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Connecting biologically inspired neural simulations to physical or simulated embodiments

can be useful both in robotics, for the development of a new kind of bio-inspired

controllers, and in neuroscience, to test detailed brain models in complete

action-perception loops. The aim of this work is to develop a fully spike-based,

biologically inspired mechanism for the translation of proprioceptive feedback. The

translation is achieved by implementing a computational model of neural activity of type

Ia and type II afferent fibers of muscle spindles, the primary source of proprioceptive

information, which, in mammals is regulated through fusimotor activation and provides

necessary adjustments during voluntary muscle contractions. As such, both static

and dynamic γ-motoneurons activities are taken into account in the proposed model.

Information from the actual proprioceptive sensors (i.e., motor encoders) is then used to

simulate the spindle contraction and relaxation, and therefore drive the neural activity. To

assess the feasibility of this approach, the model is implemented on the NEST spiking

neural network simulator and on the SpiNNaker neuromorphic hardware platform and

tested on simulated and physical robotic platforms. The results demonstrate that the

model can be used in both simulated and real-time robotic applications to translate

encoder values into a biologically plausible neural activity. Thus, this model provides a

completely spike-based building block, suitable for neuromorphic platforms, that will

enable the development of sensory-motor closed loops which could include neural

simulations of areas of the central nervous system or of low-level reflexes.

Keywords: neuromorphic sensing, proprioceptive sensors, neurorobotics, neuromorphic hardware, muscle

spindle

1. INTRODUCTION

In recent years, the development of action-perception closed loops that include biologically inspired
neural network has risen at a rapid pace (Knoll and Gewaltig, 2016). These closed loops can
be useful in both robotics and neuroscience. From a robotic perspective, these neural networks
contribute to the creation of a new class of robotic controllers that could be capable of dealing with
the increasing complexity of physical systems, some of which are built with hardware compliance
(Negrello et al., 2015) or muscle-like actuation mechanisms (Nakanishi et al., 2012). On the
neuroscientific side, such loops could provide the necessary input/output connections, in a rich
environment, for detailed, full-scale neural simulations that model a specific part of the nervous
system, such as the cerebral cortex (Potjans and Diesmann, 2014). However, to close these loops, it
is crucial to findways to connect physical or simulated embodiments (i.e., robots ormusculoskeletal
systems) to these networks that mimic neural behaviors. In particular, one must find ways to
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translate sensory information into neural activity (i.e., spikes or
synaptic currents) to connect sensors to brain model simulations,
providing a spike-based or neuromorphic translation. In most
animals, the brain receives and integrates information from
different sensory pathways: proprioceptive, exteroceptive, and
introceptive ones. In particular, proprioceptive feedback is crucial
when performing voluntary movements, and its malfunction
can possibly produce severe impairments such as dystonia (Kaji
et al., 1995). Therefore, in the context of developing closed
loops, it is necessary to properly translate proprioceptive sensory
information gathered from the embodiments into a neural
activity suitable for the brain model employed.

For physical robotic applications, it is suitable to
embed hardware neuromorphic sensors that can natively
transmit information as spike trains. Such solutions have
been proved effective to translate visual information,
for example by employing dynamic vision sensors to
learn how to perform obstacle avoidance (Stewart et al.,
2016) or to give input to vision systems integrating
different eye movements (Mulas et al., 2015; Vasco et al.,
2016) and to process auditory stimuli (Gomez-Rodriguez
et al., 2007; Chan et al., 2012). However, no hardware
mechanism for event-based proprioceptive feedback has
been developed.

Several software solutions for generating spiking activity from
proprioceptive information in closed loops have been developed.
They can fall into one of two categories depending on how
the translation is achieved: custom or biologically inspired ones.
The first approach usually relies on tailor-made translations,
specific for the tasks to be solved. In Bouganis and Shanahan
(2010), proprioceptive feedback from the encoders of iCub arm
joints is translated in the firing rate of a population of neurons
by dividing the range of the joints into bins and assigning a
firing rate normally distributed around the neuron encoding the
current joint angle. Casellato and colleagues converted visual and
sensory information on a state and an error signal that were then
translated into a firing activity through radial basis functions for
the control of a robotic arm, using a spiking network embedding
a cerebellar model that included a learning mechanism (Casellato
et al., 2014). A similar model was also used to control a single
joint of amusculoskeletal robot (Richter et al., 2016). Folgheraiter
and Gini presented a model of low-level reflexes for a tendon-
driven hand in which analog values for the sensors are translated
into firing rates in a proportional fashion (Folgheraiter and Gini,
2004).

In contrast, biologically inspired translation approaches are
developed by implementing simulations of sensory processing
mechanisms found in animals, and are therefore more suitable
for sending spiking activity to more realistic models of the
nervous system. However, very few examples of this type exist
in the current state of the art. Among these, a simple model of
the muscle spindle activity has been employed to perform this
translation in a closed loop between amusculoskeletal simulation
and a neural model replicating low-level reflexes (Sreenivasa
et al., 2016). A more complex model of the muscle spindle, albeit
not completely spike-based, has been used to close the loop with
a cadaver finger to create a neuromechanical system (Niu et al.,

2017) and with a musculoskeletal simulation to study control of
the human posture (Elias et al., 2014).

