and this approach is recognized as an important step towards
understanding functional brain networks (Biswal et al., 2010). Hence,
recent reports have incorporated resting state (RS) fMRI to examine
the brain during both normal ageing and disease (Damoiseaux et al.,
2008; Hafkemeijer et al., 2011; Veer et al., 2010; Zhang and Raichle,
2010). Currently the earliest robustly detectable brain changes in HD
are atrophy of subcortical grey matter structures (Paulsen et al., 2008;
Tabrizi et al., 2009). Given that cell loss presents as the result of a path-
ologic cascade it is plausible that functional brain changes may occur
prior to cell loss. In carriers of the APOE-4 gene, alterations in intrinsic
functional connectivity have been observed even in the absence of
changes in brain structure (Filippini et al., 2009). Only a limited number
of studies have investigated this in premanifest HD (Seibert et al., 2012;
Wolf et al., 2011), whereby one study only examined premanifest HD
(Seibert et al., 2012) and one study used a perfusion based MRI ap-
proach instead of a RS-fMRI technique (Wolf et al., 2011). Functional
brain changes may also occur in HD, either prior to, or as a result of
brain atrophy. RS fMRI has the potential to give insight into potential
functional changes. This exploratory study aims to establish whether
Table 1
Group characteristics of the study groups.

N Healthy controls

28

Gender M/F 13/15
Age (years) mean (SD) 48.5 (8.5)
Education level
Median (range)

(2–5)

Handedness—right
Number (% of group)

25 (89%)

CAG repeat length
Mean (SD)

n/a

Total functional capacity
Mean (SD)

12.9 (1.9)

UHDRS—motor
Mean (SD)

2.5 (2.5)

Expected disease onset (years) mean (SD) n/a
Disease duration (years) mean (SD) n/a

N = number of participants, SD = Standard deviation, n/a = not applicable, UHDRS—mot
a Significantly different to controls at p b 0.05.
b Significantly different to premanifest gene carriers at p b 0.05.
functional brain connectivity at rest is altered in both premanifest HD
gene carriers and early manifest patients.

2. Material and methods

2.1. Participants

At the Leiden University Medical Centre study site of the TRACK-HD
study, subjects participating in the longitudinal TRACK-HD study
underwent MRI scanning including fMRI during the baseline visit. Of
the 90 participants included, 11 did not undergo the additional fMRI
scan due to time constraints. Furthermore after quality control of the
fMRI data, both visually and by means of the scan analysis reports gen-
erated during post-processing of the MRI data, three manifest HD par-
ticipants were excluded from the analysis because of excessive motion
(maximum motion during scan >4 mm (Jenkinson et al., 2011)). In
total 20 disease stage 1 and 2 HD patients, 28 premanifest gene carriers
and 28 healthy controls were included in the fMRI analysis (Table 1).

Inclusion criteria for HD patients included a positive genetic test
for the HTT gene with 40 or more CAG repeats; the presence of
motor disturbances defined as more than five points on the Unified
Huntington's Disease Rating Scale—total motor score (UHDRS-TMS),
and a Total Functional Capacity score (TFC) greater than or equal to
seven points, thereby only including patients in the earliest two disease
stages (Shoulson and Fahn, 1979). Inclusion criteria for premanifest
gene carriers consisted of a positive genetic test with 40 or more CAG
repeats, and the absence of motor disturbances with five or less points
on the UHDRS-TMS. Finally, a burden of pathology score ((CAG repeat
length − 35.5) × age) greater than 250 (Penney et al., 1997) was re-
quired. Age- and gender-matched gene-negative relatives of HD gene
carriers and unaffected spouses were included as healthy controls.
Exclusion criteria for all participants included previous significant head
injury, any other neurological or major psychiatric disorder, or unwill-
ingness to undergo MRI scanning. Medical history taking, an interview
based assessment and questionnaires were used to ascertain that no
major psychiatric disorder could be classified at the time of inclusion
and scanning. Consequently the use of neuroleptic medications or anti-
depressants was sparse and considered to be of no influence. The study
was approved by theMedical Ethical Committee of the Leiden University
Medical Centre. All participants gave written informed consent. For full
details of study parameters see Tabrizi et al. (2009).

