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Introduction

Choosing the right function

prediction tools. The vast majority of

known proteins have not yet been

characterized experimentally, and there

is very little that is known about their

function. New unannotated sequences are

added to the databases at a pace that far

exceeds the one in which they are

annotated in the lab. Computational

biology offers tools that can provide

insight into the function of proteins based

on their sequence, their structure, their

evolutionary history, and their association

with other proteins. In this contribution,

we attempt to provide a framework that

will enable biologists and computational

biologists to decide which type of

computational tool is appropriate for the

analysis of their protein of interest, and

what kind of insights into its function these

tools can provide. In particular, we

describe computational methods for

predicting protein function directly from

sequence or structure, focusing mainly on

methods for predicting molecular

function. We do not discuss methods that

rely on sources of information that are

beyond the protein itself, such as genomic

context [1], protein–protein interaction

networks [2], or membership in

biochemical pathways [3]. When

choosing a tool for function prediction,

one would typically want to identify the

best performing tool. However, a

quantitative comparison of different tools

is a tricky task. While most developers

report their own assessment of their tool,

in most cases there are no standard

datasets and generally agreed-upon

measures and criteria for benchmarking

function prediction methods. In the

absence of independent benchmarks,

comparing the figures reported by the

developers is almost always comparing

oranges and apples (for discussion of this

problem see [4]). Therefore, we refrain

from reporting numerical assessments of

specific methods. For those cases in which

independent assessment of performance is

available, we refer the reader to the

original publications. Finally, we discuss

only methods that are either accessible as

Web servers or freely available for

download (relevant Web links can be

found in Table S1).

What is protein function? The first

problem we face when dealing with

protein function is well-illustrated by the

title of a 1998 article by Schubert et al. [5],

‘‘The X-ray structure of a cobalamin

biosynthetic enzyme, cobalt-precorrin-4

methyltransferase.’’ What is the function

of the protein that is described in this

paper? The authors report the solution of

the crystal structure of CbiF, which is an

enzyme implicated in the biosynthesis of

vitamin B12 (cobalamin). More

specifically, CbiF transfers a methyl

group from an S-adenosyl-L-methionine

molecule to a precursor of vitamin B12

(cobalt-precorrin-4). Vitamin B12 is a

compound that ‘‘helps maintain healthy

nerve cells and red blood cells, and is also

needed to make DNA’’ [6]. Its deficiency

is related to anemia, as well as to several

neurological and psychiatric symptoms

[7]. As we see, CbiF function comes in

different flavors: molecular/enzymatic

(methyltransferase), metabolic (cobalamin

biosynthesis—directly—and DNA

biosynthesis—indirectly), and

physiological (maintenance of healthy

nerve and red blood cells, through B12),

along with possible consequences related

to their malfunctioning. There are,

obviously, numerous ways to describe

each of these aspects of the protein

function. Enzymatic function, for

example, may be characterized through:

reaction (methylation), substrate (cobalt-

precorrin-4), or ligand (S-adenosyl-L-

methionine).

Classifying and predicting. Since

protein function has many facets, its

prediction has different meaning for

different people. It may mean the

prediction of the cellular process in

which the protein is involved, or the

nitty-gritty of its enzymatic activity, or

rather its physiological role. Therefore,

when attempting to predict protein

function one should first define clearly

the kind of function she or he wants to

predict. When predicting function

automatically on a large scale, this

problem is intensified by the need to

standardize and quantitatively assess the

similarity of functions between proteins.

While defining sequence and structural

similarity may be easy, there is no a priori

straightforward measure we can use to put

a number on the similarity of functions
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between two proteins. Prediction methods

could not be developed, or rigorously

assessed, without such measure. Several

large-scale projects attempted to respond

to this challenge by building classification

systems or ontologies of biological

functions (see [8,9] for review). One such

enterprise was launched as early as 1955

by the International Congress of

Biochemistry, which created the Enzyme

Commission to come up with a

nomenclature for enzymes. In this

numerical classification, each enzymatic

function could be described by a set of four

numbers (which, together, are dubbed EC

number). Each of these four numbers

represents specific description of the

enzyme and its activity. For instance,

when comparing carboxylesterase

(3.1.1.1) and isochorismatase (3.3.2.1),

one can tell that they share the basic

enzymatic activity of a hydrolase (all

hydrolases have 3 as the first number),

but they act on different types of bonds:

hydrolases with 3.1.-.- act on an ester bond

and those with 3.3.-.- act on an ether

bond. This system is infinitely expandable

to include any new enzyme, but it does not

cover functions that are not enzymatic.

