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Abstract

A decrease in alpha band power is defined as a hallmark of electroencephalogram (EEG) in

Alzheimer’s disease (AD). This study devotes to understanding the neuronal correlates of

alpha rhythm slowing associated with AD from the view of neurocomputation. Firstly, a modi-

fied computational model of thalamo-cortico-thalamic (TCT) circuitry is constructed by incor-

porating two important biologically plausible ingredients. One is the disinhibition property

between different inhibitory interneurons in the cortical module. The other is the full relay

function of thalamic relay nucleus (TCR) to the cortical module. Then, by decreasing synaptic

connectivity parameters to mimic the neuropathological condition of synapse loss in AD, the

correlation between neuronal synaptic behavior and abnormal alpha rhythm is simulated by

means of power spectral analysis. The results indicate that these decreases of synaptic activ-

ity, i.e., not only the excitatory synaptic connections from TCR to fast inhibitory interneurons

Cfte and from excitatory interneurons to pyramidal neurons Cpxe but also the inhibitory synap-

tic connections from fast inhibitory interneurons to slow inhibitory interneurons Clfi and from

inhibitory interneurons to TCR Ctii, can significantly diminish the peak power density over the

alpha band of the thalamic output, which implies that there is a slowing of alpha band. Fur-

thermore, the underlying mechanism behind the alpha rhythmic changes is analyzed using

nonlinear dynamical technique. The results reveal that decreases of Cfte, Cpxe, Clfi and Ctii

can make the thalamic module transfer from a limit cycle mode to a point attractor mode,

which may lead to the alpha rhythm slowing in the modified TCT model. We expect this work

can be helpful in identifying early biomarkers of AD’s EEG and understanding potential path-

ogenesis of AD.

Introduction

As one of the most common forms of dementia, Alzheimer’s disease (AD) primarily affects

central system of the brain and causes neuronal degenerative changes. The statistics shows

that about 50%-60% of patients with dementia are associated with AD. AD is quite pervasive

among elderly population around the world. As the age of the elderly steadily grows, the
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clinical symptoms such as cognitive decline and blurred expression continue to emerge, which

makes Alzheimer’s patients not competent to cope with their daily life and social activities.

Thus, Alzheimer’s disease especially its discovery and diagnosis has aroused widespread atten-

tion recently. Note that the early symptoms of AD are related with normal aging [1]. The path-

ological features of AD become apparent only when the brain is irreparably destroyed [2].

These facts make it hard to distinguish the early clinical signs of AD from other age-related

mental dementia. On the other hand, though drug therapy by acting medicines on different

neurotransmitter systems can delay the development of AD in clinical practice [3], it is usually

carried out at the intermediate stage of AD when neurons in cognitive regions are irreversibly

damaged [4]. In addition, the efficacy of drug treatment is poor and its expenses are vast.

Therefore, one challenge of AD is searching for biomarkers which facilitate to detect this dis-

ease before it causes serious deterioration in brain.

Among AD’s biomarkers, electroencephalogram (EEG) abnormality is one of the potential

indicators. Owing to the EEG recording system is inexpensive and non-invasive, it has become

a more popular and feasible tool for finding symbols in various kinds of pathological and neu-

rological diseases [5]. Since Hans Berger firstly observed clinical EEG sequences in an AD

patient [6], the EEG of AD has been extensively studied with conventional visual analysis [7–

9]. Recent research has reported that rhythm slowing is a significant characteristic of EEG

abnormality for AD patients [7–10]. A decrease in posterior rhythm and an increase in diffuse

slow activity have also been discovered in AD patients’ EEG by visual analysis [7, 8]. In addi-

tion, Refs. [9, 10] have revealed that EEG of AD patients exhibits a reduction or absence of

alpha rhythm.

Because the visual analysis of EEG is subjective and somewhat inaccurate, some supplemen-

tary techniques have been introduced to better analyze and extract the characteristic of EEG.

Spectral analysis of EEG is a quantitative method for studying AD related features [11]. It has

been demonstrated that a decrease in power over the alpha band of EEG is identified as a hall-

mark of AD [12, 13]. For example, Basar et al. have reported the remarkable difference between

AD patients who are treated with cholinesterase inhibitors and those who are not treated is the

alpha frequency band [12]. By spectral analysis of EEG in patients with moderate to severe Alz-

heimer’s disease, Soininen et al. have suggested that a distinct feature of EEG in AD patients is

a reduction of alpha band power, i.e., the slowing of alpha band [13]. The technique of nonlin-

ear dynamical analysis has also been employed to explore the EEG abnormality in AD. For

example, the relationship between EEG coherence and correlation dimension has been revealed

by using nonlinear analysis [14]. Hornero et al. have discussed the effectiveness of nonlinear

dynamical method in analyzing EEG and magnetoencephalography (MEG) of AD patients,

and believed that this method can contribute to diagnose AD [15]. Furthermore, an advanced

method combing nonlinear dynamical analysis and spectral analysis has been proposed to

investigate rhythm changes of EEG [16], interested readers please prefer to Refs. [17, 18].

