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A Hopf physical reservoir computer
Md Raf E Ul Shougat*, XiaoFu Li, Tushar Mollik & Edmon Perkins

Physical reservoir computing utilizes a physical system as a computational resource. This 
nontraditional computing technique can be computationally powerful, without the need of costly 
training. Here, a Hopf oscillator is implemented as a reservoir computer by using a node-based 
architecture; however, this implementation does not use delayed feedback lines. This reservoir 
computer is still powerful, but it is considerably simpler and cheaper to implement as a physical Hopf 
oscillator. A non-periodic stochastic masking procedure is applied for this reservoir computer following 
the time multiplexing method. Due to the presence of noise, the Euler–Maruyama method is used 
to simulate the resulting stochastic differential equations that represent this reservoir computer. An 
analog electrical circuit is built to implement this Hopf oscillator reservoir computer experimentally. 
The information processing capability was tested numerically and experimentally by performing 
logical tasks, emulation tasks, and time series prediction tasks. This reservoir computer has several 
attractive features, including a simple design that is easy to implement, noise robustness, and a high 
computational ability for many different benchmark tasks. Since limit cycle oscillators model many 
physical systems, this architecture could be relatively easily applied in many contexts.

Reservoir computing (RC) is a bio-inspired, supervised machine-learning computational framework based on 
artificial recurrent neural networks (RNNs), which utilizes naturally emergent dynamics of a physical resource1–6. 
Conventional machine learning schemes use backpropagation through time7 to train an entire recurrent neural 
network. This method is computationally expensive, since all the weights of the network need to be updated to 
mimic a target function. Echo state networks8 and liquid state machines9 are two concepts that addressed this issue 
in the early 2000s. Reservoir computing merges these concepts. In reservoir computing, the neural network is 
formed from a set of coupled nonlinear nodes, where the network is divided into three parts: an input layer, the 
reservoir, and the readout layer. Unlike conventional RNNs, only the readout layer requires training by a simpler 
training algorithm, such as linear or ridge regression10. Thus, the RC architecture is much faster and more stable 
than conventional RNN methods, which is one of the key advantages of this information processing framework.

There are many real-world applications of reservoir computing, including bit-wise logical operations11–13, 
speech recognition6, handwritten digit recognition14, wireless communications1, complex and chaotic time 
series predictions1,6,15–18, image recognition19, emulation of nonlinear time series4,10, and morphological 
computation20,21. The echo state architecture of a reservoir allows the use of physical systems as reservoir com-
puters, also known as physical reservoir computers (PRCs). Many physical systems have been shown to per-
form as PRCs, including an array of nonlinear mechanical oscillators11,22,23, soft robotic bodies20,24–26, tensegrity 
structures21,27, and origami structures28,29.

Importantly, quantum systems can be used as PRCs. The natural disordered quantum dynamics of an ensem-
ble system was utilized to emulate nonlinear time series, including a chaotic system30. A Kerr nonlinear oscil-
lator was used in sine wave phase estimation using its complex amplitudes as computational nodes31. Nuclear-
magnetic-resonance spin-ensemble system was used for nonlinear dynamics emulation task by implementing 
spatial multiplexing approach to increase computational power32. Dissipative quantum dynamics was used to 
build a quantum reservoir computer (QRC) for nonlinear temporal tasks33.

Physical reservoir computers were initially constructed from only the coupled, real dynamic nodes. Later, a 
virtual node-based reservoir computing method was proposed by implementing a time multiplexing approach 
in which a delayed feedback was used as a single nonlinear dynamic node to perform computation6. This method 
simplifies the complexity of a reservoir built from an array of physical nonlinear nodes. This approach has been 
popularly used to construct physical reservoir computers for different tasks, such as an optoelectronic oscillator 
for optical information processing34, a photonics-based passive linear fiber reservoir for signal processing35, an 
FPGA implementation using a single autonomous Boolean logic element for pattern recognition5, time-delay 
reservoirs for forecasting of stochastic nonlinear time series36, a delayed Duffing silicon beam for parity tasks12, 
and a semiconductor laser with delayed optical feedback for nonlinear time series prediction37. These reservoirs 
used a delay line to create the necessary nodes for computation. A simpler approach can be taken by creating 
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the nodes without the presence of any delay or feedback line38. This approach is studied less, though it makes 
the reservoir architecture much simpler.

