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Abstract: A total of 12 compounds were synthesized from the natural sesquiterpene (-) drimenol
(compounds 4 to 15). The synthesized compounds corresponded to N-phenyl-driman-9-carboxamide
derivatives, similar to some fungicides that inhibit the electron-transport chain. Their structures
were characterized and confirmed by 1H NMR, 13C NMR spectroscopy, and mass spectrometry.
Compounds 5 to 15 corresponded to novel compounds. The effect of the compounds on the mycelial
growth of Botrytis cinerea was evaluated. Methoxylated and chlorinated compounds in the aromatic
ring (compounds 6, 7, 12, and 13) exhibited the highest antifungal activity with IC50 values between
0.20 and 0.26 mM. On the other hand, the effect on conidial germination of B. cinerea of one methoxy-
lated compound (6) and one chlorinated compound (7) was analyzed, and no inhibition was observed.
Additionally, compound 7 decreased 36% the rate of oxygen consumption by germinating conidia.

Keywords: Botrytis cinerea; antifungal activity; N-phenyl-driman-9-carboxamides; mode of action;
oxidative phosphorylation inhibitors

1. Introduction

Botrytis cinerea is a facultative phytopathogenic fungus causing grey mold disease
in a wide range of hosts. It infects aerial parts of the plants such as leaves, stems, fruits,
and flowers of 586 genera of vascular plants, representing over 1400 ornamental and
agriculturally important plant species. [1]. Due to the economic losses caused by this
pathogen and the difficulties in its control, B. cinerea infection represents one of the main
phytosanitary problems worldwide [2,3].

The use of synthetic fungicides is the main strategy to control this pathogen. The
mechanisms of action of these fungicides are as diverse as their structures [4]. Succinate
dehydrogenase inhibitors (SDHI), belonging to the carboxamide family, are the most
used fungicides to control B. cinerea [5]. These compounds can bind to the union site of
the ubiquinone in the Complex II of the mitochondrial electron chain transport through
hydrophobic interactions among the aromatic ring of the fungicide and a proline residue
and two tryptophan residues of the Complex II. On the other hand, a hydrogen bond is
produced among the carbonyl group of the fungicide and a tyrosine residue of Complex
II. These interactions interrupt electronic transport from [3Fe–4S] cluster to ubiquinone in
Complex II, affecting the cellular respiration in B. cinerea [5–7].

Resistance of B. cinerea to fungicides is a permanent problem [8–11], so various strate-
gies have been developed, such as increasing the doses of fungicides and the use of
alternative fungicides [12–14]. Secondary metabolites are an option for searching for new
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fungicides since some of these compounds or their derivatives have exhibited fungitoxic ac-
tivity against B. cinerea [15–18], which shows a strong relationship between some functional
groups in its structure with fungitoxic activity [19–23]. Drimane sesquiterpenes are sec-
ondary metabolites with bicyclic skeletons that present numerous biological activities [24].
It has been reported that drimenol, obtained from Canelaceas (Canellaceae) species, showed
cytotoxic, antibacterial, antifungal, and anti-inflammatory activity. [24]. It was also deter-
mined that drimenal has a higher fungitoxic activity than drimenol, both extracted from the
bark of winter cinnamon (Drimys winteri Forst.), with IC50 of 81.8 µg/mL (0.37 mmol/L)
and >125 µg/mL (>0.6 mmol/L), respectively [25]. The increase in fungitoxic activity
observed with drimenal is not observed when drimenol is acetylated, while the epoxy
acetate derivative shows a decrease in fungitoxic activity concerning drimenol [26].

This study proposed to analyze the antifungal activity against B. cinerea of 12 SDHI-
like compounds synthesized from drimenol by reaction between this compound and
substituted anilines. Furthermore, we analyzed the possible mode of action of two of the
most active compounds on B. cinerea.

2. Materials and Methods
2.1. General Conditions

Reagents used in synthesis were obtained from Sigma-Aldrich Co. (St. Louis, MO,
USA). Organic solvents were obtained from Merck Química Chilena (Santiago, Chile). Col-
umn chromatography was carried out using Gel 60 (0.063–0.200 mm) (Merck, Darmstadt,
Germany), and thin-layer chromatography (TLC) was performed on Merck Kiesegel
60 F254 0.2 cm.

Synthesis of the compounds was carried out from natural (-)drimenol extracted from
the bark of winter cinnamon [27], provided by the Natural Product Laboratory of the
Universidad Católica de Chile.

A Thermo Scientific gas chromatography coupled with a mass spectrometer (GC-MS)
system (GC model: Trace 1300 and MS model: TSQ8000Evo) (Waltham, MA, USA) was
used to analyze the samples. The separation was performed on a 60 mm × 0.25 mm
internal diameter fused silica capillary column coated with 0.25 µm film Rtx-5MS. The
oven temperature was maintained at 40 ◦C for 5 min, and then set from 40 to 80 ◦C at
5 ◦C/min, then from 80 to 300 ◦C at 30 ◦C/min, and finally maintained at 300 ◦C for
25 min. A splitless injection was used with helium as a carrier gas, and the flow rate was
1.2 mL/min. Mass spectra were recorded over a range of 40 to 400 atomic mass units at
0.2 s/scan, the solvent cut time was 11 min, and the ionization energy was 70 eV.