To provide a fully spike-based, biologically inspired
translation model, we relied on insights from biology and
neuroscience. In mammals, proprioceptive information is
transmitted to the central nervous system from the Golgi tendon
and muscle spindle organs. In particular, the muscle spindles
are the main source of proprioceptive feedback for spinal
sensorimotor regulation and servocontrol. This specialized
type of fiber is found inside muscles, lying along extrafusal
fibers, and provide information about the length and velocity
of the muscle. Several models of afferent activity coming from
muscle spindles have been developed over the years. Many of
these model the firing rate of the afferent fibers as a polynomial
function of the muscle stretch and stretch speed (Matthews
and Stein, 1969; Chen and Poppele, 1978; Houk et al., 1981;
Hasan, 1983; Prochazka and Gorassini, 1998). These works can
be classified in three groups: models based on linear transfer
functions (Matthews and Stein, 1969; Chen and Poppele, 1978),
models based on curve fitting relying on non-linear transfer
functions (Houk et al., 1981; Hasan, 1983), and non-linear
models relying on biological evidence of the muscle spindle
(Otten et al., 1995). An interesting comparison of the firing
prediction of these models, evaluated according to the hamstring
spindle primary afferent firing recorded during normal stepping
in cats, has been proposed by Prochazka and Gorassini (1998).
The authors include in this work also a new hybrid model able
to fit neurophysiological data more closely. All the mentioned
works, albeit efficient and easy to implement, are incomplete,
as they lack two important features: response to fusimotor
stimulation and distinction between primary and secondary
afferent activity. In particular, fusimotor stimulation from
γ-motoneurons changes the spindle’s relative sensitivities over
the wide range of lengths and velocities that occur during
different tasks (Banks, 1994). Neuroscientific evidence indicates
that this could be used in detecting changes in the desired
trajectory of the intended movements, such as in locomotion
(Ellaway et al., 2015). For these reasons, recently, more complex
spindle models that include fusimotor modulation of the
afferent responses have been developed (Lin and Crago, 2002;
Maltenfort and Burke, 2003; Mileusnic et al., 2006). In the
work proposed in Maltenfort and Burke (2003), the authors
developed a computational model of the primary afferent activity
considering the response to combinations of stretching during
mixed dynamic and static fusimotor effects without considering
secondary afferent activity. In Lin and Crago (2002), the model
is more comprehensive, considering primary and secondary
activities, but because of the high number of free parameters
that must be tuned, it is not suitable to be integrated on different
embodiments.

In this work we propose a completely spike-based, biologically
inspired mechanism for the translation of proprioceptive
feedback that implements a computational model of muscle
spindle activity. In particular, the proposed model is based
on Mileusnic et al. (2006), as it is shown to be complete,
including fusimotor activation and primary and secondary
afferent activities, and is suitable for an implementation in closed
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loops (Niu et al., 2017). In principle, such a model should
be used in conjunction with a detailed spiking simulation of
neural pathways descending from the central nervous system
that include γ-motoneuron activations. However, the original
model is completely rate based. Therefore, we extended it
to cope with such a spiking input, and we included spike
trains generation for the output of the model, developing
a fully spike-based system. To provide a solid building
block that could be used in both simulated environments
and real-time scenarios, we decided to integrate it in a
spiking simulation and to implement it for a commonly
used spiking neural simulator, NEST (Gewaltig and Diesmann,
2007), and for a neuromorphic hardware platform, SpiNNaker
(Khan et al., 2008). To prove the correctness of the two
implementations, a validation and a comparison have been
performed. Finally, to prove the effectiveness of the proposed
model in translating sensory information, experiments in which
it has been coupled with simulated or physical systems are
presented.

2. MATERIALS AND METHODS

2.1. Muscle Spindle Model
The muscle spindle organ consists of three types of intrafusal
fibers: bag1 and bag2, which are longer and nuclear, and the
shorter chain type (Boyd, 1981). These types of fibers react
differently to the two different types of fusimotor activations,
and their activity is combined to produce primary and secondary
afferent activity (Figure 1). Activity of dynamic γ-motoneurons
only affects bag1 fibers, while the sensitivity of bag2 and chain
fibers is regulated by static γ-motoneurons. The firing rate of
primary afferent (Ia) is a combination of all the fiber activity,
while only bag2 and chain fibers contribute to the secondary
afferent (II) rate. Because of the anatomy, Ia afferent endings
carry information to the central nervous system that depends
on both the length and stretch speed of the muscle, while
II afferent endings provide information relative mostly to the
length.