Here, a Hopf oscillator is used as a physical reservoir. The Hopf oscillator can also be used as the building 
block for adaptive oscillators39,40, which can natively learn information without any training. The Hopf oscillator 
can exhibit limit cycle motion, which provides a source of memory by storing information in its dynamic states. 
Although a binary periodic masking function is popularly used for time-multiplexed reservoir6,10,12, noise can 
also be used as periodic mask41. In this paper, a Hopf oscillator PRC is constructed that uses a non-periodic 
stochastic mask. A Hopf oscillator physical reservoir computer is fabricated as an analog circuit, which is com-
pared with Euler–Maruyama simulations40,42,43. This Hopf PRC can successfully complete benchmark machine 
learning tasks, including parity tasks, fundamental logic gate tasks12, nonlinear dynamic emulation tasks4, and 
various time series prediction tasks44. The information rate is used as the performance metric for logical tasks11, 
and the normalized mean square error (NMSE) is used for the emulation and time series tasks4.

The rest of the article is organized as follows. In “System equations for Hopf physical reservoir computer” 
section, the equations of motion for the stochastic Hopf oscillator PRC are presented. In “Mapping methodology” 
section, the methodology of mapping the oscillator’s dynamics to an information processing scheme is discussed 
for an example task by using the Euler–Maruyama simulation. The effects of the pseudo-period and the noise on 
computational ability are discussed in “Pseudo-period and noise” section. In “Analog circuit experiment” section, 
the analog circuit experiment is described. In “Benchmark tasks for Hopf PRC” section, different benchmark 
tasks are performed with the numerical and experimental Hopf PRC, which includes logic tasks, emulation 
tasks of time series, and prediction tasks. The concluding remarks are stated in “Concluding remarks” section.

System equations for Hopf physical reservoir computer

The equations of motion for the Hopf oscillator are45:

For this Hopf oscillator, x and y are the first and second states, respectively, and the sinusoidal forcing is given 
by A sin(�t + φ) . A list of the parameters is given in Table 1. The information is first encoded as an input, u(t), 
which will depend on the benchmark task being performed. The mask is defined by white Gaussian noise as:

Here, σ is the noise amplitude, Ẇ is white Gaussian noise, and β is a positive bias. It should be noted that Ẇ does 
not exist, but its differential form, dW, does46.

To send information to the PRC to be processed, an external forcing function that contains the information 
signal, u(t), and the stochastic mask, m(t), is constructed as:

This external forcing function is injected into both the amplitude of the sinusoidal forcing, A, and the parameter 
affecting the limit cycle radius, µ . Including this force, the equations for the Hopf PRC are written as:

(1)
ẋ =

(

µ− (x2 + y2)
)

x − ω0y + A sin(�t + φ)

ẏ =
(

µ− (x2 + y2)
)

y + ω0x

(2)m(t) = σẆ + β

(3)f (t) = 1+ u(t)m(t)

(4)
ẋ =

(

µf (t)− (x2 + y2)
)

x − ω0y + Af (t) sin(�t + φ)

ẏ =
(

µf (t)− (x2 + y2)
)

y + ω0x

Table 1.   List of parameters, states, and functions.

Description Nomenclature Description Nomenclature

First state x Second state y

Input u Mask m

Resonance constant ω0 Amplitude of sinusoidal forcing A

Frequency of sinusoidal forcing � Phase of sinusoidal forcing φ

Parameter affecting limit cycle radius µ Noise amplitude σ

White Gaussian noise Ẇ Noise bias β

Re-scaled x state X Identity matrix I

Nodal state matrix L Target vector M

Information rate R Pseudo-period Tp

Output of PRC o Number of nodes N
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Mapping methodology
To use the dynamics of the Hopf oscillator as a physical reservoir computer, the dynamics must first be mapped. 
To describe this mapping, an exclusive OR (XOR) logical task is used as an example. In this section, the Hopf PRC 
is simulated using an Euler–Maruyama scheme, since the mask is stochastic42. Shannon’s information metric is 
used to quantify the performance of the reservoir when performing logical tasks, such as the XOR operation11,43.