2.2. Synthesis of Compounds
2.2.1. Synthesis of Driman-11-ol (2)

Palladium/carbon (10%) was added to a solution of drimenol (1) (2.25 mmol) dissolved
in methanol p.a. (50 mL). This mixture was treated with molecular hydrogen for 4 h, and
the mixture was filtered out. The solvent was concentrated under vacuum to afford crude
reaction, and then it was purified through column chromatography using hexane:acetate
8:2 as mobile phase. The NMR signals (see Appendix A) were compared with previous
reports [28–30].

2.2.2. Synthesis of Driman-11-oic Acid (3)

Jones reagent (CrO3/H2SO4) drops were added to a solution of (2) (2.23 mmol) in
acetone p.a (50 mL) until the obtention of a permanent orange coloration in the solution. The
mixture was concentrated in a vacuum to obtain a green crude which was then extracted
with ethyl acetate. This extract was concentrated in a vacuum, and an acid-base extraction
was carried out. The organic phase was evaporated to dryness, obtaining driman-11-oic
acid (3) as a white-colored solid. The NMR signals analysis (see Appendix A) showed that
these signals correlate with previous reports [31].
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2.2.3. Synthesis of Drimancarboxamide Derivatives

Compound 3 (0.42 mmol) was dissolved in the minimum amount of thionyl chloride
(SOCl2) and three drops of N,N-dimethylformamide (DMF). The solution was refluxed for
3 h, then was distilled at reduced pressure and dissolved in dichloromethane (CH2Cl2).
0.42 mmol of the corresponding aniline (1:1 to chloride compound synthesized from (3))
and 0.42 mmol of triethylamine in CH2Cl2 anhydrous were added drop by drop. The
mixture remained at 0 ◦C. The product of the reaction was purified through column chro-
matography. Anilines used were: aniline, 3,4-dichloroaniline, 3,4-dimethoxyaniline, 3,4-
dimethylalanine, 3,5-dichloroaniline, 3,5-dimethoxyaniline, 3-chloroaniline, 4-chloraniline,
3-methylaniline, 4-methylaniline, 3-methoxyaniline, and 4-methoxyaniline. Thus, 12 com-
pounds were obtained (compounds 4 to 15).

2.2.4. Spectroscopic Data of Compounds 4–15

2,5,5,8a-tetramethyl-N-phenyldecahydronaphthalene-1-carboxamide or N-phenyl-driman-9-
carboxamide (4); light yellow solid, yield 40%, and m.p.:194 ◦C. 1H NMR (400 MHz, CDCl3)
δ 7.43 (2H, d, J = 8.1 Hz, Ha‘), 7.20 (2H, t, J = 7.7 Hz, Hb‘), 6.99 (1H, t, J = 6.9 Hz, Hc‘),
1.07 (3H, s, CH3), 0.81 (3H, d, J = 6.5 Hz, CH3), 0.79 (3H, s, CH3), 0.77 (3H, s, CH3). 13C
NMR (100 MHz, CDCl3) δ 171.67 (C=O), 137.17 (C1‘), 127.86 (C3‘), 122.88 (C4‘), 118.84 (C2‘),
61.10 (C1), 55.45 (C4a), 41.17 (C6), 38.93 (C8), 37.30 (C8a), 33.44 (C3), 32.44 (CH3–C2), 32.20
(C5), 31.55 (CH3–C5), 20.54 (C2), 17.12 (C4), 16.41 (C7), 16.11 (CH3–C8a), 15.11 (CH3–C5).
GC-MS RI(Rtx-5ms) = 2809.6, C21H31NO EI-MS m/z: 93 (100); 123 (31.14); 135 (28.12); 205
(46.93); 220 (27.3); [M]+ = 313 (26.63).

2,5,5,8a-tetramethyl-N-(3,4-dimethylphenyl)decahydronaphthalene-1-carboxamide or N-(3,4-
dimethylphenyl)-driman-9-carboxamide (5); purple solid, yield 37%, and m.p.:157 ◦C. 1H NMR
(400 MHz, CDCl3) δ 7.27 (1H, d, J = 2.1 Hz, Ha‘), 7.12 (1H, dd, J = 8.1, 2.1 Hz, Hc‘), 6.94
(1H, d, J = 8.1 Hz, Hb‘),2.12 (6H, s, CH3 (C3‘) CH3 (C4‘)), 1.07 (3H, s, CH3), 0.8 (3H, d,
J = 6.5 Hz, CH3), 0.79 (3H, s, CH3), 0.77 (3H, s, CH3). 13C NMR (100 MHz, CDCl3) δ171.11
(C=O), 136.07 (C3′), 134.56 (C1′), 131.32 (C4′), 128.80 (C5′), 120.37 (C2′), 116.46 (C6′), 66.80
(C1), 53.64 (C4a), 41.07 (C6), 39.61 (C8), 36.80 (C8a),34.57 (C3), 32.58 (CH3–C2), 32.22 (C5),
29.00 (C2), 20.79 (CH3-C5), 20.59, 19.92 (CH3–C8a), 18.81 (CH3–C3′), 18.13, 17.70 (CH3–C4′),
13.51 (CH3–C5). GC-MS RI(Rtx-5ms) = 2971.5, C23H33NO EI-MS m/z: 121 (100); 122 (17.10);
123 (12.93); 163 (21.16); [M]+ = 341 (20.21).