During further medical history taking, handedness was recorded by
means of the Edinburgh Inventory 2nd version (Oldfield, 1971). For
early HD patients, the rater's estimate of disease onset was determined,
based on the rater's observations, reports by the patients and
Premanifest gene carriers Early HD patients

28 20

11/17 5/15
43.21 (8.2) 46.5 (10.6)
(2–5) (1–5)

24 (85%) 17 (85%)

42.5 (2.5) 44.1 (2.6)b

12.6 (0.8) 10.2 (1.9)ab

2.4 (1.4) 20.3 (11.0)ab

11.6 (4.4) n/a
n/a 6.8 (7.4)

or = Unified Huntington's Disease Rating Scale—total motor score.
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information from companions or relatives. With this information the
current disease duration was calculated. For premanifest gene carriers
the estimated number of years until disease onset was calculated
based on their current age and CAG repeat length, by means of the for-
mula developed by Langbehn et al. (2004).

2.2. MRI protocol

MRI acquisition was performed on a 3 Twhole body scanner (Philips
Achieva, Healthcare, Best, The Netherlands) with an eight channel
receive array head coil. An anatomical T1-weighted scan was acquired
using an ultrafast gradient echo 3D acquisition sequence with the fol-
lowing imaging parameters: repetition time (TR) = 7.7 ms, echo time
(TE) = 3.5 ms, field-of-view = 24 × 24 × 16.4 cm, and matrix size
224 × 224, with a duration of 9 min. For post-processing registration
purposes, a high resolution T1-weighted scan, with the following pa-
rameters was collected; repetition time (TR) = 2200 ms, echo time
(TE) = 30 ms, field-of-view = 220 × 220 × 168 mm, flip angle = 80°,
and matrix size = 112 × 109mm, with a duration of 46 s. A RS
fMRI scan with the following parameters was also obtained: repetition
time (TR) = 2200 ms, echo time (TE) = 30 ms, field-of-view =
220 × 220 × 10.4 cm, resolution = 1.96 × 1.96 × 2, no slice gap, flip
angle = 80°, and matrix size 80 × 79, with a duration of 7.5 min. To
reduce unnecessary sensory input that could influence the results, par-
ticipants were not allowed to listen to music during the RS fMRI scan,
and to ensure a wakeful disposition participants were asked to keep
their eyes open with normal background light.

2.3. Pre-processing for RS fMRI analysis

Pre-processing of the RS fMRI data using the standard procedure
was carried out using FSL 4.1.8 (Smith et al., 2004). The following
steps were preformed: head motion correction (Jenkinson et al.,
2002), brain extraction (Smith, 2002), and spatial smoothing using
a Gaussian kernel of 5 mm full width at half maximum (FWHM). All
volumes were normalised based on mean intensity and high-pass
temporal filtering (Gaussian-weighted least-squares straight line fitting,
FWHM = 100 s). The middle (reference scan) of each individual's
RS fMRI time series was affine registered to MNI152 standard space
(Montreal Neurological Institute, Montreal, QC, Canada): initially, it
was registered to the high resolution T1-weighted scan. This high reso-
lution T1-weighted scanwas subsequently registered to the anatomical
T1-weighted scan. Finally, the anatomical scan was registered to
MNI152 standard space. By first registering the functional data to the
high resolution scan and then to the anatomical T1-weighted scan
allows for better registration of the data. These three registrationmatri-
ces were combined to obtain a matrix for transforming fMRI data from
native space to standard space, using interpolation to 2 × 2 × 2 mm
voxels. Subjective visual quality control was performed on all scans to
ensure correct registration.

2.4. Statistical analyses

Statistical analysis of group demographics and the movement pa-
rameters during scanning derived from the MRI preprocessing were
compared using SPSS (version 17, SPSS, USA).Where appropriate either
Analysis of Variance or Chi-squared tests were applied.

Resting state connectivity was examined using a dual regression
method (Filippini et al., 2009; Khalili-Mahani et al., 2011; Zuo et
al., 2010). In doing so the similarity of the haemodynamic response
patterns (fMRI signal) for each brain voxel was compared to the
fMRI signal in eight pre-defined, well-established, networks of interest
(NOIs) (Beckmann et al., 2005). These networks encompass over 80%
of the entire brain volume. The eight NOIs represent spatial template
maps corresponding tomedial visual (NOI1), lateral visual (NOI2), audi-
tory (NOI3), sensorimotor (NOI4), the default mode network (NOI5),
executive control (NOI6), visual–spatial memory (NOI7), and working
memory (NOI8) networks. See Fig. 1 for visual display of NOI1, NOI5
and NOI6.