For this task, the binary “false” and “true” values are encoded as discrete negative ones and positive ones, 
respectively, in a discrete signal, r(z). r(z) is defined such that z ∈ Z

+ and r(z) ∈ {−1,+1} , which is depicted in 
Fig. 1a. To input this into a continuous dynamical system, these values are first mapped to a continuous input 
function, u(t), as follows:

This function is depicted in Fig. 1b. Tp is a constant pseudo-period, in which u(t) does not change its value. Thus, 
for the XOR logical task, the input function, u(t) ∈ {−1,+1} , is a random square wave with a pseudo-period, Tp . 
This implies that each of the “true” (e.g., +1) or “false” (e.g., −1) values affect the system for an amount of time, 
Tp . The mask function, m(t), is depicted in Fig. 1c.

The Hopf PRC system described in Eq. (4) is numerically integrated using the Euler–Maruyama (EM) method, 
since the PRC is stochastic42,47. For these simulations, the integration time step, dt = 10−5 seconds, the total simu-
lation time in this case was 3000Tp = 300 seconds, and Tp = 0.1 sec. This example simulation is shown in Fig. 1.

The time history of the x state obtained from the simulation is depicted in Fig. 1d. Next, x(t) is re-scaled by 
subtracting the mean, µx , and dividing by the standard deviation, σx , using Eq. (6):

(5)u(t) = r(z) for (n− 1)Tp ≤ t < (n)Tp, n ∈ Z
+

(6)X = Re
(

tanh−1(
x−µx
σx

)

)
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Figure 1.   (a) Discrete random binary signal, r(z). (b) Continuous input signal, u(t). (c) Stochastic masking 
function, m(t). (d) Time history of x(t). (e) Rescaled time history, X(t). (f) 20 equidistant nodes for a single 
pseudo-period, Tp , are denoted with circles. (g) Collected nodal states from the nodes for machine learning 
input data set. Different colors in (g) denote different nodes. For the simulation depicted here, the parameters 
were set such that: µ = 5 , A = 0.5 , � = 40π rad/s, ω0 = 40π rad/s, Tp = 0.1 seconds, N = 20 nodes, φ = π/3 
rad, σ = 100 , β = 1.0.
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In this equation, the inverse hyperbolic tangent function is used as a nonlinear activation function. Only the 
real part of tanh−1(

x−µx
σx

) is used for the subsequent steps. The time history of the X state is depicted in Fig. 1e.
Next, equidistant nodes are created by dividing each pseudo-period, Tp , equally into N(= 20) nodes, as shown 

in Fig. 1f. Over each pseudo-period, Tp , the N node values are referred to as the nodal state, which is depicted 
in Fig. 1g.

The node matrix, S, is an N × K  matrix; for this example, N = 20 is the number of nodes over a pseudo-
period, and K = 3000 is the total number of pseudo-periods. Truncating the final 20% of this S matrix ( 600Tp ), 
a new matrix, L ( 480Tp ) is formed, which will be used in the training process. Throughout this paper, next, the 
reservoir computer is trained using ridge regression, as in Eq. (7):

A target signal (the M vector) is created from the encoded input based on a benchmark task, which in this case 
is XOR task. For each pseudo-period, there will be one target value that is found by performing the XOR opera-
tion between the inputs, r(z) and r(z − 1) . In this way, the target vector, M, is found for the XOR task. Linear 
regression based training is then applied to the nodal state matrix, L, to map it to the desired output using Eq. 
(7). In Eq. (7), w is the weight vector found after training, I is the identity matrix, � = 10−1 is the regularization 
parameter used to avoid over-fitting, and o(k) is the prediction of the reservoir computer at the kth pseudo-
period. The discrete input, r(z) and continuous input, u(t) are given in Fig. 2a and b respectively. Figure 2c shows 
this prediction along with the corresponding target signal. In the final step, the prediction is binarized since XOR 
is a binary task, which is depicted in Fig. 2d. It should be noted that a nonlinear dynamic emulation task would 
not require this final step of discretization.