2,5,5,8a-tetramethyl-N-(3,4-dimethoxyphenyl)decahydronaphthalene-1-carboxamide or N-
(3,4-dimethoxyphenyl)-driman-9-carboxamide (6); brown oil, and 40% yield. 1H NMR (200 MHz,
CDCl3) δ7.41 (1H, d, J = 1.8 Hz, Ha‘), 6.86 (1H, dd, J = 8.2, 1.7 Hz, Hc‘), 6.75 (1H, d,
J = 8.2 Hz, Hb‘), 3.83 (6H, s, OMe (C3‘), OMe (C4‘)), 1.14 (3H, s, CH3), 0.90 (3H, s, CH3),
0.86 (3H, s, CH3), 0.85 (3H, s, CH3). 13C NMR (100 MHz, CDCl3) δ 172.34 (C=O), 149.01
(C3‘), 145.61 (C4‘), 131.80 (C1‘), 111.65 (C6‘), 111.31 (C5‘), 104.86 (C2‘), 67.90 (C9), 56.21
(OMe–C4‘), 55.90 (OMe–C3‘), 54.74 (C4a), 42.16 (C6), 40.71 (C8), 37.91 (C8a), 35.68 (C3),
33.70 (C5), 33.33 (CH3-C2), 30.12 (C2), 21.90 (CH3–C5), 21.68 (CH3–C8a), 21.07 (C4), 18.81
(C7), 14.64 (CH3–C5). GC-MS RI(Rtx-5ms) = 3137.7, C23H35NO3 EI-MS m/z: 69 (10.6); 138
(16.96); 153 (100); 154 (10.01); [M]+ = 373 (16.48).

2,5,5,8a-tetramethyl-N-(3,4-dichlorophenyl)decahydronaphthalene-1-carboxamide or N-(3,4-
dichlorophenyl)-driman-9-carboxamide (7); orange oil, and 40% yield. 1H NMR (400 MHz,
CDCl3) δ 7.75 (1H, s, Ha‘), 7.31 (2H, d, J = 1.1 Hz, Hb‘ y Hc‘), 1.12 (3H, s, CH3), 0.86 (3H, s,
CH3), 0.85 (3H, s, CH3), 0.84 (3H, s, CH3). 13C NMR (101 MHz, CDCl3) δ 172.73 (C11), 137.32
(C1‘), 132.80 (C3‘), 130.49 (C5‘), 127.36 (C4‘), 121.84 (C2‘), 119.36 (C6‘), 68.07 (C9), 54.80 (C5),
42.16 (C6), 40.88 (C1), 38.10 (C10), 35.64 (C7), 33.71 (C4), 33.39 (C13), 30.21 (C8), 21.92 (C14),
21.69 (C12), 21.03 (C6), 18.82 (C2), 14.65 (C15). GC-MS RI(Rtx-5ms) = 3162.1, C21H29Cl2NO
EI-MS m/z: 69 (43.47); 97 (43.23); 123 (56.37); 137 (46.52); 193 (100); [M]+ = 381 (10.56);
[M+2]+ = 383 (7.36); [M+4]+ = 385 (1.27).

2,5,5,8a-tetramethyl-N-(3,5-dimethoxyphenyl)decahydronaphthalene-1-carboxamide or N-
(3,5-dimethoxyphenyl)-driman-9-carboxamide (8); orange solid, 30% yield, and m.p.: 121◦C.
1H NMR (400 MHz, CDCl3) δ 6.78 (d, J = 1.7 Hz, 2H, Ha‘), 6.20 (t, J = 2.2 Hz, 1H, Hb‘), 3.76
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(s, 6H, 2 OMe), 1.10 (d, J = 7.4 Hz, 3H, CH3), 0.86 (s, 6H, 2CH3), 0.84 (s, 3H, CH3). 13C NMR
(101 MHz, CDCl3) δ 179.88 (C11), 161.41(C3′, C5′), 140.53 (C1′), 98.50 (C2′), 98.30 (C6′),
96.91 (C4’), 59.66 (C1), 56.89 (CH3–C3′), 56.29 (CH3–C5′), 55.77 (C4a), 42.51 (C6), 39.92
(C8a), 38.74 (C8), 37.63 (C3), 34.38 (C2), 33.56 (C5), 32.99 (CH3–C5), 31.91 (CH3–C5), 21.97
(C4), 21.97 (CH3–C2), 18.52 (C7), 16.48 (CH3–C8a). GC-MS RI(Rtx-5ms) = 3221.3, C23H35NO3
EI-MS m/z: 69.08(10.54); 153 (100); 154 (15.54); 195 (12.39); [M]+ = 373 (11.57).