The Gene Ontology (GO) project provides

a controlled vocabulary to describe the

function of any gene product in any

organism. It developed three structured

controlled vocabularies to cope with the

multifaceted nature of the biological

function. For each gene product, GO

can provide a number for its cellular

component, the biological process in

which it is involved, and its specific

molecular function. Various algorithms

have been proposed to assign a score for

the similarity between numbers within

each of these three ontologies [10,11].

Thus, GO has become the standard for

assessing the performance of function

prediction methods.

Function Annotation Transfer
from Sequence

Homology useful but different from

‘‘same function’’. The most widely

used approach for function prediction is

homology transfer. Given an unannotated

protein, this approach suggests searching

for an annotated homolog and using the

experimentally verified function of the

latter to infer the function of the former.

However, this procedure should be

implemented with caution. Homology is

often confused with similarity of function.

In reality, homology between two proteins

simply means that they have a common

evolutionary origin. Whether or not they

have since retained similarity in any of their

properties is something that needs to be

checked in each individual case. An

important distinction in this context is

between orthologous and parologous

sequences: orthologs are genes that

originated from a common ancestor

through a speciation event, while paralogs

are the results of duplication events within

the same genome. In general, function

tends to be more conserved in orthologs

than in paralogs [12]. So, when attempting

to predict the function of an unannotated

protein based on its homology to an

annotated one, one should search for

orthologs rather than paralogs (Figure 1A).

Although several databases have been

created to help identify orthologous genes

(e.g., COGs [13] and InParanoid [14]),

‘‘proven orthologs are as rare in the

literature as diamonds in bare rock’’ [12].

Orthologs, additionally, may also diverge

functionally, sometimes more than

corresponding paralogs [12]. Finally,

there exist functional similarities between

proteins that are not reflected in homology.

These facts underline the difficulty of the

task of transferring function from a

homologous template.

In practice, the most common way to

infer homology is by detecting sequence

similarity (note, however, that remote

relationships will generally be missed by

sequence similarity approaches; see the

section about structure below). Popular

sequence alignment methods include PSI-

BLAST [15], HMMER [16], and SAM

[17]. When investigating the function of a

protein, we ought to align its sequence

against a database of annotated proteins,

such as SWISS-PROT [18], in order to

find its homologs of known function. The

question we need to address is how two

homologous proteins relate functionally.

As we mentioned previously, several

studies have shown that homology (both

orthology and paralogy) does not guaran-

tee conservation of function (Table 1).

Indeed, relatively small differences in

sequence can sometimes cause quite

radical changes in functional properties,

such as a change of enzymatic action, or

even a loss or acquisition of the enzymatic

activity itself. It is also apparent that there

is no sequence similarity threshold that

guarantees that two proteins share the

same function (see references in Table 1).

Thus, although higher sequence similarity

increases confidence in function annota-

tion transfer, there is no threshold that can

be considered safe. An extreme case is

represented by the so-called ‘‘moonlight-

ing proteins’’ or proteins that perform

multiple and, at times, significantly differ-

ent functions [19,20]. For example, g-

crystallin is a protein that plays a structural

role in the eye lens of several species, while

working as an enzyme in other tissues.

Homologs of these proteins may retain

only some of the original functions [21].

As a consequence, function annotation

transfer may result in erroneous or incom-

plete assignments (Figure 1B).

The multi-domain nature of many

proteins can also be the cause of annota-

tion transfer errors (Figure 1C). In fact, in

databases storing entire sequences (such as

SWISS-PROT [18]), functional annota-

tion of a protein may refer to any of its

domains. If the query protein (i.e., the

protein whose function we wish to predict)

does not align to that specific domain,

annotation transfer is totally unjustified

and will very likely result in a mis-

annotation. While a number of databases

and tools attempt to split proteins into

domains based on sequence (Pfam [16],

PRODOM [22], SMART [23]), the most

reliable way to identify protein domains is

by using, when possible, structural knowl-

edge (SCOP [24], CATH [25]).

Some of these problems can be mitigat-

ed by the use of phylogenomic inference

that frames sequence evolutionary rela-

tionship into a phylogenetic context as

described in [26].

To complicate matters further, bear in

mind that databases contain incorrect

annotations, mostly caused by erroneous

automatic annotation transfer by homology

[27] (Figure 1D). Thus, always check the

source of the annotation before you use it.