For a logical task, the efficacy of the reservoir computer is quantified using Shannon’s information rate48. The 
information rate, R, can be defined as follows:

Here H(x) is the Shannon entropy, which denotes how much information is encoded in a signal. This can be 
defined as follows:

In this equation, pi is the probability of getting a particular bit, i. Hy(x) is the conditional entropy, which denotes 
the probability of getting an incorrect bit in the target signal:

Here pi(j) = p(j|i) =
p(i,j)

∑

j p(i,j)
 and p(i, j) is the joint probability distribution of the two variables, i and j, each of 

which can take a value of “1” or “− 1” for a logical task. i is a bit from the target, and j is a bit from the prediction. 

(7)
w = MLT (LLT + �I)−1

o(k) =
∑N

i=1 wiXi(k)

(8)R = H(x)−Hy(x)

(9)H(x) = −
∑

i

pi log2(pi)

(10)Hy(x) = −
∑

i,j

p(i, j) log2(pi(j))
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Figure 2.   (a) Discrete random binary signal, r(z). (b) Continuous input signal, u(t). (c) target signal and 
continuous prediction. d) Discretized target and prediction. The calculated information metric is R = 0.98 . 
For the simulation depicted here, the parameters were set such that: µ = 5 , A = 0.5 , � = 40π rad/s, ω0 = 40π 
rad/s, Tp = 0.1 s, N = 20 , φ = π/3 rad, σ = 100 , β = 1.0.
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The information rate, R, for this case was calculated to be 0.98 based on the prediction from the validation por-
tion (not including in the training process). Due to the nature of this binary target signal, the Shannon entropy 
is 1.0, which marks the maximum value of the information rate for this task. It should be noted that the lower 
limit of R is zero, which would be achieved if every prediction was incorrect, while the upper limit of R depends 
on the task. For the parity tasks considered here, the upper limit of R is equal to one.

Pseudo‑period and noise
In this section, the effects of pseudo-period and noise on the computational ability of the reservoir are explored. 
For this discussion, several parity tasks (defined in Eq. (12)) are used to understand the effects of the pseudo-
period and noise on the computational ability of the reservoir.

The relationship between the pseudo-period, Tp , and the natural frequency of the oscillator, ω0 , is explored 
in Fig. 3 by using the 2nd and 4th order parity tasks. In Fig. 3a–c, the reservoir computer’s performance is meas-
ured for three different values of Tp while varying the natural period, 2π

ω0
 . It is found that the reservoir has better 

performance when the pseudo-period is an integer multiple of the natural period of the oscillator. The reservoir’s 
performance is studied using both resonance ( ω0 = � ) and non-resonance ( ω0  = � ) conditions. It is found that 
both cases can result in strong or weak computational ability depending on the fractional relationship between 
the natural period and the pseudo-period. However, maintaining this design can still fail to make a robust res-
ervoir computer when Tp is very low (e.g., Tp = 0.05 seconds). For the remainder of the paper, combinations of 
Tp and ω0 are chosen such that the pseudo-period is an integer multiple of the natural period of the oscillator.

Noise is ubiquitous in physical systems. For this reason, noise is introduced into this system using a stochastic 
masking function. Figure 4 shows the relationship between the computational ability, as measured with R, the 
noise amplitude, σ , and the noise bias, β. The simulations presented in Fig. 4 are performed for the 4th order 
parity task (left) and 6th order parity task (right). The reservoir is found to be robust against a certain level of 
noise intensity, which demonstrates its potential to be implemented under the influence of environmental noise. 
However, increasing noise intensity does decrease the computational ability of the reservoir. This effect may 
be observed for a higher order task, which requires a longer memory (e.g., the 6th order parity task of Fig. 4). 
When β = 0 , the computational ability was the lowest. Since the non-periodic noise mask with increasing noise 
intensity deteriorates the computational ability, it should be noted that the Hopf reservoir computer can also be 
built by excluding the noise mask ( σ = 0).