To better understand the neuronal correlates of abnormal EEG, much attention has been

gradually shifted to computational model associated with neurological or psychiatric disorders

[19–22]. For AD, several neuronal models related with the hippocampal region, one of the

major sources of low frequency theta oscillation, have been established to study the hippocam-

pal theta rhythm together with memory loss [18]. Note that Braak et al. have pointed out that

one remarkable change of brain structures in AD patients is cortical atrophy [23]. Neuroimag-

ing detection on AD patients and normal people has demonstrated that the atrophy of thalamic

structure occurs during the development of AD [24]. It is also known that the resting state oscil-

latory activity observed in EEG is mainly affected by neuron populations in the thalamic and

cortical tissues [25–27]. Thus, some neuronal computational models including cortex and thala-

mus circuits have already emerged to explore abnormal brain rhythmic activity. For example,
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based on biophysical and histological data coming from Tombol’s Golgi experiment on the thal-

amus of adult cat, Lopes da Silva et al. have established a classical alpha rhythm computational

model, which includes two interconnected thalamus neuron populations by means of negative

feedback mimicking alpha rhythm [28]. Subsequently, Freeman has constructed a similar

model to detect the dynamical behavior of olfactory cortex [29]. This model is further modified

and extensively investigated [30–33]. Moran et al. have incorporated an inhibitory self-loop

among inhibitory interneurons to simulate spectral density of EEG and MEG recordings [31,

32]. With the inclusion of the self-connections between GABAA,fast interneurons, Ursino et al.

have developed a modified neural mass model to simulate a variety of brain oscillations during

wakefulness, such as alpha, beta and gamma rhythms. They have also analyzed the reciprocal

influences between different rhythms in a “system of rhythms” by connecting two or three corti-

cal regions with different topologies of long range connection [34]. Cona et al. have established

a thalamocortical computational model by introducing thalamo-cortical neuron population

and thalamo-reticular neuron population in the Ursino model, and mimicked the different pat-

terns of rhythmic activity in cortical and thalamic neurons [35]. In addition, Bhattacharya et al.

also have employed the computational model of thalamocortical circuit to explain the possible

neuronal population behavior linked with abnormal alpha rhythmic activity in AD, in which

they found that inhibitory synaptic activity can lead to slowing of the alpha rhythm [36]. Subse-

quently, Bhattacharya et al. have constructed an improved thalamocortical model by modifying

the structure of a single neuronal population, and they have concluded that the inhibitory syn-

aptic connection is directly related to alpha rhythm slowing [17]. Recently, a more biologically

plausible TCT model has been proposed to investigate the underlying causes of abnormal brain

rhythm in AD condition [37].

Note that using advanced techniques for tissue slicing and morphological reconstruction,

Jiang et al. have found that there are at least 15 types of inhibitory neurons in the human brain.

These inhibitory neurons are roughly subdivided into three major groups, one of which prefer-

entially inhibits the electroactivity of self-type inhibitory neurons and also inhibits the electroac-

tivity of excitatory neurons [38]. Meanwhile, by combining optogenetic activation with single

cell recordings, Pi et al. have detected a unique mode of inhibitory control which may be pro-

vided by inhibitory neurons that specifically suppress the firing of other inhibitory neurons

[39]. This means that there has been a basic disinhibitory circuit in the mammalian cerebral

cortex, and the disinhibition property indicates there are mutual effects between different inhib-

itory neurons. In addition, the thalamus is the brain’s major center for processing sensory infor-

mation. It is composed of 15 relay thalamo-cortical nuclei (TCN) and the TRN [35], in which

these TCNs contain TCR cell population. TCNs transmit sensory information from the periph-

ery to the cortex, in particularly the TCR sends excitatory and AMPA-mediated synapses to

cortical areas and to the TRN, performing a function rather like a junction or relay station. For

simplicity, the above alpha rhythm models and the modified versions have ignored the interac-

tions between different inhibitory neurons. Also, they have not considered the projection of

thalamic relay nucleus in the thalamic module to the cerebral cortex fully. Based on these find-

ings, this study by incorporating these two important biologically plausible ingredients, i.e., the

disinhibition property between different inhibitory interneurons in the cortical module as well

as the full relay function of thalamus to the cortical module, attempts to construct a modified

neuronal model of TCT circuit on the basis of work [37]. We believe that this modified TCT

model is related with AD, which is a good candidate to understand the thalamo-cortical-tha-

lamic neuronal mechanism associated with alpha rhythmic slowing observed in AD.

In this computational model, by decreasing synaptic connectivity parameters to mimic the

neuropathological condition of synapse loss in AD, we simulate the correlation between neu-

ronal synaptic behavior and abnormal alpha rhythm in AD by means of power spectral
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analysis. Furthermore, the underlying mechanism behind the alpha rhythmic changes is ana-

lyzed using nonlinear dynamical technique. The structure of this work is as follows. Firstly,

the modified TCT model and the preliminary of numerical simulation are presented. Then the

influence of excitatory and inhibitory synaptic activity on the power spectra within alpha band

is deeply explored. Finally, we make a brief summary and discussion of this work.