In conclusion, homology between two

proteins does not guarantee that they have

the same function, not even when se-

quence similarity is very high (including

100% sequence identity) (Table 2). Bottom

line: when annotating function, you won’t

get too far with the classic 25%–30%

sequence identity that is so powerful for

structure prediction. On the positive side,

the higher the sequence similarity the

better the chance that homologous pro-

teins in fact share functional features

(Tables 1 and 2). As we have seen, correct

transfer of functional annotation from a

protein to its homolog depends on whether

the two proteins are orthologs or paralogs,

on the level of sequence similarity, on the

type of annotation we want to transfer (for

example, prediction of subcellular locali-

zation typically requires lower sequence

identity than prediction for enzymatic

function [28]), and on the specific domain

aligned. No sequence similarity threshold

is safe for blind annotation transfer.

Sequence signatures predict

functional traits. In some cases, a
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relatively small sequence signature may

suffice to conserve the function of a

protein even if the rest of the protein has

changed considerably during the course of

evolution. Alternatively, non-homologous

proteins could acquire the same functional

motif independently (convergent

evolution). Thus, two proteins that would

not find each other in a sequence search

may still have common sequence

signatures that could surrender their

functional relatedness. Clearly, if two

proteins have some level of overall

sequence similarity and also share a

common motif, the confidence of

annotation transfer increases. Several

computational tools are dedicated to the

identification of functional motifs (e.g.,

PRINT-S [29], BLOCKS [30], PROSITE

[31], InterPro [32], and ELM [33]). They

usually offer a large library of sequence

motifs that have been collected either

manually by experts, or automatically by

pattern-searching algorithms, or by a

combination of the two. When a query

sequence is submitted to these tools, it is

compared to all known motifs in search of a

match. Finding one of these well-

characterized motifs in a newly discovered

sequence could offer some insights into its

function.

More generally, residues that are crucial

for the function of the protein can often be

identified through the use of multiple

sequence alignments that highlight con-

servation patterns in protein families (see

[34] and [35] for more detailed discussion

of these methods). This approach is

possible, of course, when multiple homo-

logs of the protein of interest are available.

Importantly, even when the function of

specific conserved residues within the

protein family is not known, multiple

sequence alignments point to regions that

may be of interest for experimental

functional characterization (e.g., by means

of site directed mutagenesis). Multiple

sequence alignments are also relevant as

input to methods that map sequence

conservation on the protein surface (see

below).

Figure 1. Homology based annotation transfer: Problems. (A) Paralogy problem: Paralogs are more likely to diverge functionally with respect
to orthologs. If our putative template is a paralog, the probability that the query has similar function decreases. (B) Moonlighting problem: If the
template performs multiple functions, the query could have retained only some of them (and vice-versa, if the query were a moonlighting protein,
using a non-moonlighting template would result in an incomplete annotation of the query). (C) Multi-domain proteins problem: If the template is
annotated based on the function of a domain that is not aligned to the query, annotation transfer is not possible. (D) Database mis-annotations
problem: Database entries may have been mis-annotated; the risk is especially high if annotation was performed automatically via homology transfer.
doi:10.1371/journal.pcbi.1000160.g001
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Function Annotation Transfer
from Structure

Structure better than sequence

alone. Proteins live and function in

3D, and therefore structural information

is very helpful for predicting function. The

need for tools to predict function from

structure is intensified by the success of the

structural genomics enterprises that

deposit hundreds of new experimentally

solved structures of proteins with unknown

function [36]. Structural information,

however, does not have to come directly

from the protein of interest but can also be

derived from a homologous protein via

modeling [37]. Unfortunately, as with

sequence, two proteins having the same

overall structural architecture, and even

conserved functional residues [38], can

have unrelated functions. Additionally,

two proteins can perform the same

function while having radically different

structures [39]. Still, structure may help

function prediction in several ways.

Structural similarity between two proteins

may reveal their common evolutionary

origin even in the absence of significant

sequence similarity, possibly suggesting

similar function (Figure 2A). Or, it may

indicate evolutionary convergence caused

by common functional constraints.