Analog circuit experiment
To build a physical reservoir computer (PRC), an analog circuit implementation of Eq. (4) was designed, fabri-
cated, and tested. The circuit’s equations are given in Eq. (11):
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Figure 3.   Comparison of the reservoir’s computing performance, R, on the choice of the pseudo-period, Tp , 
and the natural frequency, ω0 using 2nd and 4th order parity tasks. (a) Tp = 0.05 seconds, (b) Tp = 0.1 seconds, 
and (c) Tp = 0.15 seconds. Different ratios of the natural period and pseudo-period (e.g., 2π

ω0
: Tp ) are simulated, 

and the ratios are depicted for peaks in the information metric. ω0 = � = 50π rad/s is the resonance case. 
Parameters were set such that: µ = 5 , A = 0.5 , � = 50π rad/s, N = 1000 nodes, φ = π/3 rad, σ = 15 , β = 1.0.
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Here, Vu is the input voltage, Vm is the stochastic masking voltage, Vµ is the limit cycle radius voltage, Vω0 is the 
resonance constant voltage. Vx and Vy are the states, which correspond to states x and y in Eq. (4). The circuit 
implementation used TL082 operational amplifiers and AD633 multipliers in standard integrator network con-
figurations. The error tolerance is 1% for the resistors and 2% for the capacitors. The continuous input function, 
Vu , the stochastic masking function, Vm , and the sinusoidal forcing, sin(�t + φ) , were created in MATLAB and 
sent to the circuit via a National Instrument (NI) cDAQ-9174. This cDAQ-9174 also collected the Vx and Vy 
states. A sampling frequency of 105 samples/s was used to collect data for all the experiments. The resistor values 
were chosen such that R1 = 10 k � and R2 = 100k� , and the capacitor values were chosen such that C = 0.1µ F. 
A simplified schematic is shown in Fig. 5.

The Vx state will be treated in the same manner that the x state was treated in “Mapping methodology” sec-
tion. That is, the Vx state will be rescaled using Eq. (6), and then the rescaled state will be used to form the nodal 
state matrix, L. The target signal vector, M, will be created following the same process discussed in “Mapping 
methodology” section. Finally, Eq. (7) will be used to train the PRC to map input data to the desired output 
values. As an example, the analog circuit Hopf PRC was used to solve the XOR task as in the previous section, 
which is depicted in Fig. 6. The information rate, R, for this case was calculated to be 1.0 based on the prediction 
from the validation portion (not including in the training process).

Benchmark tasks for Hopf PRC
The Hopf PRC is numerically and experimentally tested with three benchmark tasks: (1) logic tasks, (2) emula-
tion tasks of time series, and (3)  prediction tasks. Logic tasks include the fundamental logic gate tasks and parity 
tasks of different orders. Emulation tasks of time series will test the PRC’s ability to reproduce nonlinear auto 
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Figure 4.   The reservoir computer is somewhat robust to noise. The effects of σ and β are shown. Left: 4th 
order parity task. Right: 6th order parity task. Parameters were set such that: µ = 5 , A = 0.5 , � = 40π rad/s, 
ω0 = 40π rad/s, Tp = 0.1 seconds, N = 1000 nodes, and φ = π/3 rad.

Figure 5.   A simplified schematic for the Hopf PRC, with states Vx and Vy . Ve
µ = Vµ(1+ VuVm) and 

Ve
f = A(1+ VuVm) sin(�t + φ).
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regressive moving average (NARMA) tasks of different orders. Prediction tasks include the Santa Fe time series 
and sunspot prediction tasks.

Logic benchmark tasks.  Parity tasks.  The computing efficacy of the reservoir is first evaluated with par-
ity benchmark tasks. Since it is a logical task, the input function, u(t), is generated with a random binary signal, 
r(z), as discussed in “Mapping methodology” section. The nth order parity function, Pn , is defined by the fol-
lowing equation:

As n increases, this task will require more memory and nonlinearity from the reservoir. As given in “Mapping 
methodology” section, Shannon’s information metric is used to measure the performance of the PRC for logic 
tasks. For n = 1 , the first-order task does not require any memory from the input of the previous pseudo-period, 
so the task is linear. For n > 1 , the task is nonlinear, which demands that the reservoir computer must also possess 
memory and the nonlinear separation ability. In Fig. 7, the ability of the Hopf PRC to follow parity tasks of 2nd 
to 5th order, both experimentally and in simulations. The initial 4000Tp = 400 seconds are used for training, and 
the final 1000Tp = 100 seconds are used for testing. The performance difference between the PRC experiment 
and the simulation could be due to the presence of nonlinear circuit components in the analog circuit, which 
are not represented in Eq. (11). For instance, Vu must jump between −1 and +1 , but this instantaneous change 
takes a finite amount of time in the circuit.