2,5,5,8a-tetramethyl-N-(3,5-dichlorophenyl)decahydronaphthalene-1-carboxamide or N-(3,5-
dichlorophenyl)-driman-9-carboxamide (9); white solid, yield 33%, and m.p.:180 ◦C. 1H NMR
(400 MHz, CDCl3) δ 7.46 (d, J = 1.1 Hz, 2H, Ha‘), 7.02 (d, J = 1.4 Hz, 1H, Hb‘), 1.32 (s,
3H, CH3), 1.20 (d, J = 7.5 Hz, 3H, CH3), 0.85 (s, 3H, CH3), 0.84 (s, 3H, CH3). 13C NMR
(101 MHz, CDCl3) δ 173.59 (C=O), 140.41, 135.46, 124.16, 118.57, 62.45, 56.84, 42.56, 40.38,
38.76, 34.77, 33.82, 33.61, 32.93, 21.95, 18.51, 17.80, 17.52, 16.57. GC-MS RI(Rtx-5ms) = 3044.8,
C21H29Cl2NO EI-MS m/z: 49 (22.33); 69 (68.07); 97 (83.77); 123 (91.99); 193 (100); [M]+ = 381
(16.29); [M+2]+ = 383 (10.53); [M+4]+ = 385 (1.87).

2,5,5,8a-tetramethyl-N-(4-methylphenyl)decahydronaphthalene-1-carboxamide or N-(4-
methylphenyl)-driman-9-carboxamide (10); white solid, yield 30%, and m.p.:176 ◦C. 1H NMR
(400 MHz, CDCl3) δ 7.41–7.35 (m, 2H, Ha‘), 7.14 (s, 1H, NH), 7.09 (d, J = 8.1 Hz, 2H, Hb‘),
2.30 (s, 3H, Ar–CH3), 1.35 (s, 3H, CH3), 1.22 (d, J = 7.4 Hz, 3H, CH3), 0.86 (s, 3H, CH3), 0.86
(s, 3H, CH3). 13C NMR (101 MHz, CDCl3) δ 172.46 (C=O), 135.65 (C1′), 133.45 (C4′), 129.36
(C3′C5′), 119.97 (C2′C6′), 68.00 (C1), 62.14 (C4a), 56.52 (C6), 54.74 (C8a), 42.25 (C8), 39.99
(C3), 38.35 (C2), 34.51 (C5), 33.24 (CH3–C5), 32.62 (CH3–C8a), 21.58 (CH3–C4′), 20.82 (C4),
18.18 (CH3–C2), 17.47 (C7), 16.14 (CH3–C5). GC-MS RI(Rtx-5ms) = 2909.6, C22H33NO EI-MS
m/z: 69 (9.43); 106 (8.98); 107 (100); 108 (9.31); [M]+ = 327 (5.95).

2,5,5,8a-tetramethyl-N-(3-methylphenyl)decahydronaphthalene-1-carboxamide or N-(3-
methylphenyl)-driman-9-carboxamide (11); white solid, yield 30%, and m.p.:173 ◦C. 1H NMR
(400 MHz, CDCl3) δ 7.43 (d, J = 7.0 Hz, 1H, Hd‘), 7.24–7.12 (m, 3H, Hc´, Ha‘, NH), 6.89 (t,
J = 5.9 Hz, 1H, Hb‘), 2.32 (s, 3H, Ar–CH3), 1.36 (s, 3H, CH3), 1.23 (d, J = 7.4 Hz, 3H, CH3),
0.87 (s, 3H, CH3), 0.86 (s, 3H, CH3). 13C NMR (101 MHz, CDCl3) δ 172.62 (C=O), 138.86
(C3‘), 138.15 (C1‘), 128.69 (C5‘), 124.69 (C4‘), 120.60 (C2‘), 116.94 (C6‘), 68.15 (C1), 62.25
(C4a), 56.53 (C6), 42.24 (C8a), 40.02 (C8), 38.36 (C3), 34.52 (C2), 33.47(CH3–C2), 32.63(CH3–
C5), 21.58 (CH3–C3‘), 18.18 (C4), 17.47 (CH3–C8a), 17.14 (C7), 16.14 (CH3–C5). GC-MS
RI(Rtx-5ms) = 2882.4, C22H33NO EI-MS m/z: 69 (11.32); 107 (100); 108 (12.27); 123 (10.59); 149
(14.12); [M]+ = 327 (12.25).

2,5,5,8a-tetramethyl-N-(4-methoxyphenyl)decahydronaphthalene-1-carboxamide or N-(4-
methoxyphenyl)-driman-9-carboxamide (12); white solid, yield 37%, and m.p.:124 ◦C. 1H
NMR (400 MHz, CDCl3) δ 7.32 (d, J = 8.3 Hz, 2H, Ha‘), 6.74 (d, J = 8.4 Hz, 2H, Hb‘), 3.69 (s,
3H, Ar-O-Me), 1.27 (s, 3H, CH3), 1.15 (d, J = 7.4 Hz, 3H, CH3), 0.78 (s, 6H, 2CH3); 13C NMR
(101 MHz, CDCl3) δ 172.57 (C=O), 156.12 (C4‘), 131.40 (C1‘), 121.85 (C2‘), 114.03 (C3‘), 61.86
(C1), 56.50 (OMe–C3′), 55.49 (C4a), 42.24 (C6), 39.97 (C8a), 38.30 (C8), 34.52 (C3), 33.47 (C5),
33.23 (C2), 32.61 (CH3–C2), 21.58 (CH3–C5), 18.19 (C4), 17.47 (CH3–C8a), 17.17 (C7), 16.16
(CH3–C5). GC-MS RI(Rtx-5ms) = 3060.4, C22H33NO2 EI-MS m/z: 69 (9.10); 108 (10.26); 123
(100); 124 (12.09); [M]+ = 343 (10.47).