Model presentation and preliminary

The present computational model constructed in this work can be considered as an improved

version of the original TCT model [37]. Its organizational structure along with synaptic con-

nectivity layout is displayed in the schematic diagram of Fig 1. As described in Ref. [37], the

original TCT model includes two parts of the thalamic and the cortical module. The thalamic

module comprises three neuron populations: thalamic relay nucleus (TCR), inhibitory inter-

neurons (IN) and thalamic reticular nucleus (TRN). The cortical module consists of excitatory

pyramidal neuron population (PY), excitatory interneuron population (eIN), slow inhibitory

interneuron population (sIN) and fast inhibitory interneuron population (fIN). Within the

thalamic module, both the IN and TRN neuron populations make inhibitory (GABAergic)

synapses with the TCR neuron population, whereas the TCR neurons only send excitatory

feedback to the TRN neurons. The IN and TRN neuron populations make inhibitory synapses

on itself, respectively. Within the cortical module, the PY neuron population makes excitatory

synapses with the other three neuron populations of eIN, sIN and fIN, respectively. Mean-

while, the two neuron populations of sIN and fIN send inhibitory feedback to the PY neuron

population, and the eIN neuron population sends excitatory feedback to the PY neuron popu-

lation. The sIN neuron population makes inhibitory synapses with the fIN neuron population.

As for the synaptic connection between the thalamic and the cortical module, the excitatory

projections on all the thalamic neuron populations from the PY neuron population are built.

Conversely, only the excitatory projection on the PY neuron population from the relay nucleus

is built to execute the TCR’s relay function. The other extrinsic source to the TCT model

comes from the retinal and nearby cortical formation, i.e., the retinal population sends excit-

atory input to the IN and TCR neuron populations, and the PY neuron population receives

excitatory afferent from nearby cortical regions to form cortico-cortical connection. As stated

in the Introduction, the results in Refs. [38, 39] have implied that there exists a basic disinhibi-

tory circuit in the mammalian cerebral cortex and there are mutual effects between different

inhibitory neurons. On the same time, the key relay function of relay nucleus in the thalamus

implies that the TCR neuron population can process afferent information and then transmit it

to all the cortical populations. Thus, this present work has incorporated the following two

improvements into the original TCT model: 1)Introducing inhibitory projection on the sIN

neuron population from the fIN neuron population to construct disinhibitory circuit in the

cortical module (indicated by red lines with round heads in Fig 1); 2) Introducing excitatory

projections on the eIN, fIN and sIN neuron populations from the TCR neurons to achieve the

full relay function of the thalamic relay nucleus (indicated by red lines with arrow heads in Fig

1). Then, the dynamical behavior for all neuron populations involved in this modified TCT

model can be mathematically described by a series of first order differential equations, which

are defined as follows:

Retinal:

_xret1 ¼ xret2

_xret2 ¼
He

te
P1 tð Þ �

2

te
xret2 �

1

te
2
xret1 ð1Þ

PLOS ONE Alpha rhythm slowing of Alzheimer’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0229950 March 12, 2020 4 / 22

https://doi.org/10.1371/journal.pone.0229950


Cortico-cortical:

_xcc1 ¼ xcc2

_xcc2 ¼
He

te
P2 tð Þ �

2

te
xcc2 �

1

te
2
xcc1 ð2Þ

TCR:

_xtcr1 ¼ xtcr2

_xtcr2 ¼
He

te
S Ctrexret1 þ Ctpexpy1 � Ctiixin1 � Ctnixtrn1

� �
�

2

te
xtcr2 �

1

te
2
xtcr1 ð3Þ

IN:

_xin1 ¼ xin2

_xin2 ¼
Hi

ti
S Cirexret1 þ Cipexpy1 � Cisixin1

� �
�

2

ti
xin2 �

1

ti
2
xin1 ð4Þ

TRN:

_xtrn1 ¼ xtrn2

_xtrn2 ¼
Hi

ti
S Cntextcr1 þ Cnpexpy1 � Cnsixtrn1

� �
�

2

ti
xtrn2 �

1

ti
2
xtrn1 ð5Þ

PY:

_xpy1 ¼ xpy2

_xpy2 ¼
He

te
S Cpcexcc1 þ Cptextcr1 þ Cpxexein1 � Cplixsin1 � Cpfixfin1

� �
�

2

te
xpy2 �

1

te
2
xpy1 ð6Þ

Fig 1. Schematic diagram of the modified TCT model presented in this work. The synaptic structures of the

thalamic and the cortical module are based on Ref. [40] and Refs. [33, 41], respectively. Blue lines with arrow heads and

round heads denote the excitatory and inhibitory synaptic projections existing in the original TCT model, respectively.

Red lines with arrow heads and round heads indicate the excitatory and inhibitory synaptic projections newly

introduced in the modified TCT model, respectively.

https://doi.org/10.1371/journal.pone.0229950.g001
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eIN:

_xein1 ¼ xein2

_xein2 ¼
He

te
S Cxpexpy1 þ Cxtextcr1
� �

�
2

te
xein2 �

1

te
2
xein1 ð7Þ

sIN:

_xsin1 ¼ xsin2

_xsin2 ¼
Hil

til
S Clpexpy1 þ Cltextcr1 � Clfixfin1

� �
�

2

til
xsin2 �

1

til
2
xsin1 ð8Þ

fIN:

_xfin1 ¼ xfin2

_xfin2 ¼
Hif

tif
S Cfpexpy1 þ Cftextcr1 � Cflixsin1

� �
�

2

tif
xfin2 �

1

tif
2
xfin1 ð9Þ

where xret, xcc, xtcr, xin, xtrn, xpy, xein, xsin and xfin are the state variables of retinal, cortico-corti-

cal, TCR, IN, TRN, PY, eIN, sIN, fIN neuron populations respectively. P1(t) represents the

extrinsic afferent to the thalamic module from the retino-geniculate neuron population in the

state of eyes closed and relaxed wakefulness, which is modelled by Gaussian white noise with

mean μr and variance φr. P2(t) denotes the cortical module input from neighboring cortical

regions, which is also simulated by Gaussian white noise with mean μc and variance φc. The

excitatory synaptic strength is expressed by He. The inhibitory synaptic strength in the tha-

lamic module is represented by Hi, and the inhibitory synaptic strength in the cortical module

is denoted by Hil or Hif. τe is the time constant of excitatory postsynaptic potential (PSP). τi
denotes the time constant of inhibitory PSP in the thalamic module, yet the time constant of

inhibitory PSP generated by the sIN or fIN neuronal population is denoted by τil or τif. Sig-

moid function S(•) is employed to transmit the membrane potential Vneuron: neuron 2 {tcr, in,

trn, py, ein, sin, fin} of a postsynaptic neuron population to an average firing rate and is

described by the following equation:

S Vneuronð Þ ¼
2e0

1þ evðs0 � VneuronÞ
ð10Þ

in which 2e0 is the maximum discharge rate of neuron populations, s0 is the firing threshold, v
refers to the sigmoid steepness parameter. The postsynaptic membrane potential Vneuron is

defined as:

Vtcr ¼ Ctrexret1 þ Ctpexpy1 � Ctiixin1 � Ctnixtrn1 ð11Þ

Vin ¼ Cirexret1 þ Cipexpy1 � Cisixin1 ð12Þ

Vtrn ¼ Cntextcr1 þ Cnpexpy1 � Cnsixtrn1 ð13Þ

Vpy ¼ Cpcexcc1 þ Cptextcr1 þ Cpxexein1 � Cplixsin1 � Cpfixfin1 ð14Þ
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Vein ¼ Cxpexpy1 þ Cxtextcr1 ð15Þ

Vsin ¼ Clpexpy1 þ Cltextcr1 � Clfixfin1 ð16Þ

Vfin ¼ Cfpexpy1 þ Cftextcr1 � Cflixsin1 ð17Þ

in which Cxyz show the synaptic connectivity parameters made by a presynaptic neuron popu-

lation y on a single dendritic terminal of the postsynaptic neuron population x with an excit-

atory or an inhibitory synapse z, where x, y and z are defined as follows:

x ¼ ft; i; n; p; x; l; f g y ¼ ft; i; n; p; x; l; f ; r; c; sg z ¼ fe; ig ð18Þ

where t, i and n indicate afferent and efferent from TCR, IN and TRN neuron populations,

respectively; p, x, l and f denote afferent and efferent from PY, eIN, sIN and fIN neuron popu-

lations, respectively; the extrinsic inputs from the retinal and cortical regions to the thalamic

and the cortical module are denoted by r and c, respectively; s stands for self-input of neuron

populations; e and i represent excitatory and inhibitory synapses, respectively.

Note that the differential equations of the modified TCT model are simulated by the Euler

technique in Matlab 2016b. Unless specially stated, the synaptic connectivity parameters and

the other parameters in this model are given in Tables 1 and 2, respectively. In this work, we are

interested in the output of the thalamic module, which is presented by the membrane potential

of the TCR neuron population. For each set of given parameters, the model output is an average

of 50 independent realizations to guarantee statistical accuracy. In order to obtain the peak

power density within the alpha band (7.5–13.5Hz) of the thalamic module output, the power

spectral analysis is carried out as follows: 1) The thalamic module output is bandpass filtered by

employing a butterworth filter of order 10 with lower and upper cut-off frequencies of 1 and 50

Hz, respectively; 2) The power spectral density is obtained using a Welch periodogram method

with a hamming window; 3) The peak of the power spectral density within the alpha band is

extracted.

The values of connectivity parameters in the thalamic module are selected according to the

physiological data and express as a percentage of total synapses T convergent on the terminal

of the thalamic neuron populations [42]. The values of synaptic strengths in the cortical mod-

ule are obtained from the work [41]. The values of synaptic connections between the thalamic

and the cortical module are chosen based on the Ref. [43].

Main results

Neuroanatomical studies have found that in some neuronal system diseases including Alzhei-

mer’s disease, the synapses of neurons in the pathopoiesis brain area will change [24]. One typ-

ical case is that the number of synapses will decrease, i.e., synapse loss. Loss of synapses leads

to a decrease in the strength of synaptic connections. It is reasonable to infer that there is a

decrease in synapse connections between different neuron populations in our TCT model in

the neuropathological condition of AD. Thus, in the following firstly we vary the synaptic con-

nectivity parameters of the model to simulate the effects of AD on aberrations of synaptic con-

nectivity and explore the correlation between neuronal synaptic behavior and abnormal alpha

rhythm by means of power spectral analysis. In particular, we decrease some typical synaptic

connectivity parameters to mimic the hallmark neuropathological condition of synapse loss in

AD, where the considered synapse parameters include not only the ones in the original TCT

model but also those related with two newly incorporated biologically plausible ingredients

of disinhibition property between different inhibitory interneurons as well as the full relay
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Table 1. Parameters of synaptic connection between different neuron populations in the model.