Fundamental logic gate tasks.  The computing performance of the reservoir is also assessed with fundamental 
logic gates: NOT ( ¬ ), AND ( ∧ ), and OR ( ∨ ). The input function, u(t), is generated with a random binary signal 
as discussed in “Mapping methodology” section, and the Shannon’s information metric is used again to meas-
ure the performance of this PRC. Figure 8 depicts the response of the Hopf PRC acting as fundamental logic 
gates, both experimentally and in simulations. In all cases, the Hopf PRC achieved an information rate that was 
maximal.

Emulation tasks.  The reservoir is also evaluated with emulation tasks. The nonlinear auto-regressive mov-
ing average (NARMA) time series is used to test whether the reservoir possesses adequate nonlinearity and long 
time lags4,24,26,28. These tasks show the multi-tasking capability of the reservoir. NARMA tasks from the 2nd to 
20th orders are used to test the reservoir. A NARMA task of order n is given in Eq. (13), where the initial target 
values are set to 0.19:

In Eq. (13), Mn is the target of the system. n is the order of NARMA task, (f1, f2, f3) = ( 2.11500 ,
3.73
500 ,

4.33
500 ) , and 

(α, ζ , γ , δ) = (0.3, 0.05, 1.5, 0.1)26,28. u(t) is the continuous input that is used to force the Hopf PRC, which is 
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a function of a three sinusoidal functions. It should be noted that this formulation of the NARMA emulation 
task is non-standard. The u(t) given in Eq. (13) was used for other dynamic systems in which inertia played a 
large role4,26. Similarly, this non-standard NARMA task is used here to evaluate this analog circuit reservoir. The 
reservoir emulates this nonlinear function, but it should be noted that the correlation present in Eq. (13) does 
not allow a definitive evaluation of the long-term memory characteristics of this reservoir.

In the simulations and experiments, �t = 0.1 seconds, and the sampling rate was 105 samples/second. Figure 9 
shows several NARMA tasks. Instead of the information rate, the normalised mean square error (NMSE) is used 
to evaluate the performance of the reservoir computer for the NARMA tasks:
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Figure 7.   Comparison of the performance of the PRC for parity tasks. (a) Discrete input function, r(z). (b) 2nd 
order parity task. Information metric: Rexp = 1.00 , Rsim = 0.98 . (c) 3rd order parity task. Information metric: 
Rexp = 1.00 , Rsim = 0.98 . (d) 4th order parity task. Information metric: Rexp = 0.68 , Rsim = 0.93 . (e) 5th order 
parity task. Information metric: Rexp = 0.31 , Rsim = 0.74 . Parameters were set such that: Vµ = µ = 5 , A = 0.5 , 
� = 40π rad/s, Vω0

= ω0 = 40π , Tp = 0.1 seconds, N = 1000 nodes, φ = π/3 rad, σ = 15 , β = 1.0 , and a total 
time of 5000Tp = 500 seconds (only a portion of the discrete prediction is shown).
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The final 20% of the target signal (16,000–20,000 pseudo-periods) is used for the validation. Mn is the target, 
and on is the prediction from the reservoir computer. In Eq. (14), j0 is the starting time step, and jf  is the ending 
time step from the test section. From the plots in Figs. 9 and 10, the numerical simulations of the Hopf PRC 
show superior performance as compared to the experiment. However, both have an acceptable performance until 
the 20th order task. The PRC can perform much higher order NARMA tasks than the order of the parity tasks.

Prediction tasks.  Santa Fe task.  Time series forecasting is an important benchmark for a reservoir. The 
Santa Fe time series was first used in a time series forecasting competition as a benchmark test. The Santa Fe time 
series data set A is a univariate time series found from the recorded intensity of a chaotic far-infrared-laser49. The 
target signal is generated to predict the value at the next time step based on the values of the current and previous 
time steps. Figure 11a shows the Hopf PRC’s performance on this laser time series, for both the experiment and 
the numerical simulations. NMSE is used as the performance metric.
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−6 , NMSEsim = 7.8199× 10
−7 . (c) 

10th order NARMA task. NMSEexp = 0.0037 , NMSEsim = 5.0362× 10
−4 . (d) 20th order NARMA task. 