2,5,5,8a-tetramethyl-N-(3-methoxyphenyl)decahydronaphthalene-1-carboxamide or N-(3-
methoxyphenyl)-driman-9-carboxamide (13); white solid, yield 37%, and m.p.:127 ◦C. 1H
NMR (400 MHz, CDCl3) δ 7.31 (s, 1H, NH), 7.20–7.13 (m, 2H, Ha‘, Hc‘), 6.94 (d, J = 7.9 Hz,
1H, Hb‘), 6.63 (d, J = 7.4 Hz, 1H, Hd‘), 3.79 (s, 3H, Ar–O–CH3), 1.35 (s, 3H, CH3), 1.22
(d, J = 7.4 Hz, 3H, CH3), 0.86 (s, 6H, 2CH3). 13C NMR (101 MHz, CDCl3) δ 178.61 (C=O),
172.65 (C3‘), 139.53 (C1‘), 129.54 (C5‘), 111.82 (C6‘), 109.92 (C4‘), 105.32 (C2‘), 64.51 (C1),
56.52 (OMe–C3′), 55.32 (C4a), 42.23 (C6), 40.00 (C8a), 38.36 (C8), 34.49 (C3), 33.47 (C5),
32.60 (C2), 21.58 (CH3–C2), 18.17 (CH3–C5), 17.46 (C4), 17.14 (CH3–C8a), 16.16 (C7), 14.48
(CH3–C5). GC-MS RI(Rtx-5ms) = 2957.6, C22H33NO2 EI-MS m/z: 69 (10.58); 123 (100); 124
(11.32); 165 (9.50) [M]+ = 343 (10.27).

2,5,5,8a-tetramethyl-N-(4-chlorophenyl)decahydronaphthalene-1-carboxamide or N-(4-chlor-
ophenyl)-driman-9-carboxamide (14), white solid, yield 35%, and m.p.:181 ◦C. 1H NMR
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(400 MHz, CDCl3) δ 7.45 (d, J = 8.1 Hz, 2H, Ha‘), 7.25 (d, J = 8.5 Hz, 2H, Hb‘), 1.97 (d,
J = 4.1 Hz, 1H, H-C9), 1.34 (s, 3H, CH3), 1.21 (d, J = 8.0 Hz, 3H, CH3), 0.86 (s, 3H, CH3),
0.86 (s, 3H, CH3). 13C NMR (101 MHz, CDCl3) δ 172.63(C=O), 136.73 (C1‘), 128.88 (C3‘C4‘),
121.09 (C2‘), 62.25 (C1), 56.53 (C4a), 42.20 (C6), 40.05 (C8a), 38.38 (C8), 34.46 (C3), 33.46 (C5),
33.24 (C2), 32.59 (CH3–C2), 21.56 (CH3–C5), 18.15 (CH3–C8a), 17.43 (C4), 17.09 (C7), 16.12
(CH3–C5). GC-MS RI(Rtx-5ms) = 3024.5, C21H30ClNO EI-MS m/z: 69 (59.81); 81.1 (46.52); 97
(56.88); 109 (44.15); 123 (60.75); 127 (100); 137 (47.33); 193 (50.09); 205 (64.29); 220 (70.66);
[M]+ = 347 (17.83); [M+2]+ = 349 (6.13).

2,5,5,8a-tetramethyl-N-(3-chlorophenyl)decahydronaphthalene-1-carboxamide or N-(3-chlorop-
henyl)-driman-9-carboxamide (15); white solid, yield 35%, and m.p.:204 ◦C. 1H NMR (400 MHz,
CDCl3) δ 7.66 (s, 1H, NH), 7.29 (d, J = 8.3 Hz, 1H, Hd‘), 7.20 (m, 2H, Ha‘, Hc‘), 7.04 (d,
J = 7.9 Hz, 1H, Hb‘), 1.98 (d, J = 4.2 Hz, 1H, H-C9), 1.34 (s, 3H, CH3), 1.21 (d, J = 7.4 Hz,
3H, CH3), 0.86 (s, 3H, CH3), 0.85 (s, 3H, CH3). 13C MR (101 MHz, CDCl3) δ 172.73 (C=O),
137.32 (C1‘), 132.80 (C3‘), 130.49 (C5‘), 127.36 (C4‘), 121.84 (C2‘), 119.36 (C6‘), 68.07 (C1),
54.80 (C4a), 42.16 (C4), 40.88 (C8), 38.10 (C8a), 35.64 (C3), 33.71 (C5), 33.39 (CH3–C2), 30.21
(C2), 21.92 (CH3–C5), 21.69 (CH3–C8a), 21.03 (C4), 18.82 (C7), 14.65 (CH3–C5). GC-MS
RI(Rtx-5ms) = 3005.3, C21H30ClNO EI-MS m/z: 69 (82.53); 81 (63.65); 97 (83.41); 109 (66.19);
123 (100); 137 (71.73); 193 (75.81); 205 (82.95); 220 (87.76); [M]+ = 347 (36.53); [M+2]+ = 349
(12.26).