In Mileusnic et al. (2006), the authors propose modeling
all intrafusal fiber types with the same function, with different
parameters based on physiology. This functions have two
inputs: the fascicle length L (and its derivatives L̇, L̈) and the
relevant fusimotor activation level (fdynamic, fstatic). The fiber
model consists of a sensory (SR) and polar (PR) regions,
modeled as a pure elastic element and as a spring with a
parallel active contractile element, respectively. From these
models, given the inputs, one can compute the tension
of the whole fiber T through a second-order differential
equation. Once the tension is computed, the contribution
of the fibers to the afferent rates can be obtained as follows:

ratebag1 (t) = G ·

[

T(t)

KSR
− (LSRN − LSR0 )

]

(1)

ratebag2 (t), ratechain(t) = G ·







X ·
Lsecondary

LSR0
·

[

T(t)
KSR − (LSRN − LSR0 )

]

+

+ (1− X)
Lsecondary

LSR0

(

L(t)− T(t)
KSR − LSR0 − LPRN

)







(2)

A complete description of all the parameters found in Equations
(1)–(8) and their values, which differ for every type of fiber,
can be found in Mileusnic et al. (2006), Table 1. For a
more detailed discussion of how the fibers are modeled, refer
to Mileusnic et al. (2006), from which Equations (1)–(4)
and (6) and (7) were adapted. The contributions are then
combined to generate the firing rates of primary and secondary
afferents:

rateII(t) = ratebag2 (t)+ ratechain(t) (3)

rateIa(t) =

{

ratebag1(t)+ S · rateII(t) if ratebag1 (t) > rateII(t)

rateII(t)+ S · ratebag1(t) if ratebag1 (t) < rateII(t)

(4)

therefore computing the secondary afferent rate as the direct
sum of bag2 and chain activities, and the primary as a
weighted sum between the three, which models the partial
occlusion effect described in neuroscientific experiments. Such
rates can be used to compute inter-spike time intervals
to generate discrete spike events in a spiking neural
simulator.

Because of the computation of T(t) as a second-order
differential equation, the original model is not well suited for
the integration in applications where information regarding
acceleration is unavailable or very noisy. This is because even a
medium level of noise can lead to instability while performing
a double integration. To avoid this, we decided to simplify
the model by setting L̈ = 0. The impact of this change
is small, as the mean difference between the afferent firing
rates with and without acceleration, computed on a Simulink
implementation of the original model, was lower than 1%
in most cases. This simplifies the tension equation for the
polar and sensory regions, which can now be rewritten as
follows:

T(t) =



















KSR ·
(

L(t)− LPR(t)− LSR0
)

for sensory region

β(t) · C ·
(

LPR(t)− R
)

·

sign
(

˙LPR(t)
)

·

∣

∣

∣

˙LPR(t)
∣

∣

∣

a
+

KPR ·
(

LPR(t)− LPR0
)

+ Ŵ(t)

for polar region

(5)
where β and Ŵ depend on the current fusimotor activation:

β(t) = β0 + β1 · fdynamic(t)+ β2 · fstatic(t) (6)

Ŵ(t) = Ŵ1 · fdynamic(t)+ Ŵ2 · fstatic(t) (7)

Given that the tension of the two region of
the fiber is the same, Equation (5) can be
rearranged into a first-order differential equation:
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FIGURE 1 | Biological model of the muscle spindle. The three intrafusal fiber types receive different fusimotor stimulations (static and dynamic) and produce primary

(Ia) and secondary (II) afferent activities. Adapted from Proske (1997).

Ṫ(t) = L̇(t)− signpow





T(t)− KPR ·

(

L(t)− LSR0 −
T(t)
KSR − LPR0

)

− Ŵ(t)

β(t) · C ·

(

L(t)− LSR0 −
T(t)
KSR − R

) , a



 · KSR (8)

where

signpow(x, a) = sign(x) · |x|a (9)

After this rearrangement we have a model, Equation (8), whose
only inputs are L, L̇, fdynamic, and fstatic. Information coming from

actual sensors can thus be processed to generate L and L̇, in units
of the rest fascicle length L0, to provide dynamic input to the
model.

2.2. Spiking Fusimotor Input and
Parameter Identification
In Mileusnic et al. (2006), fdynamic and fstatic activations with
values between 0 and 1 are computed from the actual fusimotor
frequencies γdynamic and γstatic using a biochemical Hill-type
equation from analog values of the firing rates, in conjunction
with low-pass filtering. However, this solution relies on the
instantaneous firing rates of γ-motoneurons. Such rate, in
a spiking neural network simulation, cannot be accurately
computed without introducing delays, as using the inter-spike
interval can lead to very noisy results in case of irregular spike
trains, while averaging it over time bins would make the rate
smoother but it would introduce delays. Therefore, this type of
computation is not suitable to be integrated in a spiking neural
network that simulates the activity of γ-motoneurons. In fact, the
spindle model should receive spike events and integrate them to
compute the activation levels of fusimotor activity. To do so, we
decided to employ a spike integration mechanism, adding spikes
with an instantaneous response and exponential decay, similarly
to an exponential synapse model. The actual spike response r was
scaled with respect to the current value of the activation f to keep
the results between 0 and 1:

ḟ (t) =

(

e−
1
τ − 1

)

· f (t)+ r · (1− f (t)) · u(t) (10)

u(t) =

{

1 if a spike is received at time t
0 if no spikes are received at time t

(11)

where r is the maximum impulse response and τ is the decay

time. In the reference model, the activation level for chain
fibers was not implemented with a low-pass filter but as a
direct saturation function of the static γ-motoneuron firing rate.
However, as already stated, it is not possible to compute the
instantaneous firing rate during spiking network simulations,
so we decided to employ the same spike integration technique
for the fusimotor activation of chain fibers. Another possible
approach to spike integration is to employ α-shaped responses.
This leads to similar results; however, such a spike integration
technique cannot be implemented with the SpiNNaker APIs, as
they currently only support exponential synapses.