NMSEexp = 0.0060 , NMSEsim = 0.0033 . Only a portion of the result is shown in each figure. Parameters were 
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Santa Fe time series data set B is a multivariate time series found from the sleep laboratory of the Beth Israel 
Hospital (current name: Beth Israel Deaconess Medical Center) in Boston, Massachusetts50,51. This data set 
was taken from the MIT-BIH Polysomnographic Database record (slp60) and submitted to the Santa Fe Time 
Series Competition in 199152. The heart rate, chest volume (respiration force), and blood oxygen concentration 
comprise the target.

For each of these time series, the target signal is again generated to predict the next step based on the values 
of the current and previous time steps. In each case, the original time series is normalized to use as the input. 
Figure 11b–d shows the reservoir computer’s performance in predicting subsequent values of the heart rate, 
respiratory force, and blood oxygen concentration, respectively, through both experiments and numerical simula-
tions. The NMSE is calculated in each case to evaluate the performance of the reservoir.

Sunspot prediction task.  The prediction of the total number of sunspots ( Sn ) is also a one-step time series 
prediction task similar to the Santa Fe time series10. Daily and monthly total sunspot numbers were used in one 
step forecasting purpose by the reservoir computer. The necessary data set is taken from WDC-SILSO, Royal 
Observatory of Belgium, Brussels53. Again, for each of the time series, the target signal is generated to predict the 
next value based on the value of the current and previous time steps, and the original time series is normalized to 
use as the input to the oscillator. Figure 12 (top) shows the reservoir’s performance in predicting the next steps 
of the daily total counted sunspots, and Fig. 12 (bottom) shows the performance in predicting monthly counted 
sunspots. Again, the NMSE is used to evaluate the reservoir’s efficacy for this task.

Concluding remarks
In this paper, the Hopf oscillator is explored as a physical reservoir computer through employing a time-multi-
plexed, node-based architecture with a stochastic masking function. Discarding the regularly used delay lines, 
this Hopf PRC is a simple and cheap method for creating a physical reservoir computer. Since quantum systems 
are capable of limit cycle motion54, this Hopf PRC formulation might be applicable for quantum PRCs. The 
Euler–Maruyama method was used for the numerical simulations of this Hopf PRC. An analog circuit of this 
Hopf PRC was developed, fabricated, and tested. The Hopf PRC was found to possess multi-tasking capability, 
since it was shown to perform logic operations, emulation tasks, and time series prediction tasks. Taking inspi-
ration from adaptive oscillators, the input signal was injected into multiple locations, including the parameter 
that affects the limit cycle radius and the amplitude of the sinusoidal forcing. Additionally, the masking function 
used in this PRC is stochastic. Since this PRC architecture is tested with noise, it also suggests that this reservoir 
computer should be robust to environmental noises in practical implementations.
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Figure 11.   Comparison of the performance of the PRC for Santa Fe prediction tasks. (a) The Santa Fe chaotic 
time series of a laser intensity prediction task. Performance metric: NMSEexp = 0.0615 , NMSEsim = 0.02 . (b) 
The Santa Fe heart rate prediction task. NMSEexp = 6.0258× 10

−4 , NMSEsim = 6.5060× 10
−4 . (c) Santa 

Fe respiration force prediction task. NMSEexp = 0.1826 , NMSEsim = 0.1753 . (d) Santa Fe blood oxygen 
concentration prediction task. NMSEexp = 3.3287× 10

−4 , NMSEsim = 1.7× 10
−4 . Parameters were set such 

that: Vµ = µ = 5 volts, A = 0.5 volts, � = 40π rad/s, Vω0
= ω0 = 40π volts, Tp = 0.1 seconds, N = 1000 

nodes, φ = π/3 rad, σ = 15 volts, β = 1.0 volts. Only a portion of the result is shown in each figure.
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