All spectra are accompanied in Figure S1.

2.3. Fungal Isolate and Culture Conditions

Botrytis cinerea isolate G29 originally isolated from naturally infected grapes (Vitis
vinifera) [32] was used in this study. The fungus was grown in the dark on malt-yeast
extract agar medium (2% (w/v) malt extract, 0.2% (w/v) yeast extract and 1.5% (w/v) agar),
on soft agar medium (2% (w/v) malt extract, 0.2% (w/v) yeast extract, and 0.6% (w/v) agar)
or in liquid minimum medium (1 g L−1 KH2PO4, 0.5 g L−1 K2HPO4, 0.5 g L−1 MgSO4 ×
7H2O, 0.5 g L−1 KCl, 0.001 g L−1 FeSO4 × 7H2O, and 4.6 g L−1 ammonium tartrate) The
culture media was adjusted to pH 6.0 and supplemented with 1% glucose (Merck Millipore,
Darmstadt, Germany).

2.4. Determination of the Antifungal Activity of Compounds against B. cinerea

The effect of the compounds on the mycelial growth of B. cinerea was determined
as described by Mendoza et al. (2015) [22]. Compounds dissolved in acetone at final
concentrations of 0.09, 0.18, 0.36 mmol/L for drimenol, and 0.06, 0.12, 0.24 mmol/L for
compounds 4–15 were added to Petri dishes containing malt-yeast extract agar medium.
The final acetone concentration was identical in the control and treatment assays. After
acetone evaporation in a laminar flow cabinet, the culture medium was inoculated with
0.5 cm agar disks from an actively growing culture of B. cinerea. Cultures were incubated
in the dark at 22 ◦C. Mycelium diameter was measured daily, and results were expressed
as IC50, determined by the inhibition of radial growth against compound concentrations
using Probit analysis. Each experiment was done at least in triplicate.

Also, the effect of synthesized compounds on conidia germination was determined.
Conidia germination assays were carried out on microscope slides coated with soft agar
medium (2 mm thickness). Culture media were inoculated with dry conidia obtained from
sporulated mycelia. Slides were placed in a humid chamber (90% relative humidity) and
incubated in the dark at 22 ◦C. The number of germinated conidia was counted at 1-h
intervals through microscope observation. The germination percentage was calculated
by counting germinated conidia in five microscope fields containing approximately one
hundred conidia. Conidia with a germinative tube length similar to conidial diameter
were considered germinated conidia, according to the protocol described by Mendoza et al.
(2015) [22]. Each assay was performed at least in triplicate.
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2.5. Evaluation of Possible Mode of Action on B. cinerea of the Most Active
Synthesized Compounds

The effects of one of the most active compounds on oxidative phosphorylation and
oxygen consumption by germinating conidia in B. cinerea were evaluated.

2.5.1. Effect of Salicylhydroxamic Acid (SHAM) on Mycelial Growth of B. cinerea

The effect of SHAM, an inhibitor of the cyanide-resistant respiration pathway in
fungal mitochondria [33], at 5 mM or compounds 6 and 7 at 0.29 mM plus 5 mM SHAM
was evaluated on the mycelial growth of B. cinerea as described in 2.4. Each assay was
performed at least in triplicate.

2.5.2. Effect of Compounds on Oxygen Consumption

The commercial kit MitoXpress®-Xtra was used as described by Diepart et al. (2010) [34]
to quantify the oxygen consumption with some modifications. In a 96-well plate,
1 × 105 conidia/mL were inoculated in 200 µL of Minimum Medium, and the culture
was incubated at 22 ◦C overnight.

After the incubation, the culture medium was removed, and 150 µL of fresh Minimum
Medium was added. Then, 10 µL of culture medium was added to “solvent control”
wells, 10 µL of antimycin A (100 µM) to “AA control” wells, and 10 µL of compound 6 or
7 at 0.29 mM to “treatment” wells. In the “GO control” wells, 10 µL of glucose oxidase
(1 mg/mL) were added to wells containing 150 µL of fresh Minimum Medium without
conidia. Later, 10 µL of MitoXpress®-Xtra was added to each well, and the wells were cov-
ered immediately with 100 µL of mineral oil. Fluorescence intensity was measured at 22 ◦C
in a multimodal-microplate reader, model Synergy HT (BioTek Instruments, Winooski,
VT, EE.UU) using standard 340 nm excitation and 645 nm emission filters. Fluorescence
intensity was measured every 2 min for 120 min. The rate of oxygen consumption was
determined from the slope of fluorescence in the time through linear regression. The values
were corrected concerning the blank and normalized with the initial intensity.