We then employed a model selection procedure to select the

maximum impulse response r and decay time τ for the spike

integration mechanism (Equation 10). In the original model,

the activation level of fusimotor activation under constant γ-
motoneurons activity rose and stabilized at a certain maximum
value. Therefore, we created a dataset of these maximum values,
using the Hill-type activations, for different frequencies of
motoneurons firing rates: {10, 50, 75, 100, 150}spikes/s. Then we
performed a model selection procedure on all the different
combinations of values for r and τ ranging in 0.01 ≤ r ≤ 0.4
and in 100 ms ≤ τ ≤ 500 ms, with discrete sampling. To
evaluate the parameters, we simulated the spike integration at a
given frequency for 3 s, and we computed the percentage error
of the obtained maximum activation levels compared with those
in the dataset (magnitude error). As it reported in Mileusnic
et al. (2006), fusimotor activation reaches 90% of the maximum
value in 343 ms for fdynamic and in 471 ms for fstatic. To match
this property, we also evaluated the obtained percentage at these
specific points in time and computed the discrepancies with 90%
(shape error). During the parameter identification procedure,
input for the spike integration was simulated by generating spikes
at fixed intervals, which produced a regular oscillation in the
computed activations. To limit the effect of these oscillations on
the selection procedure, errors were computed on a smoothed
activation. For each parameter combination, we summed up
the magnitude and shape errors, and we averaged them on the
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different frequencies of the dataset. At the end of the procedure,
we found that these values had the smallest average percentage
error (7%):

rdynamic = 0.08, τdynamic = 310 ms

rstatic = 0.09, τstatic = 425 ms

These values provide accurate results for the fusimotor activity
ranging from 30 spikes/s to 150 spikes/s, while they tend to
make the spike integration mechanism underestimate f for lower
stimulation frequencies and to overestimate it for higher ones.
For the static activation level of the chain fiber, we scaled fstatic,
relative to bag2, by a factor equal to the mean scaling factor
between the maximum levels of the original model at the same
stimulation frequencies of the dataset. The averaged scaling
factor was 0.829. A comparison between the original activations
and those obtained with the spike integration procedure can be
seen in Figure 2, where constant dynamic and static fusimotor
activities (γdynamic = 75 spikes/s and γstatic = 50 spikes/s) are
converted into the corresponding fusimotor activation levels.

2.3. Implementation
To create a robust, reliable component, we decided to integrate
into two commonly available simulation platforms: NEST and
SpiNNaker. NEST is a point-neuron simulator for spiking
neural networks with an extendible comprehensive library
of different neuron and synapse models, including plasticity
mechanisms. It focuses on the accuracy and scalability of the
simulation, and it can run networks of any size and topology,
possibly exploiting supercomputing but with no simulation time
constraints. SpiNNaker, however, offers a hardware platformwith
a massively parallel set of low-energy cores, and it focuses on
real-time simulations. Currently, the library of neural models and
synapses is limited, but the provided APIs ease the development
of new ones. In our experiments, we employed a SpiNN-5 board
with 48 chips, each one with 18 cores.

For NEST, the implementation proceeded by using the
provided APIs to create a new neural model that can be simulated
alongside other neuron types and receive spike events. The fiber
tension for each type of fiber was computed by performing
a discrete fixed-step integration of Equation (8). Fusimotor
activationwas computed by the aforementioned spike integration
(Equation 10). Spikes are transmitted to the spindle model
through two different synapse types, representing dynamic and
static efferent fibers, to separate the incoming spike events.
After the computation of the Ia and II afferent rates, actual
spikes are generated using a Poisson distribution for the inter-
spike interval, employing the existing NEST utilities. Because
in NEST simulation every neuron model can have only one
output channel, a single spindle unit cannot produce both
primary and secondary afferent activities. To overcome this
limitation, we added a Boolean flag to the model that can
be used to switch between the two afferent types, defaulting
to primary. As a consequence, if one wants to simulate a
certain number n of complete muscle spindles, he should create
2n units and set the appropriate flags for half of population.

Another possibility, equivalent in terms of produced output
and performances, would have been to develop two separate
models for primary and secondary activity. However, we decided
to pursue the first strategy to provide a uniform interface
with the SpiNNaker model, where the two choices are not
equivalent, as described in the next paragraph. At the end of
the implementation, the model was available both from the SLI
interface and from PyNEST, and its parameters, such as the fiber
length and speed, can be set using standard NEST calls. However,
as with any other NEST model parameter, to set it to a new
value, the simulation must be stopped and resumed after the
change.