First, a spatial regression was applied: The eight NOIs and a single
CSF voxel (left ventricle horn) were used as spatial regressors in a gen-
eral linearmodel (GLM) to obtain the nine corresponding dynamic pat-
terns of fMRI signal fluctuations in each network from each individual's
RS fMRI scan. Next, these nine time series, together with sixmotion cor-
rection parameters derived during preprocessing (three translations
and three rotations) were used as temporal regressors in a second
(temporal) GLM. For each voxel, the z-score corresponding to each of
these 15 temporal regressors was obtained. A GLM was applied,
resulting in spatial z-score maps for each individual's RS fMRI scan,
for each NOI. This dual-regression method thereby generated eight
z-scores maps reflecting the connectivity strength of each voxel in the
brain to each of the eight NOIs. A voxel with a high z-score demonstrat-
ed a highly similar pattern of fMRI fluctuation to the voxels in the NOI.

The z-score maps were constructed to compare the groups. The
group statistical analysis was performed to determine which brain
regions showed statistically significant differences in connectivity to
any of the NOIs between groups by applying three independent sample
t-tests. Non-parametric permutation based statistical inference was
used with 5000 repeated permutations per NOI for the comparisons;
controls vs premanifest, controls vs manifest HD and premanifest vs
manifest HD. Correction for multiple comparisons per NOI was applied
using threshold free cluster enhancement based correction whereby all
results under the threshold of p b 0.05 were considered statistically
significant (Smith and Nichols, 2009). Due to the exploratory nature
of the study a further correction of the comparison of the eight net-
works was not applied in order to prevent inflation of type II errors.
From the resulting areas of statistical differences the z-scores were
extracted per individual per network, and the average group values
of the z-scores are displayed in Table 3. The analysis of the network
connectivity was performed with a voxel-wise correction for localised
grey matter to rule-out any potentially confounding impact of local
structural loss on brain connectivity, as described by Oakes et al. (2007).
This correction method has also been applied in Alzheimer's disease
(Damoiseaux et al., 2012) and ALS (Cosottini et al., 2012). In short, per
individual the anatomical T1-weighted scans were processed to provide
grey matter voxel-based probability maps, which were included as a
voxel-wise covariate in themixed effectsmodel group analysis. To subse-
quently determine the spatial location of differences in the voxel-wise
covariate thesewere statistically analysed by applying three independent
sample t-tests. Non-parametric permutation based statistical inference
was used with 5000 repeated permutations group for the comparisons;
controls vs premanifest, controls vs manifest HD and premanifest vs
manifest HD. As in the previous analysis; correction for multiple compar-
isonswas applied using threshold free cluster enhancement based correc-
tion whereby all results under the threshold of p b 0.05 were considered
statistically significant (Smith and Nichols, 2009). Overall the entire pro-
cedure provided spatial information per NOI of brain regions demonstrat-
ing different connectivity patterns between the study groups.

3. Results

The groups were not statistically different in terms of age, gender,
handedness and education level. Early HD patients had significantly
higher UHDRS motor scores, CAG repeat lengths and lower Total Func-
tional Capacity scores than premanifest gene carriers and/or healthy con-
trols. Statistical differences were also found in the amount of movement
during scanning between groups, whereby the early manifest group
displayed higher amounts of maximum, absolute and relative movement
as compared to premanifest gene carriers and controls. Premanifest gene
carriers did not display more movement than controls (Table 2).

Premanifest gene carriers and earlymanifest HDdisplayed an overlap
in a region of reduced connectivitywithNOI1 (medial visual network) in



Fig. 1. Group comparisons of functional brain connectivity shown in three orientations. Green areas show the voxels encompassing the network of interest (NOI) with which the
connectivity decreases are present. Blue–light blue areas show the areas of reduced connectivity with the NOI between premanifest gene carriers and controls, red–yellow areas
show the areas of reduced connectivity with the NOI between early manifest HD and controls. Some areas of blue and red overlap is present, here the functional connectivity is
reduced in both premanifest and manifest HD.
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the left frontal lobe and the right parietal lobe, as compared to controls
(0.05 > p > 0.0001). The area in the left frontal lobe comprised the
grey matter near the pre-central and middle-frontal gyri. The area in
the parietal lobe was localised in the post-central gyrus, and showed
the highest levels of statistical difference (Fig. 1). Premanifest gene
carriers only, also displayed reduced connectivity bi-laterally of the cin-
gulate gyrus with NOI1 compared to the controls. This area of reduced
connectivity was not found in the early HD group. The manifest HD
Table 2
Movement parameters of participants during scanning.