3. Results and Discussion
3.1. Synthesis and Structural Determination

A total of 12 new drimancarboxamides were synthesized through a four-step route
(Figure 1). The synthesized compounds are shown in Figure 2, which contain both an aro-
matic and a sesquiterpenoid part. Compounds 5 to 15 corresponded to novel compounds.
All compounds were obtained in yields between 30 and 40%.
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Figure 2. Synthesized compounds.

The structural determination of reaction intermediaries 2 and 3 was performed by
comparing 1H NMR and 13C NMR spectra with previous reports [28–31]. The analysis of
compounds 4–15 was centered on the 1H NMR and 13C NMR signals of the aromatic ring
and the GC-MS data because the signals of the decalinic ring did not vary (see Section 2.2.4).
When using compound 4 as a reference, two triplets (δ 7.20 and δ 6.99) and one doublet
(δ 7.43) were observed in the aromatic zone of the 1H NMR spectrum. In the compounds
substituted in R1 and R2, the signal pattern changed to one singlet and two doublets,
whereas in the compounds substituted in R1 and R3, only three singlets were observed,
while in the compounds substituted in R2, two doublets appeared, and in the compounds
substituted in R1 one singlet, two doublets, and a multiplet. In addition, in compounds
with methyl or methoxy groups, the number of carbon atoms in the molecule can be seen
in the 13C NMR spectrum.

Signal assignments and compound structures proposal was made from the analysis of
two-dimensional homonuclear (COSY) and heteronuclear (HSQC and HMBC) (Section 2.2).
Finally, the GC-MS analysis identified the molecular ion of each compound, which led to
the proposal of the structure presented in Figure 2.

3.2. Determination of the Antifungal Activity of Compounds against B. cinerea
3.2.1. The Effect on Mycelial Growth

All synthesized compounds showed antifungal activity against B. cinerea in solid
media, which increased when the aromatic ring was substituted (Table 1). However,
drimenol only slowed the growth of B. cinerea under the conditions tested, similar to
observed by Scher and colleagues [25].

Data represent the mean of three different experiments ± standard deviation.
The effect of substitutions in the aromatic ring on biological activity has been widely

described, and it is associated with the donor or attractor capacity of electrons [35–37].
The synthesized compounds with substitutions of methoxyl and chloride groups in R2
and R3 positions exhibited the highest fungitoxic activity on B. cinerea (6, 7, 12, and 13).
The methoxyl group in ortho and para positions is a strong activator of the ring due to
its contribution to electronic density, while the methyl group is a weak activator, and the
antifungal activity was lower than methoxyl. In chlorine as a substituent, the inductive
effect predominates, behaving as an electro-attractor.

The methoxylated compounds with substitutions in R2 and/or R3 (6, 12, and 13) exhib-
ited similar IC50 values, but methoxyl in R1 and R3 (compound 8) showed less antifungal
activity. In the case of chlorinated compounds (7, 9, 14, and 15), the number and position of
the substitution appear to be necessary for their fungitoxic activity, compound 7 is the most
active, with substitutions on positions R2 and R3 of the aromatic ring, while compound
9 (chlorine in R1 and R3) has the lowest activity among the chlorinated compounds. In
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both cases, substituent in position R1 decreased the activity, while with the substituent in a
position para to amide, the highest fungitoxic activity was achieved (compound 7), except
for compound 13 (methoxyl in R3).

Table 1. Fungitoxicity on B. cinerea of the synthesized compounds.

Compounds IC50 (mmol/L)

drimenol -
4 69.90 ± 4.60
5 5.18 ± 0.41
6 0.26 ± 0.04
7 0.20 ± 0.02
8 1.31 ± 0.13
9 8.17 ± 0.37

10 4.59 ± 0.32
11 6.04 ± 0.17
12 0.23 ± 0.03
13 0.26 ± 0.06
14 0.32 ± 0.03
15 3.53 ± 0.16

The results suggest that the electro-attractor role of chlorine and the possibility of
forming hydrogen bonds of the oxygen from the methoxyl group of the compounds could
be important properties for the fungitoxic activity against B. cinerea. However, the synthesis
of more compounds is required to establish the relationship between the position and
amount of chlorines and methoxyl groups. Besides, studies about the effect of aromatic
ring substituents on the properties of molecules do not consider only the electronic aspects
but also steric factors and the possibility to interact through the formation of hydrogen
bonds with amino acid residues in the active site of the enzymes [38].

The presence of aromatic rings with substitutions of chlorines is a common charac-
teristic in some fungicides. The diverse action mechanisms of these fungicides have been
described as damage of cytoskeleton (fluopicolide) or alteration in the cellular respiration
(pyribencarb, boscalid) [39–41].

Figure 3 shows a comparison of the effect of the most active synthesized compounds
(6 and 7) and the precursor drimenol on the mycelial growth of B. cinerea. During the first
three days, drimenol produced a similar effect to compounds 6 and 7. Then, the inhibitory
effect of drimenol decreased, reaching a growth maximum similar to the control, which
suggests that the fungus could detoxify itself from the compound. It has been described that
this fungus can detoxify itself using degradative (biotransformation) and non-degradative
mechanisms [19–21,42,43]. On the other hand, on the 10th day of incubation in the presence
of compounds 6 and 7, B. cinerea did not reach maximum growth. It is probably more
difficult for B. cinerea to detoxify itself from these kinds of compounds.