The same procedure was employed for the implementation
on the SpiNNaker neuromorphic hardware, using a fixed-
step integration of Equation 8 and spike integration for
the fusimotor activation as in Equation (10). Spikes can be
transmitted to this model via two custom synapse receptors,
labeled dynamic and static. Because of the limitations of the
ARM chips of the board, we had to implement fixed-point
arithmetic functions for the implementation of Equation (8),
such as division and exponentiation. The fiber length and
speed can be injected into a running simulation by using
a customized version of a spike live injector model found
in the SpiNNaker library. In this way, information can be
sent without stopping the simulation, fulfilling the real-time
constraint of the whole system. To maximize the performance
of the model and ensure real-time execution of the simulation,
in every population of spindles, which should be relative to
a single muscle, the fiber tension was computed for a single
spindle unit, comprising all fiber types. Even if this decreases
the accuracy of the simulation, this does not compromise
the plausibility of the model, as it is equivalent to assuming
that the central nervous system provides the same fusimotor
stimulation for all spindles in a muscle. After the computations,
the resulting Ia and II afferent rates were employed to
generate spikes with Poisson inter-spike intervals from all
spindle units. The random process was emulated using an
approximation of a homogeneous Poisson process (Heeger,
2000):

P{spike during δt} = rate · δt (12)

where δt is the duration of a simulation time step. This approach
was suitable because we had fixed time bins (the simulation
steps) and a small δt (1 ms). At the end of the implementation
procedure, the model, developed in C, could be instantiated
from the SpiNNaker PyNN frontend (Davison et al., 2008).
As for the NEST implementation, we had to add a Boolean
flag to switch between primary and secondary afferent activity.
In this case, developing two different models for primary and
secondary activity would have a negative impact, as SpiNNaker
allows us to simulate only homogeneous populations on its
cores. This implies that primary and secondary afferents spindle
models, relative to the same muscle, would be split into two
populations, thus duplicating the fiber tension computation
and forcing the user to create additional customized spike
injectors.
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FIGURE 2 | A comparison between activation levels obtained with the Hill-type equations (with low pass filtering) and those obtained with the spike integration

procedure for a constant dynamic fusimotor stimulation of 75 spikes/s and a static stimulation of 50 spikes/s. The regular oscillation of the activation levels in the

spike integration case is produced by the input spike trains, that were generated at fixed time intervals.

3. RESULTS

To assess the effectiveness of the proposed model, we performed
several experimental trials. In particular, we validated the NEST
and SpiNNaker implementations against a MATLAB Simulink
simulation, comparable with the one performed in Mileusnic
et al. (2006). Then, we employed the model to translate
sensory information from different simulated and physical
robotics systems, proving the generality of the approach. In
all the experiments, we did not change the parameter values
from the one reported in Mileusnic et al. (2006), which are
optimized on cat soleous muscle recordings. However, the
same anatomical structure exists in all mammals; therefore,
because of the accurate representation of the anatomy of the
model by changing the parameter values one could in principle
reproduce the different properties of the various muscles. In
our implementations, we left open the possibility to change
such parameters by providing the appropriate NEST and PyNN
interfaces.

3.1. Validation
As the first step, we developed a MATLAB Simulink model
of Equations (1)–(11), whose results were directly, albeit
empirically, comparable with those reported in Mileusnic
et al. (2006). Then, we compared the results, in terms of
afferent rates, of the two different implementations, with
the Simulink reference by executing the same tasks in
terms of fiber stretch and fusimotor stimulations. After the
execution, the spike trains were recorded, and the rate was

computed by sorting them into bins of fixed time intervals
(30 ms) and counting them to compute the average rate for
the bin.

In particular, we simulated a simple stretch, with the fiber
length remaining constant at 0.95L0 for 1.1 s, stretching
at 0.11L0/s for 1.1 s, and then remaining constant at
1.08L0 for the final 1.1 s. The same stretch was repeated
under different fusimotor drives (γdynamic = 70 spikes/s
and γstatic = 70 spikes/s). To provide the fusimotor
stimulations in NEST and SpiNNaker simulations, we
employed existing Poisson spike generators connected
to the appropriate synapses types. Conversely, in the
Simulink implementation, activities of γ-motoneurons
were simulated by generating uniformly distributed spike
trains. The number of muscle spindles simulated on
NEST was 200, resulting in 400 simulated nodes, and 100
on SpiNNaker (200 nodes) because of memory per core
limitations.

Results for this validation procedure can be found in Figure 3,
where the response of the muscle spindle models, in terms of
both computed spike rates and spike trains are shown. When
no fusimotor stimulation is present, the spindle activity is
null when the muscle is contracted; then, it starts to increase
when the stretch begins and continues to rise as the stretch
continues, and finally, it decreases and stabilizes at a certain
level. Because there is no fusimotor stimulation, the activity
of primary and secondary afferents is very similar. However,
under a γdynamic stimulation of 70 spikes/s, Ia and II activities
are radically different. In fact, primary afferents, the only ones
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FIGURE 3 | Comparison between the different implementations (Simulink, NEST, and SpiNNaker) for a stretching task with different fusimotor activities (no activity,

dynamic at 70 spikes/s, and static at 70 spikes/s). The rows correspond to the different fusimotor activations. The first column shows the Ia afferent activity, in terms of

spike rates, the second II afferent activity, and the third the raster plots of the neural population relative to the task, as produced by SpiNNaker. Spindles 0–99 simulate

Ia activity, while spindles 100–199 simulate II activity. To improve visibility in the raster plots, only activity of 20% of the units of the spindle populations is displayed.