Prokaryotic virulence effectors offer some

remarkable examples of functional

convergence. Some of these proteins, in

order to be able to tamper with the

biological processes of the host, have

adapted to mimic host proteins. This is

achieved by either mimicking their overall

architecture or, more often, their local

structural features [40,41]. Numerous

methods have been developed to perform

structural comparisons, using the Protein

Data Bank [42] or structure classification

databases (SCOP [24], CATH [25]) as a

source. Among the most used structural

alignment methods are SSM [43],

FATCAT [44], DALI [45], and

CATHEDRAL [46] (see [47] for a

comparison of the performance of several

methods). In general, it is suggested to use

more than one method since different

methods may capture different valid

matches. Most programs provide a PDB-

type output file for the two aligned

proteins that can be uploaded to one of

the many available structure visualization

programs (e.g., VMD [48], AstexViewer

2.0 [49]). When evaluating the functional

implications of a match, we need to

consider how functionally promiscuous a

given structural architecture is (i.e.,

whether or not it is known to relate to

many functions [50]), and we have to

check the conservation of functional

residues. Functional residues may not be

Table 1. Do’s and Don’ts of annotation transfer by homology.

Functional property to be conserved Sequence identity Conservation rate Reference

Non-enzyme 50% 98%* [88]

All 4 EC numbers 70%** 90% [89]

All 4 EC numbers 40%** 70% [89]

First 3 EC numbers 50%** 90% [89]

First 3 EC numbers 30%** 70% [89]

All 4 EC numbers 50% 30% [90]

First 3 EC numbers 25% 70% [91]

SWISS-PROT keywords 40% 70% [92]

Subcellular localization (11 classes) 70% 90% [93]

*98% of non enzymes that have at least one enzyme homolog.
**Global identity, defined in [89].
Note: different estimates for the same functional aspects reflect the different methods, procedures, and datasets used to assess sequence similarity by the various
groups.
doi:10.1371/journal.pcbi.1000160.t001

Table 2. Do’s and Don’ts of annotation transfer by homology.

Yes No

Homology = Same function !

Orthology = Same function !

Paralogy = Same function !

Orthology = .Probability of same function !

Paralogy = ,Probability of same function !

Same sequence = Same function !

Sequence similarity.threshold = Same function !

Homology+conservation of functional residues = Same function !

Similar structure = Similar function !

.Sequence similarity = .Probability of same function !

.Structure similarity = .Probability of same function !

doi:10.1371/journal.pcbi.1000160.t002
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perfectly conserved in proteins of similar

function. In fact, specific residues may be

responsible for different ligand or substrate

binding affinities or for different reaction

rates in enzymes. However, disruption of

the 3D core of an active site in an overall

conserved structural architecture should

be a serious concern [51]. Catalytic Site

Atlas [52] and MACiE [53] are databases

where you can find detailed information

about functional residues and their specific

role in enzymes.

Even in the absence of a structurally

related protein, structure may provide

important functional information by high-

lighting properties of the protein’s acces-

sible surface that may relate to function.

These include residue conservation (Con-

surf [54], siteFiNDER|3D [55], TRACE

[56], Figure 2B), cavities (CASTp [57], Q-

SiteFinder [58], Figure 2C), and electro-

static patches (GRASP2 [59], Figure 2D).

In general, structural knowledge, although

not a panacea for all problems, is an

extremely powerful tool for computational

function prediction.

Structural motifs reveal binding

sites. The idea is similar to sequence

motifs: functional aspects may be defined

by local structural signatures. Residues

found in functional signatures may be not

be adjacent in sequence; however, they do

tend to cluster in the 3D structure, forming

binding sites for ions, small molecules,

DNA, RNA, or other proteins. There are

databases and tools for searching such

structurally defined motifs in a structure of

interest (JESS [60], RIGOR [61], PAR-

3D [62], PINTS [63], and PDBSiteScan

[64]). As usual, the effectiveness of such

methods depends on the specific function

being predicted and on the desired level of

detail of the prediction.

De Novo Function Prediction
Using Sequence and Structure

De novo predictions push the

limit. What can we do when the

protein whose function we want to predict

has no significant similarity to any

annotated protein? Several approaches

have been suggested to predict protein

function de novo. That is, using sequence

or structure information without relying on

similarity to a specific protein but rather on

the ‘‘generic’’ properties that are common

to proteins of the same function. Indeed,

proteins of the same function have to adapt

to similar constraints (e.g., pH, properties of

a ligand, structural flexibility), which will be

reflected in their sequence and structural

features. De novo methods are generally

based on machine learning algorithms that

are able to capture significant non-trivial

correlations between features and

functions. These methods are usually less

accurate than annotation transfer but enjoy

higher coverage, eventually protruding into

experimentally yet unexplored regions of

the sequence space and allowing

annotation of entire genomes. Hereafter,

we report on some of the most successful de

novo methods.