Movement
parameter (mm)

Healthy
controls

Premanifest
gene carriers

Early HD
patients

Mean SD Mean SD Mean SD

Absolute 0.36 0.25 0.29 0.19 0.59⁎ 0.46
Relative 0.10 0.05 0.09 0.05 0.24⁎ 0.23
Maximum 1.15 0.96 0.74 0.47 2.51⁎ 2.32

SD = Standard deviation.
⁎ Significant differences to controls and premanifest gene carriers. p b 0.05.
group demonstrated additional areas of reduced connectivity with
NOI1 that were not observed in the premanifest gene carrier group.
These areas were located bi-laterally within the superior occipital
lobe, within a large field in the deep grey matter, including the puta-
men, globus pallidus, thalamus, andbi-laterally in the cortex of the fron-
tal orbital region. The deep grey matter areas displayed the highest
levels of statistical significance (Fig. 1).

The connectivity of the left parietal lobe, the pre-frontal cortex in
both hemispheres, and regions of grey and white matter in the both
temporal lobes with NOI5 (the default mode network) was reduced in
early HD only as compared to controls (0.05 > p > 0.0001). The areas
showing reductions bilaterally where also the areas with displaying
the highest levels of statistical difference (Fig. 1).

Connectivity of a small region in the thalamus and the left
supramarginal gyruswithNOI6 (executive control network)was reduced
in manifest HD as compared to controls (p b 0.05) (Fig. 1).

No differences in connectivity were found with any of the NOIs
when premanifest gene carriers and manifest HD were directly com-
pared. No differences between any of the study groups were found in
the connectivity with the other NOIs.



Table 3
Z-scores in the regions that demonstrate differences between groups.

Network Mask Healthy
controls

Premanifest
gene carriers

Early HD
patients

Mean SD Mean SD Mean SD

NOI1—visual HD vs control 1.87 0.68 1.65 0.65 1.45 0.42
PMGC vs control 1.68 1.04 0.31⁎ 0.77 1.00⁎⁎ 0.53

NOI5—default HD vs control 4.08 1.11 3.40 1.32 2.19⁎⁎ 1.06
NOI6—executive HD vs control 3.61 2.04 3.14 1.87 0.84⁎⁎ 1.32

SD = Standard deviation.
⁎ Significantly different from controls.

⁎⁎ Significantly different from controls and premanifest gene carriers p b 0.05.
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Group differences were found in the voxel-wise covariate whereby
the earlymanifest HD group demonstrated reduced values of greymatter
probability in many deeper lying brain regions as compared to controls,
and as compared to premanifest gene carriers. The spatial location of
these reductions is shown in Fig. 2.
Fig. 2. Structural voxelwise covariate differences between groups. Red–yellow areas show the
Blue–light blue areas of structural differences between earlymanifest HD and premanifest gene
premanifest gene carriers and controls.
4. Discussion

Reductions in intrinsic functional connectivity are apparent in both
premanifest gene carriers and patients with early HD. The earliest
areas to show a reduction in connectivity are regions within the left
frontal and right parietal and bilateral visual cortices. These areas also
demonstrated reduced connectivity in the earlymanifest group. Further
connectivity reductionswere also apparent inmany other brain regions
in early HD such as subcortical grey matter and the occipital lobes.
These observed differences to healthy controls are not explained by
brain atrophy.

In premanifest gene carriers our findings show reduced connectivity
of NOI1 (medial visual network) with the left frontal, right parietal and
bilateral cingulate gyrus during rest. The only known other report of
RS fMRI in HD is a methodological report describing the stability and
suitability of RS fMRI over a one year follow up period in premanifest
gene carriers and healthy controls. This report by Seibert et al. (2012)
reported no differences between premanifest HD and healthy controls,
which contradict ourfindings. However, there are severalmethodological
areas of differences in grey matter probability between early manifest HD and controls.
carriers. No areas of differences in the voxel-based probabilitymapswhere found between