FIGURE 4 | Simulated agonist-antagonist muscle pair for a two-link system

and its application to the elbow joint of the iCub robot (left). The length of the

two muscles can be expressed as a function of the kinematic parameters of

arm and forearm and of the current joint angle.

affected by dynamic γ-motoneurons, have a greatly increased
response, especially during the elongation phase, showing an
increased sensibility to stretch speed. In contrast, static γ-
motoneurons provide an overall increase in sensitivity of both
Ia and II afferents, providing sensory feedback even when the
muscle is contracted, as shown for γstatic = 70 spikes/s. From
the results, we can confirm that the effects of γ-motoneuron
stimulation during the simulations are in agreement with the
spindle anatomy. Moreover, the results, in terms of computed

spike rate, of the NEST and SpiNNaker implementations are
very similar to the Simulink implementation, even if they are
more noisy, thus proving their correctness. Finally, by comparing
these results with those presented in Mileusnic et al. (2006) for
a similar trial, we can observe that the removal of the second-
order terms and the spike integration did not change the results
significantly, as the behaviors of the firing rate responses are
preserved.

The mean simulation time for the NEST implementation
was 7.51 s on an i7-2760QM processor, implying a real-time
factor of 0.44. The low real-time factor is due to the fact
that the simulation must be stopped and restarted to set
the values of L and L̇. To compare the performance of
the NEST model with those of other commonly used neural
models, we performed a continuous simulation of 100 primary
afferents under constant dynamic fusimotor stimulation of 100
spikes/s for 1 s, with L = 1 and L̇ = 0, which resulted
in an execution time of 0.48 s. By comparison, under the
same stimulation, 100 leaky integrate and fire models had an
execution time of 0.06 s and 100 adaptive leaky integrate and
fire models run for 0.81 s. Therefore, the execution time of
the NEST implementation falls between those of commonly
used neural models. In contrast, simulations on SpiNNaker
were able to run in real time, and 200 spindle models
(primary and secondary) could be simulated by a single core,
using only 1% of the maximum theoretical capabilities of the
hardware.
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FIGURE 5 | Afferent activity for the agonist-antagonist pair during a sinusoidal movement of the iCub elbow (top). Computed rates for Ia and II activities are shown in

the middle, and the raster plot for the two muscle populations is on the bottom. To improve visibility in the raster plot, only activity of 25% of the units of the spindle

populations is displayed.

FIGURE 6 | Simulated muscles for a symmetric three-link system and its

application to the virtual mouse neck. The length of the muscle can be

expressed as a function of the kinematic parameters of the three links and of

the current two joint angles between them.

3.2. Sensory Translation Experiments
Once validated, the model can be used to translate proprioceptive
feedback from robotic systems, both simulated and physical. In
our tests, we employed it to convert information coming from
motor encoders into afferent activity, but the same mechanism
can be applied to translate proprioceptive information from
more realistic biomechanical models, such as musculoskeletal
simulations, or different sensors, such as physical stretch sensors.

First, the model was tested by embedding the NEST
implementation in the Neurorobotics Platform, a simulation
tool that is able to coordinate physical and neural simulations
to create neurorobotic action-perception closed loops (Falotico
et al., 2017). This platform allows the user to easily transfer
data between the two simulations by implementing transfer
functions that convert data coming from one simulation into
suitable inputs for the other (Hinkel et al., 2017). In our case,
we had to integrate the NEST spindle model in the list of
possible devices and then develop the transfer functions for the
specific setups. In particular, we connected the spindle neural
models to two different robotic embodiments: an iCub robot
(Metta et al., 2008) and a simulated mouse body. In principle,
every joint connecting two links can be considered actuated
by an agonist-antagonist pair of muscles. Therefore, sensory
information should be translated in terms of stretches of such
muscles. We demonstrate this on a simulated iCub robot, where
we employed the spindle model to translate information received
from the elbow encoder into afferent activities for an antagonistic
pair of simulated muscles. The stretch and speed of the simulated
muscles were computed geometrically, as a function of the
encoder values (θ(t), θ̇(t)) and of kinematic parameters of the
links (arm and forearm, cf. Figure 4). Assuming, for simplicity,
that the muscles are attached in the middle point of the two
links and that 0 ≤ θ(t) ≤ 2π , the stretch and speed
for the agonist and antagonist muscles can be computed as
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FIGURE 7 | Afferent activity for the neck muscle pair during a screen viewing experiment. The head motion during the trial is on top, computed rates for Ia and II

activities are shown in the middle, and the raster plot for the two muscle populations is on the bottom. To improve visibility in the raster plot, only activity of 25% of the

units of the spindle populations is displayed.

follows:

Lago(t) =

√

l21
4
+

l22
4
−

l1l2

2
cos(θ(t)) (13)

˙Lago(t) =

l1l2
4 sin(θ(t)) · θ̇(t)

Lago(t)
(14)

Lant(t) =
l1

2
+

l2

2
+ 2s · sin

(

π − θ(t)

2

)

(15)

˙Lant(t) = −2s · cos

(

π − θ(t)

2

)

· θ̇(t) (16)

This system of equations can be employed on any two-link,
asymmetric system (e.g., thigh-leg), by simply changing the
kinematic parameters of the links or the attachment point of the
two muscles.