Functional residues. Residues that

have similar function in different proteins

are likely to possess similar physicochemical

characteristics. For example, residues that

bind DNA share common structural and

physicochemical features in most DNA-

binding proteins (e.g., secondary structures,

geometries, solvent accessibility, charge,

hydrophobicity). Once these features are

characterized and quantified, it may be

Figure 2. Using structure to predict function. The protein represented here is PDBid: 2eve. All figures are derived from the Northeast Structural
Genomics Consortium structure gallery (http://nmr.cabm.rutgers.edu:9090/gallery/jsp/Gallery.jsp). AstexViewer 2.0 [49] is used for visualization. (A)
Superposition of 2eve structure (gray) and of the structure of a homolog (blue, PDBid: 2ar1), using Skan [59]. 2eve hosts three co-crystallized small
non-functional ligands (green; ball and stick). Three structurally aligned residues of 2eve and 2ar1 are also shown (red and yellow; ball and stick). (B)
Surface residue conservation: Conserved residues (mauve) versus variable residues (cyan). Conservation is calculated as follows: homologs of 2eve are
collected using three iterations of PSI-BLAST [15] retaining all homologs with E-value,1023 and reducing redundancy at 80% sequence identity with
CD-HIT [85]. Then, a multiple sequence alignment is created using CLUSTALW [86]. Finally, the multiple sequence alignment is used as input to
ConSurf [54], which uses it to calculate residue conservation. (C) Residue conservation within the protein largest cavity (as defined by SCREEN [87]).
(D) 2eve surface electrostatic potential (using GRASP2 [59]) (positive in blue, negative in red).
doi:10.1371/journal.pcbi.1000160.g002
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possible to search for residues that possess

them, thus predicting their function. There

are several methods for the prediction of

DNA binding residues from sequence (e.g.,

DISIS [65] and bindN [66]) or structure

(e.g., Patchfinder+ [67]). Another example

is represented by residues that bind metals.

The number and type of residues binding

to a given metal may considerably differ

from protein to protein. For this reason,

known sequence metal binding motifs are

useful but cover only a small fraction of all

binding sites [68]. Recently, de novo

methods have been developed that

specialize in predicting metal binding sites

from sequence (MetalDetector [69]) and

from structure (MetSite [70] and CHED

[71]), the latter exploiting successfully the

tight clustering of metal binding residues in

3D.
Subcellular localization. Knowing

the subcellular localization of a protein

helps to narrow down the number of

functions the protein can perform and can

be very relevant for its experimental chara-

cterization [72]. Subcellular localization can

be predicted from homology and motifs,

with the aforementioned limitations. De

novo methods, instead, exploit the known

correlation between amino acid composition

and localization [73]. LOCtree [74],

BaCelLo [75], TARGETp [76], Protein

Prowler [77], and the PSORT suite of

programs [78]—some combining de novo,

homology, and motifs—are among the best

methods available.

Programs that predict function

combining different sources of

information. Another, more ambitious,

approach is to integrate various aspects of

proteins and to try to associate them with

specific GO numbers. Since protein

function is a multifaceted notion, its

comprehensive prediction requires data

from many sources. Thus, these methods

attempt to integrate all sorts of information

that pertain to function such as structure,

sequence information, physicochemical

features, and even protein interaction

data. Such an approach is taken, for

example, by ProtFun [79], which

combines 14 different sequence-based

prediction methods such as prediction of

glycolization sites, number of negative and

positive residues, predicted transmembrane

helices, predicted subcellular localization,

and other features, and integrates them to

yield a GO term. ProKnow [80] relies

predominantly on structural features that

are associated with specific functions as well

as on sequence motifs and interaction data.

Similarly, ProFunc [81] uses structure and

sequence motifs, combined with

identification of active and binding sites

and integrates them with interaction data

and knowledge of genomic sequences to

yield a comprehensive prediction of

function.

Several more de novo methods that are

relevant for function exist, including

predictors of coil-coiled regions [82],

natively unstructured regions [83], and

post-translational modifications [84].

Supporting Information

Table S1 Publicly available tools.

Found at: doi:10.1371/journal.pcbi.

1000160.s001 (0.18 MB DOC)
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