Module Objective (to) Origin (from) Connectivity parameter Value

Thalamic module TCR Retinal Ctre 7.1

IN Ctii 15.45

TRN Ctni 15.45

PY Ctpe 62

IN Retinal Cire 47.4

IN Cisi 23.6

PY Cipe 29

TRN TCR Cnte 35

TRN Cnsi 15

PY Cnpe 50

Cortical module PY Cortical Cpce 1

TCR Cpte 80

eIN Cpxe 108

sIN Cpli 33.75

fIN Cpfi 108

eIN TCR Cxte 100

PY Cxpe 135

sIN TCR Clte 40

PY Clpe 33.75

fIN Clfi 13.5

fIN TCR Cfte 40

PY Cfpe 40.5

sIN Cfli 13.5

https://doi.org/10.1371/journal.pone.0229950.t001

Table 2. Values of other parameters in this model that sourced from works [41, 43].

Parameter Unit Module Value

v mV-1 Thalamic/Cortical 0.56

e0 s-1 Thalamic/Cortical 2.5

s0 MV Thalamic/Cortical 6

μr Spikes per second(sps) Thalamic 5

φr sps2 Thalamic 0.05

μc sps Cortical 13

φc sps2 Cortical 0.05

He mV Thalamic 3.25

Cortical 2.7

Hi mV Thalamic 22

Hil mV Cortical 4.5

Hif mV Cortical 39

τe ms Thalamic 10

Cortical 25

τi ms Thalamic 25

τil ms Cortical 50

τif ms Cortical 3

T Normalized Thalamic 100

https://doi.org/10.1371/journal.pone.0229950.t002
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function of thalamic relay nucleus. In detail, they are the TCR to fIN excitatory connectivity

(Cfte), the fIN to sIN inhibitory connectivity (Clfi), the eIN to PY excitatory connectivity (Cpxe)

and the IN to TCR inhibitory connectivity (Ctii). Then the dynamical mechanism underlying

the alpha rhythmic changes is analyzed using nonlinear dynamical behavioral method.

Changing the excitatory connectivity parameter from TCR to fIN

In this part, the influence of the excitatory synaptic connection from the TCR neuron popula-

tion of the thalamic module to the fIN neuron population of the cortical module on the power

spectra over the alpha band is first investigated. Fig 2A illustrates how the peak power density

within the alpha band changes as the excitatory connectivity parameter from TCR to fIN (Cfte)

is varied in the range of 25–45. From this figure, one can observe that upon decreasing Cfte, the

plot of peak power density is fairly flat until Cfte arrives at a certain value of about 35, then it

falls sharply until Cfte� 31.5, after which the peak power density does not decrease anymore

and basically tends to be stable. To visualize this result, the corresponding power spectral den-

sity curves for some typical synaptic strengths (for example Cfte = 30, 32, 34, 36) are also illus-

trated in Fig 2B. Obviously, within the alpha band the smaller the excitatory connectivity

parameter Cfte, the lower the peak of power density, which is consistent with the observation

of a decrease of the peak power density in the alpha band shown in Fig 2A. The decrease of the

peak power density within the alpha band implies that there is a slowing of the alpha band

upon decreasing the excitatory synaptic connectivity Cfte. Note that we decrease the synaptic

connectivity parameter to mimic the hallmark neuropathological condition of synapse loss in

AD, thus the above phenomenon of alpha rhythm slowing is consistent with the electrophysio-

logical experimental results of EEG characteristics in AD patients [8, 10].

Furthermore, the technique of nonlinear dynamics including bifurcation diagram and

phase analysis is employed to explore the underlying dynamical mechanism behind the above

alpha rhythmic changes induced by the excitatory connectivity parameter Cfte from TCR to

fIN. Fig 3 displays the bifurcation diagram of the extrema of the thalamic module output in the

process of increasing Cfte. It can be seen that there is only one extreme in the bifurcation plot

when Cfte is not more than 35, meaning that Vtcr stabilizes to an equilibrium point and the

Fig 2. The peak power density and the corresponding power spectral density for varying values of Cfte. (A) The peak power density within the alpha

band of the thalamic output. (B) The corresponding power spectral density for different connectivity parameters such as Cfte = 30, 32, 34, 36.

https://doi.org/10.1371/journal.pone.0229950.g002

PLOS ONE Alpha rhythm slowing of Alzheimer’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0229950 March 12, 2020 9 / 22

https://doi.org/10.1371/journal.pone.0229950.g002
https://doi.org/10.1371/journal.pone.0229950


thalamic module is in a point attractor mode. While two extrema of maximum and minimum

emerge in the bifurcation diagram when Cfte is greater than 35, suggesting that the thalamic

module undergoes a Hopf bifurcation and turns into a limit cycle mode. To verify the above

bifurcation phenomenon, Fig 4 show the phase plots and the corresponding time series curves

when Cfte takes some typical values. In detail, when Cfte is below the bifurcation point (for

example Cfte = 30, 35), there is a point attractor in phase space and the output of thalamic mod-

ule Vtcr settles to a constant after a short period of transition. Once Cfte is beyond the bifurca-

tion point (see for example Cfte = 35.1, 40), however, there is an isolated closed curve on phase

space and the thalamic model performs oscillatory motion fluctuating between its maximum

and minimum. Obviously, with decreasing the excitatory connectivity parameter Cfte from

TCR to fIN, the dynamics of the thalamic module shifts from a limit cycle mode to a point

attractor mode. This dynamics change may be related with the decreased trend of the peak

power density, i.e., the slowing of the alpha rhythm in the modified TCT model upon decreas-

ing the excitatory connectivity parameter Cfte from TCR to fIN.