To test it, a simulated iCub robot was placed inside a virtual
room, where the experiment took place. A sinusoidalmotionwith
a peak-to-peak amplitude of 45 degrees and a frequency of 0.2
Hz was given to the elbow motor to simulate a rhythmic co-
activation of the two muscles and an alternation of stretching
and elongating of the corresponding spindles. The motion was
centered on what we considered the resting position for the
computation of L0, 125 degrees, an angle where none of the
two simulated muscles is completely stretched (Figure 4). To
stress the difference between primary and secondary afferent
endings, fusimotor activation was set to γdynamic = 70 spikes/s

during the trial. The activity of the spindles during this trial
are shown in Figure 5. It can be observed that the activity is
not symmetric, as expected from the geometrical translation
model employed, but that afferent rates values correctly alternate
between the two simulated muscles, following the elbow motion.
Moreover, Ia activity is higher than II, thanks to the dynamic
fusimotor drive. Because no static fusimotor activity is present,
when the fibers are contracted, there is no activity to be
recorded. The computational burden of the simulation of 200
spindle models, combined with the physical simulation, resulted
in a real-time factor of the whole coordinated simulations
of 0.16.

To consider a different link system, we connected the spindle
model to simulate the afferent activities of muscles connected to
a three-link kinematic chain, the shoulder-neck-head link system
of a simulated mouse body, inside the Neurobotics Platform.
The model consists of a rigid skeleton actuated by rotational
joints, covered with deformable skin. The subset of interest of
the skeletal model can be seen in Figure 6, where the relevant
kinematic parameters are shown.

Compared to the previous case, this link system is symmetric,

so the same equations can be used to compute L(t) and L̇(t) by

just changing the sign of θ(t) and θ̇(t). Moreover, in this case,

the muscle is attached to the first and third links. To simplify the
equations, we assumed the angle between the first two links (α) to
be constant. However, small modifications are needed to consider
it variable in time. The length and speed of the muscle spindles
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FIGURE 8 | Simulated muscles for the iCub neck roll using the three-link

system previously described for the mouse head.

can be computed using the following equations:

a =

√

l21
2
+ l22 − l1 · l2 · cos(α) (17)
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θ(t)+ π
2 − β

)

· θ̇(t)

L(t)
(20)

For this experiment, we did not move the mouse head directly,
but relied on an existing setup where themousemoved its head as
part of a Braitenberg-like experiment: the mouse is placed in a Y-
maze with two displays placed at the end of the corridors, and the
mouse should look at the red one, away from the blue one, using
a trivial neural model. The two screens switched states every 6
s, and the motion relies only on visual information, particularly
on the percentage of red pixels in the camera image. The fact
that the relevant joint is not explicitly controlled provides a more
realistic scenario. We recorded the spindle activities during such
a trial, again providing dynamic fusimotor drive (γdynamic = 70

spikes/s) to enhance the differences between Ia and II activity.
Results for the experiment can be found in Figure 7, where it can
be observed that the activities of the spindles of the two muscles
are symmetric and out of phase, in correspondence with the head
motion. The controller does not provide smooth movements of
the head, so the activity of the spindle models is noisy, especially
in the presence of momentary and sudden changes in the fiber
stretch speed. However, the activity of the two muscles and of
the two different afferent types are clearly distinguishable from
one another. It can be noticed that, because of the low range of
motion, the firing rate of II afferents is very low. In addition,
the stretching speeds are very low, but rates of the Ia afferents
are still high thanks to the dynamic fusimotor activity. Finally,
activity for contracted spindles is close to null, except for activity
generated by the noisy input. In this case, the real-time factor of
the coordinated simulation was 0.17.

To show the real-time capabilities of the SpiNNaker
implementation, we employed the spindle model on a physical
robotic platform. We considered a three-link system starting
from the shoulder link up to the head of an iCub robot, actuated
by the neck roll joint. Because the link system has the same
structure as the previous case, we could translate encoder values
for such a joint using Equations (17)–(20) by changing the
kinematic parameters to match the iCub kinematics (Figure 8).