image of Fig.�2
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differences that could explain this discrepancy. Two main differences
exist; first, a surface based analysis in native space rather than volume
atlas transformation to MNI152 space was applied by Seibert et al.
(2012). Their approach entails reduction of data points from thousands
of voxels to approximately 80 regions. This is beneficial for reducing
the need for many multiple comparisons, however can ‘average out’ im-
portant results. The seed regions defined by Seibert et al. (2012) are an-
atomically defined, however anatomical definition does not necessarily
produce functional regions. In our study we choose to use established
functional networks as a starting point instead of anatomical regions.
We acknowledge the advantage of not registering to a volume atlas
such as the MNI152 space excludes the potential for small local registra-
tion errors. Using a native space parcellation can bemore readily visually
inspected but can also contain small quality control rater dependent
errors. The surfaced based approach and the subsequent statistical anal-
ysis applied by Seibert et al. (2012) do not include a regressor for the
presence of atrophy. The second main difference is that Seibert et al.
(2012) used two seed regions, again likely to be different to functional
regions, namely the putamen and the isthmus cingulate. By using the cin-
gulate as a seed, the default mode network is examined and by using the
putamen one of the most affected regions in HD is addressed. In every
anatomical study the putamen comes out as the strongest potential
biomarker (Van den Bogaard et al., 2012). However, this approach did
not result in significant differences, which seems counterintuitive as the
putamen is severely affected in the premanifest stage. This severe
anatomical difference does not yield functional differences which is
puzzling. Other methodological differences between these two studies
are; inclusion criteria and number of participants, different scanner type.

Whilst the two papers seem very different in their approach, the
results are not as different as one might suspect. The main conclusions
from the study by Seibert et al. are methodological, namely the longitu-
dinal stability of resting state, there are some findings suggestive of dif-
ferences in the premanifest gene carriers' resting state fMRI parameters.
Modest differences were found. A weakening of the resting state correla-
tion between the caudate and putamen was observed in premanifest
gene carriers, and furthermore subjects with this weakening correlation
were closer to the predicted expected disease onset. The fact we do find
significant results in the premanifest group is possibly explained by the
fact we applied a network approach rather than a seed approach.

Carriers of genes resulting in neurological diseases other than HD
have been found to show aberrant intrinsic functional connectivity in
the absence of disease signs (Filippini et al., 2009; Whitwell et al.,
2011), thus supporting the occurrence of functional brain changes prior
to a disease manifestation. Results from other studies using task based
fMRI in HD also support our findings (Paulsen et al., 2004; Saft et al.,
2008; Wolf et al., 2007, 2008a). These studies show disrupted activation
(either increased or decreased) in areas that do not form an identical
spatial match to our results, but do show great similarity of involved
brain areas.

Some regions with altering between-region connections in
premanifest gene carriers in this study, such as the left frontal lobe, spe-
cifically in themiddle frontal gyri and pre-central gyrus, have also shown
locally decreased task related fMRI activation (Paulsen et al., 2004; Saft et
al., 2008; Wolf et al., 2007, 2008a). Task based fMRI studies also demon-
strated the implication of the post central gyrus (Saft et al., 2008), and
the bilateral cingulate cortex (Paulsen et al., 2004; Saft et al., 2008). Fur-
ther support for our finding is found in results using a different imaging
technique that measures blood perfusion during rest. Cerebral blood
flow was found to be altered in premanifest gene carriers in prefrontal
brain regions (Wolf et al., 2011). Our results demonstrate that early
reductions in intrinsic functional connectivity are present prior to the
clinical manifestation of HD. This is an important finding as therapeutic
interventionsmaywish tomonitor the functional impact of a compound
on the brain in the absence of clinical outcome measures.

In the early HD group, our findings of reduced connectivity encom-
pass more and larger regions in the brain than of premanifest gene
carriers. Some, but not all of these regions have previously been shown
to show disturbed activation during task based fMRI. The disrupted acti-
vationwas reported in the same brain areaswithwhichwe found reduc-
tions in connectivity to NOI1 (medial visual network); left frontal lobe
(Clark et al., 2002; Georgiou-Karistianis et al., 2007), right parietal lobe
(Clark et al., 2002; Georgiou-Karistianis et al., 2007), superior occipital
(Clark et al., 2002) and frontal orbital (Kim et al., 2004) regions in both
hemispheres, and specific subcortical structures such as the putamen
(Kim et al., 2004; Saft et al., 2008). However, no previous literature
describes functional involvement of the globus pallidus, or thalamus.
Although structural changes have been established repeatedly(Kassubek
et al., 2005; van den Bogaard et al., 2010, 2012). The brain regions de-
monstrating reduced connectivity with NOI5 (default mode network)
were also reported to show altered activation during performance, such
as with the left parietal (Georgiou-Karistianis et al., 2007), and bilateral
prefrontal cortices (Saft et al., 2008; Thiruvady et al., 2007) and temporal
lobes (Kim et al., 2004). The reduction of connectivity of the left su-
pramarginal gyrus and thalami with NOI6 (executive control network)
during rest, does not find support in other studies of connectivity or
brain activation during task execution. Despite the different nature of
RS fMRI versus task based fMRI, our current findings do seem comple-
mentary to the task-based fMRI results (van den Bogaard et al., 2012).
With RS fMRI overall brain connectivity is examined that is not limited
to task related brain regions, and we have demonstrated that the con-
nectivity of multiple brain networks is affected in HD.