Note that the excitatory connectivity parameter from TCR to sIN is fixed at Clte = 40 in the

above discussion. We wonder whether the slowing of the alpha rhythm induced by decreasing

the excitatory connectivity parameter Cfte can still emerge when this parameter Clte is changed.

For this purpose, the dependence of the peak power density within the alpha band on Cfte for

various values of Clte are illustrated in Fig 5. Clearly, the curves of peak power density have

similar shapes for different Clte, which implies that the slowing of the alpha rhythm induced

by connectivity parameter Cfte is robust to synaptic connection Clte. On the same time, upon

increasing Clte a right shift of the decreased trend is notable, which demonstrates that the slow-

ing of the alpha rhythmic activity during the decrease of the excitatory connectivity parameter

Cfte is preferred to occur with the increase of the excitatory connectivity parameter Clte from

TCR to sIN.

Fig 3. Bifurcation diagram of the thalamic module output’s extrema for varying values of connectivity parameter

Cfte. Red and blue points represent the local maximum and minimum of the thalamic module output, respectively.

https://doi.org/10.1371/journal.pone.0229950.g003

PLOS ONE Alpha rhythm slowing of Alzheimer’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0229950 March 12, 2020 10 / 22

https://doi.org/10.1371/journal.pone.0229950.g003
https://doi.org/10.1371/journal.pone.0229950


Changing the inhibitory connectivity parameter from fIN to sIN

The previous works have indicated that the inhibitory synaptic connectivity plays a crucial role

in the slowing of the alpha frequency band in the thalamocortical circuitry [17, 44]. Inspired

by this fact, how the inhibitory pathway connectivity from the fIN neuron population of the

Fig 4. Phase diagrams (top panels) and the corresponding time series diagrams (bottom panels) of the thalamic module. (A) Cfte = 30, (B) Cfte =

35, (C) Cfte = 35.1, (D) Cfte = 40.

https://doi.org/10.1371/journal.pone.0229950.g004

Fig 5. Dependence of the peak power density within alpha band on synaptic connectivity Cfte for different

parameters of Clte. Here, Clte = 35, 40, 45, 50.

https://doi.org/10.1371/journal.pone.0229950.g005
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cortical module to the sIN neuron population of the cortical module affects the power spectral

content within the alpha band in the modified TCT model is discussed. Fig 6A delineates the

relationship between the peak power density over the alpha band and the inhibitory connectiv-

ity parameter from fIN to sIN (Clfi) when Clfi is varied in the range of 5–25. The peak power

density fluctuates slightly as Clfi is initially decreased. Interestingly, its downward trend is quite

significant when Clfi changes from about 13.5 to 13.1. Afterwards, the peak power density no

longer decreases anymore and tends to be stabilized upon further decreasing Clfi. To illustrate

this result more detail, the corresponding power spectral density curves for some different val-

ues of Clfi (such as Clfi = 13.25, 13.3, 13.35, 13.4) are described in Fig 6B. From this figure, on

can find that the greater the Clfi, the higher the peak of the power spectral density within the

alpha band, which confirms the result obtained in Fig 6A. Thus, it can be concluded that the

peak power density over the alpha band tends to decline by decreasing inhibitory synaptic con-

nection Clfi, which suggests the slowing of alpha band emerges when mimicking the hallmark

neuropathological condition of synapse loss in AD, i.e., a prominent feature of EEG in AD

patients observed in electrophysiological experiments [8, 10].

It is interesting that the peak power density within the alpha band begins to decrease when

the inhibitory synaptic connection from fIN to sIN (Clfi) approaches to a critical value (Clfi�

13.5). We cannot help wonder that what is the underlying dynamical mechanism of this change

in the power spectral content over the alpha frequency band. To solve this problem, the bifurca-

tion analysis and phase analysis are employed. Fig 7 illustrates the bifurcation behavior of the

thalamic module’s extrema with increasing connectivity parameter Clfi. Through careful obser-

vation, it is clear that only one extreme emerges in the bifurcation diagram for Clfi< 13.5,

revealing that the thalamic module is in a point attractor mode. However, for Clfi� 13.5, a

maximum together with a minimum appears in the bifurcation diagram, which indicates that

the thalamic module undergoes a Hopf bifurcation and then transfers to a limit cycle mode. In

order to vividly depict the thalamic module dynamical behavior, the phase orbits and the corre-

sponding time series plots are displayed in Fig 8. From panel (A) to panel (D), Clfi is in turn 10,

13.3, 13.5, 20. When Clte< 13.5, the module tends to a attract point on phase plane and Vtcr

Fig 6. The peak power density and the corresponding power spectral density for varying values of Clfi. (A) The peak power density within the alpha

band of the thalamic module. (B) The corresponding power spectral density for different values of Clfi such as Clfi = 13.25, 13.3, 13.35, 13.4.