To actually send the translated encoder values to SpiNNaker,
as well as to retrieve live spiking activity from the simulation,
a proper real-time data exchange middleware was developed in
C++. The joint speed cannot be directly retrieved from the
motor, so it was necessary to compute it. To test the robustness
of the spindle model against input noise, a simple single-step
differentiation was employed. The neck roll joint was thenmoved
in a sinusoidal fashion, with a peak-to-peak amplitude of 30
degrees and a frequency of 0.5Hz, but the maximum stretch was
maintained for 1 s on every side, by keeping the head still when
it reached the maximum range of motion, resulting in a motion
with a period of 4 s. During this trial, fusimotor activity was kept
at γdynamic = 80 spikes/s and γstatic = 40 spikes/s. Results for
this trial can be found in Figure 9. As expected, the activities of
the two sets of spindles are symmetric, out of phase from each
other, and in sync with the motion. It is interesting to notice
how Ia and II activities for the same muscle differ only during
the actual motion part, while they tend to be almost the same
when the head is still. Therefore, a model of the central nervous
system, by properly activating γ-motoneurons, could really be
able to discriminate between motion and different stretch levels.
Moreover, thanks to static fusimotor activation, the spindles
are overall more sensitive, and even when they are contracted,
some activity is present. For the simulation of this model, to
simulate the 200 spindles, divided into two neural populations,
we used two cores of the SpiNN-5 board and thus only 0.2% of its
maximum theoretical capabilities.

4. CONCLUSION

In this work, we presented a spike-based proprioceptive feedback
transmission mechanism able to produce biologically realistic
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FIGURE 9 | Afferent activity for the neck muscle pair simulated on the iCub robotic platform. The head motion during the trial is on top, computed rates for Ia and II

activities are shown in the middle, and the raster plot for the two muscle populations is on the bottom. To improve visibility in the raster plot, only activity of 25% of the

units of the spindle populations is displayed.

firing activity, as produced by muscle spindles, that can be
fully integrated in spiking neural network simulation and on
neuromorphic hardware. The mechanism, which emulates the
dynamics of muscle spindles under stretch and γ-motoneurons
activation, was implemented on two different simulators: NEST,
a commonly employed spiking neural network simulator, and
SpiNNaker, a neuromorphic hardware platform. The model
was obtained by modifying an existing muscle spindle model
(Mileusnic et al., 2006) to perform spike integration to compute
the fusimotor drives, to produce a spiking output, and to
simplify the computation. The results show that the proposed
implementations are accurate, with respect to a non-spiking
implementation. The transmission mechanism is flexible enough
to be employed on different embodiments, both simulated and
physical.

This work can be beneficial for robotics as well as
neuroscience. With respect to robotics, the model is naturally
conceived to reproduce the sensory feedback of muscoloskeletal
bodies but can be adapted to motor-actuated robots. In
particular, we employed it in two simulation scenarios, with
two different simulated robots and with a physical robot
to transmit sensory information from motor encoders. By
doing so, we actually created a general method of conversion
between motor encoders and muscle lengths for kinematic
structures with two and three sequential links. The sensory
information translated by the spindle models can be used to
create biologically inspired brain-like controllers, something

that cannot be achieved with tailor-made translations, like the
one proposed in Bouganis and Shanahan (2010), which can
only work for specific tasks. The neuromorphic implementation
guarantees real-time performance and scalability for real robotic
applications. Most humanoid robots have no more than 50
degrees of freedom, and if we consider all of them as actuated
by a pair of muscles and that the population relative to one
muscle can be simulated on a single SpiNNaker core, the whole
simulation of the afferent fibers for all muscles will not occupy
more than 12% of the processing capability of a SpiNN-5
board.

From a neuroscientific point of view, the model can be
used to further explore action-perception loops for reflexes
and voluntary movements. One of the possible extensions of
the proposed model can be based on the integration of the
modulation of different responses by γ-drive. In a previous
work Grandjean and Maier (2014), supported by experimental
data from a cat during passive sinusoidal stretches, the authors
proposed a computational model able to predict type Ia and
IIa muscle spindle activity as a function of the time-varying
γ-drive. The proposed model is also fit to be a testbed for
such investigations, as it can be simply coupled with complex
biomechanical models and integrated in large-scale NEST
simulations. Moreover, being spike-based, it could also help to
simulate and reproduce detailed spike data, such as data recorded
from the spinal cord with microelectrode arrays (Arle et al.,
2012).
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The proposed model and its implementations have some
limitations. While the simplified differential equation does not
introduce substantial effects, the spike integration mechanism
tends to be less accurate, with respect to the original Hill-type
function, under low (< 30 spikes/s) and high (> 150 spikes/s)
fusimotor activity, either underestimating it or overestimating it.
Regarding the implementations, the NEST model cannot be run
continuously because the muscle length and stretch speeds can
only be set while the simulation is paused. While pausing and
restarting may not be an issue in many synchronized closed-loop
applications such as the one presented in this work, it actually
slows down the overall neural simulation. Possible solutions to
overcome this problem include modifying the implementation
to make enable it to receive data through a socket or employing
synchronization frameworks capable of injecting information
while the simulation is running, such as MUSIC (Djurfeldt et al.,
2010). The SpiNNaker implementation is limited in the accuracy
of the computation because of the fixed-point arithmetic and in
the number of models that can be simulated on a single core. This
could force the user to split the population relative to a muscle if

a biologically accurate number of spindles is employed, with a
consequent duplication of the code for the live injection of length
and stretch information.

In the future, we plan to employ this proprioceptive feedback
mechanism, alongside similar spike-based and neuromorphic
translational models for other sensors and actuators, for
the creation of complete action-perception loops for both
neuroscientific and robotic applications.
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