The brain regions demonstrating reduced connectivity as compared
to healthy controls visually displayed overlap between premanifest
gene carriers and early HD patients, possibly indicating progressive func-
tional deficits. The regions demonstrating reduced connectivity generally
occur throughout the brain and, especially in manifest HD are present
bilaterally.

It is unknownwhether reduced connectivity patterns reflect connec-
tivity that is limited or non-existent due to neuronal death or whether
such results reflect intact but abnormally functioning neurons in HD.
The results from this current study suggest that the latter may be a
more accurate reflection, given that atrophy reflects (advanced) volume
loss as a result of neuronal death, and that our results remain validwhen
taking into consideration MRI detectable regional atrophy. Therefore, it
is not likely that reductions in functional connectivity can be explained
solely by neuronal death in HD.

The strengths of this study lay in the comprehensive and exploratory
nature of the fMRI analysis. As this study was performed in a single sam-
ple of strictly selected premanifest and early manifest HD the results
reflect varying stages of disease progression. Furthermore, by taking
atrophy into consideration the potential influence of cell loss on connec-
tivity results was reduced. Examination of brain networks encompassing
almost the entire brain allowed for a hypothesis generating approach.
Therefore the brain regions found to display reduced connectivity may
be targeted in future studies of HD. The analysis method was chosen
based on the standard analysis procedures that allow for replication
thereby enhancing the reproducibility in light of biomarker research.
The limitations of this study lay in the potential for the influence of
motion artefacts due to chorea. However, every effort was made to pre-
vent motion during scanning and furthermore strict quality control was
applied to prohibit the inclusion of poor quality scans. This resulted in
the exclusion of three scans from the manifest HD group. Also, the influ-
ence of excessive motion was reduced by including a strictly selected
early HD group where chorea is generally limited. Having said this, the
presence of reduced functional connectivity in the premanifest gene car-
rier group–whodonot display significantmovement disorder– suggests
that the findings may not arise as a result of movement only. Another
limitation is the unknown effect of medication on functional differences.
The indication anduse ofmedication are highly variable and thereforewe
did not choose to control for the influence of medication. Furthermore,
the eight networks examined are not specifically validated in the HD
population, however these networks have been systematically found in
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healthy subjects (Damoiseaux et al., 2006) as well as disease states such
as Mild Cognitive Impairment and Alzheimer's disease (Binnewijzend et
al., 2012). Other issues are the novelty of the technique, the novelty of
the eight network approach, the analysis of each of the eight networks
separately whereby the potential for type II errors is increased, the use
of ‘eyes-closed’ instruction during scanning and the cross-sectional de-
sign. To further understand if connectivity patterns are indeed affected
by the progressive nature of this degenerative disease, study reproduc-
tion and longitudinal follow-up is essential in all study groups. Longitu-
dinal follow-up using RS fMRI has the advantage over task-based fMRI
that it is easier to standardise for cross-site, cross-cultural studies. Corre-
lation of RS fMRI changes with changes in clinical measures will be
addressed in a future longitudinal study. In the multi-site follow-up
of the TRACK-HD study the evaluation of RS fMRI as a biomarker for
HD is ongoing.

5. Conclusion

We have demonstrated that in the absence of processes that put
demand on the brain, the HD brain functions differently. These dif-
ferences are apparent even when the potential influence of atrophy
is taken into account. We have shown that these functional differ-
ences are present not only after disease manifestation but also in
the preceding ‘premanifest’ phase. Functional connectivity measures
could potentially be used for early disease detection and formonitoring
of disease modifying compounds.
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