https://doi.org/10.1371/journal.pone.0229950.g006
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gradually converges to a constant (please see panel (A) and (B)). However, for values of Clfi�

13.5, there is an isolated loop in phase plane and the corresponding time series plot presents

the periodic motion of the thalamic module (please see panel (C) and (D)). The above results

mean that with the decrease of inhibitory parameter Clfi from fIN to sIN, the thalamic module

throws out of a limit cycle mode and enters into a stable point attractor mode, which may

Fig 7. Bifurcation analysis of the thalamic module’s extrema for varying synaptic connection Clfi. Red and blue

points indicate the local maximum and minimum of the thalamic output, respectively.

https://doi.org/10.1371/journal.pone.0229950.g007

Fig 8. Phase plots (top panels) and the corresponding time series plots (bottom panels) of the thalamic module when Clfi takes different values.

(A) Clfi = 10, (B) Clfi = 13.3, (C) Clfi = 13.5, (D) Clfi = 20.

https://doi.org/10.1371/journal.pone.0229950.g008
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induce the reduction of the peak power density over the alpha band, i.e., a slowing of the alpha

rhythm in the modified TCT model with the decrease of inhibitory synaptic activity Clfi.

Changing the excitatory connectivity parameter from eIN to PY

The above discussion reveals the influence of the newly introduced synaptic connectivity

parameters on the alpha band power in this modified TCT model. In the following, we analyze

how the synaptic parameters existing in the original TCT model affect the power density within

the alpha band. Firstly, the effect of excitatory synaptic parameter from the eIN population of

the cortical module to PY neuron population of the cortical module on the alpha rhythmic

activity is investigated. When the connectivity parameter Cpxe from eIN to PY is varied from 98

to 118, the peak power density with alpha band is depicted in Fig 9A. It is clear that the peak

power density almost remains unchanged with the first decrease of Cpxe, then it decreases rap-

idly when Cpxe decreases from about 108 to 101.6, after that the peak power density ceases to

decrease anymore. Subsequently, the corresponding power spectral density curves for the case

of Cpxe = 102, 104, 106, 108 are employed to validate the above result. From Fig 9B one can see

that the decreased Cpxe leads to a decrease in the power spectral density within the alpha band,

which accords with the reduction of the peak power density within the alpha band presented in

Fig 9A. The above phenomenon implies that decreasing synaptic activity Cpxe to mimic the

hallmark neuropathological condition of synapse loss in AD can lead to a slowing of the alpha

rhythmic content, which is consistent with the electrophysiological experimental results on

EEG characteristics in AD patients [8, 10].

In what follows, the underlying dynamical mechanism for the reduction of power spectral

content within the alpha band induced by excitatory pathway connectivity from the eIN to PY

(Cpxe) is explored by nonlinear dynamical behavioral method. The bifurcation plot of the tha-

lamic output’s extrema with increasing Cpxe is shown in Fig 10. One can see that extrema in

the bifurcation diagram change from one to two when Cpxe� 102.5, implying that the thalamic

module undergoes a Hopf bifurcation and transits from a point attractor mode to a limit cycle

Fig 9. The peak power density and the corresponding power spectral density for varying values of Cpxe. (A) The peak power density within the

alpha band of the thalamic output. (B) The corresponding power spectral density for different connectivity parameters such as Cpxe = 102, 104, 106, 108.

https://doi.org/10.1371/journal.pone.0229950.g009
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model. To illustrate the above bifurcation phenomenon, Fig 11 describe the phase orbits and

the corresponding time series plots when the connection parameter Cpxe takes some typical

values such as Cpxe = 96, 101.9, 102.5, 110. From these figures, it can be found that when Cpxe

increases to an appropriate value (Cpxe� 102.5), the phase orbit of the model changes from a

Fig 10. Bifurcation analysis of the thalamic module’s extrema for varying synaptic connection Cpxe. Red and blue

points indicate the local maximum and minimum of the thalamic output, respectively.

https://doi.org/10.1371/journal.pone.0229950.g010

Fig 11. Phase plots (top panels) and the corresponding time series plots (bottom panels) of the thalamic module when Cpxe takes different values.

(A) Cpxe = 98, (B) Cpxe = 101.9, (C) Cpxe = 102.5, (D) Cpxe = 110.

https://doi.org/10.1371/journal.pone.0229950.g011
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point attractor to a closed curve, and the thalamic module’s dynamics transforms from an

equilibrium point to oscillatory motion. Clearly, upon decreasing the excitatory connectivity

parameter Cpxe from eIN to PY, the dynamics of the thalamic module transfers from a limit

cycle mode to a point attractor mode, which may be related with the reduction of the peak

power density within the alpha band, i.e., the modified TCT model shows a slowing of the

alpha rhythm with decreasing the excitatory synaptic activity Cpxe.

Changing the inhibitory connectivity parameter from IN to TCR

In this part, we first carry out the power spectral analysis by varying the inhibitory synaptic

activity Ctii from the IN population to the TCR neuron population within the thalamic module.

The dependence of peak power density with the alpha band on connectivity parameter Ctii over

the range of 5.45–17.45 is illustrated in Fig 12A. Obviously, the peak power density decreases

quickly when Ctii decreases from about 8.25 to 6.45. Subsequently, to validate the above result,

the power spectral density curves for different values of Ctii = 6.95, 7.45, 7.95, 8.45 are described

in Fig 12B. It is clear that a smaller value of Ctii leads to a lower peak power density with alpha

band, which verifies the above phenomenon described in Fig 12A. Thus, it can be concluded

that the peak power density presents a descending trend with the decrease of synaptic connec-

tion Ctii. Then one can believe that a decrease in synaptic connectivity Ctii related with synapse

loss in AD can induce the slowing of alpha rhythmic content, which agrees with the EEG hall-

mark of AD patients obtained from the electrophysiological experimental results [8, 10].

Furthermore, the underlying dynamical mechanism of alpha rhythm slowing induced by

inhibitory connectivity from IN to TCR (Ctii) is explored by means of nonlinear dynamical

analysis. Fig 13 exhibits the bifurcation behavior of the thalamic module’s extrema upon

increasing synaptic connection Ctii. From this figure, one can find that when Ctii reaches a

specific value (Ctii� 8.45), the dynamical behavior of the thalamic module undergoes a Hopf

bifurcation and shifts from the point attractor mode to the limit cycle mode. In order to more

Fig 12. The peak power density and the corresponding power spectral density for varying values of Ctii. (A) The peak power density within the

alpha band of the thalamic output. (B) The corresponding power spectral density for different connectivity parameters such as Ctii = 6.95, 7.45, 7.95,

8.45.

https://doi.org/10.1371/journal.pone.0229950.g012
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vividly characterize the bifurcation process of the module, Fig 14 display the phase orbits and

the corresponding time series curves of the thalamic module when Ctii takes some values such

as Ctii = 6.95, 7.95, 8.45, 15.45. It can be found that the dynamics of the thalamic module

changes from a stable point to oscillatory motion. The above results illustrate that the dynam-

ics of the thalamic module changes from a limit cycle mode to a point attractor mode with a

Fig 13. Bifurcation analysis of the thalamic module’s extrema for varying synaptic connection Ctii. Red and blue

points indicate the local maximum and minimum of the thalamic output, respectively.

https://doi.org/10.1371/journal.pone.0229950.g013

Fig 14. Phase plots (top panels) and the corresponding time series plots (bottom panels) of the thalamic module when Ctii takes different values.

(A) Ctii = 6.95, (B) Ctii = 7.95, (C) Ctii = 8.45, (D) Ctii = 5.45.

https://doi.org/10.1371/journal.pone.0229950.g014
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decrease in connectivity parameter Ctii, which may be related with the reduction in the peak

power density, i.e., the slowing of the alpha rhythmic content in the modified TCT model with

the decrease of inhibitory synaptic connection Ctii.

Conclusion and discussion

In view of the two key ingredients including the mutual effects between different inhibitory

interneurons and the full relay function of the thalamic relay nucleus, this work firstly con-

structs a more biologically plausible TCT computational model of thalamo-cortico-thalamic

neuronal circuitry. By decreasing synaptic connectivity parameters to mimic the hallmark

neuropathological condition of synapse loss in AD, then we explore the correlation between

neuronal synaptic behavior and abnormal alpha rhythm by means of power spectral analysis.

Numerical results reveal the remarkable role of excitatory synaptic pathways from TCR to fIN

(Cfte) ae well as from eIN to PY (Cpxe) in making the abnormality of power spectrum in this

modified TCT model. In detail, upon decreasing excitatory connectivity parameter Cfte and

Cpxe, the thalamic module shows alpha frequency band slowing represented by a decrease in

the peak power density over the alpha band. On the same time, the decreased inhibitory con-

nectivity parameters from fIN to sIN (Clfi) and from IN to TCR (Ctii) can also induce the slow-

ing of the alpha band. These interesting results obtained in this modified TCT model highlight

the phenomenon of excitatory synaptic connectivity induced slowing of alpha rhythmic activ-

ity, which enriches the existing research on changes of alpha rhythm associated with synaptic

connection activity in the alpha rhythm model and the modified versions in the literatures [17,

37, 44]. What’s more, the results indicate that the dependence of peak power density within

the alpha band on the synaptic connectivity parameter Cfte are robust to the variation of synap-

tic activity Clte. Moreover, this work also analyzes the underlying dynamical mechanism

behind the above alpha rhythmic changes by nonlinear dynamical behavioral analysis. The

results suggest that a decrease in synaptic connections Cfte, Clfi, Cpxe and Ctii can promote

transformation of the thalamic module from a limit cycle mode into a point attractor mode,

which may be related with the slowing of alpha rhythm. The present results may have impor-

tant implications, in particular, in understanding the neuronal correlates of alpha rhythm

slowing associated with AD.

At last, we point out that in our modified TCT model there is a slowing of alpha rhythmic

activity by decreasing some synaptic connectivity parameters associated with synapse loss in

AD patients, which is consistent with the electrophysiological experimental result of EEG char-

acteristics in AD patients. As indicated in the papers [45, 46], the EEG alpha rhythm is best

seen with eyes closed and under the conditions of physical relaxation and mental inactivity.

Yet the EEG alpha rhythm can be also blocked or attenuated by attentional shifts and mental

effort, which is modulated by the thalamus and may be affected during pathological states like

AD. This issue will be thoroughly investigated in our further work.
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