3.2.2. The Effect on Conidia Germination

The effect of compounds on conidial germination was evaluated. Compounds 6 and
7 at 0.15 mM and 0.29 mM did not inhibit conidial germination (Melo, Ricardo. Universi-
dad Mayor, Santiago, Chile. The experiments were carried out as indicated in Section 2.4,
but no differences were observed in germination between the presence of the synthesized
compounds concerning the control, 2018). Moreover, deformations or morphologic alter-
ations in germinative tubes were not observed as it has previously been reported with
other compounds [44].
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Figure 3. Effect of drimenol, compounds 6 and 7 (0.29 mM) on mycelial growth of B. cinerea. The data
correspond to three independent assays in triplicate. The bars correspond to the standard deviation.

3.3. Evaluation of Possible Mode of Action on B. cinerea
3.3.1. Effect of SHAM on Mycelial Growth of B. cinerea

The effect of compounds 6 and 7 as possible inhibitors of the mitochondrial electron
transport was analyzed. For this, the mycelial growth in the presence of compounds
6 or 7, and 5 mM SHAM, an inhibitor of the alternative oxidase (AOX) [33], was evaluated
(Figure 4). When the principal route of electron transport in oxidative phosphorylation is
inhibited, reactive oxygen species (ROS) are produced, which activate AOX. This enzyme
acts as a bypass so the oxygen can receive the electrons, recovering the capacity to produce
ATP by fungal cells [45–47].
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Figure 4. Effect of compound 6 (A) and compound 7 (B) at a concentration of 0.26 and 0.20 mM, respectively, on B. cinerea
mycelial growth in the presence or absence of SHAM. Data shown correspond to three independent essays. Each essay was
done in triplicate, and bars correspond to standard deviations.

SHAM inhibited the B. cinerea mycelial growth. When SHAM and compounds 6 or 7
acted together, the inhibition of mycelial growth was higher. After seven days of incubation,
the fungal growth was 25% in relation to the control.

There are several cases where a similar behavior was observed and in which the
electron-transport chain was affected in B. cinerea. When the fungus was incubated with
4,4-dimethylanthracene-1,9,10(4H)-trione, which affects the electron-transport chain in
the presence of 5 mM SHAM, an inhibition of mycelial growth of 95% was observed [43].
The antifungal activity of 2-allylphenol, a phenolic compound obtained from the fruit-
like structure of Ginkgo biloba L., increased when 10 mg/mL of SHAM was added to the
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media [48]. The behavior is also similar when azoxystrobin and antimycin A, well-known
inhibitors of mitochondrial electronic transport, are used [49]. The decrease of the mycelial
growth when the fungus was treated with the synthesized compounds indicates that the
compounds would affect the mitochondrial electron-transport chain.

3.3.2. Effect of Compounds on Oxygen Consumption

The effect of compound 7 on oxygen consumption of germinating conidia was also
evaluated. The fluorescence signal of MitoXpress®-Xtra is inversely proportional to the
oxygen concentration in the suspension, so the increment in oxygen consumption by
germinating conidia increases the fluorescence [50]. Figure 5 shows relative fluorescence
intensity in the time of germinating conidia suspensions treated with compound 7 and
the controls.
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Figure 5. Effect of compound 7 on the oxygen consumption rate measured by MitoXpress fluores-
cence. “Control GO” corresponds to samples without conidia and glucose oxidase enzyme as the
positive control. “Control AA” corresponds to conidia treated with antimycin A (a respiratory chain
inhibitor). Control corresponds to conidia without any treatment. Two independent assays were
done. Each assay was done in triplicate.

The curve slope corresponding to treatment with compound 7 at 0.20 mM shows that
the oxygen consumption velocity was 36% lesser than control, while antimycin A reduced
oxygen consumption velocity by 85%. This effect indicates that compound 7 would inhibit
the mitochondrial electron-transport chain, causing a decrease in oxygen consumption.

The rate of oxygen consumption in B. cinerea was reduced by 46% when the fun-
gus was treated with 2-alylphenol (640 mM), while treated with antimycin A, the rate
was reduced by 77% [48]. On the other hand, it has been reported that 5,7-dihydroxy-
3,8-dimethoxyflavone, a flavonoid isolated from resinous exudates of Pseudognaphalium
robustum, also inhibits the oxygen consumption in B. cinerea by 35.4% [51]. The results
of the oxygen consumption test and those carried out with SHAM suggest that at least
compound 7 would cause an inhibitory effect in the electron-transport chain.

4. Conclusions

A series of 12 new carboxamide-type compounds were synthesized from natural
sesquiterpene drimenol. All of these compounds inhibited the mycelial growth of B. cinerea.
Ring substituents modified the fungitoxic effect of the compounds, and the most active
compounds were 6, 7, 12, and 13. Compounds 6 and 7 showed a behavior similar to known
inhibitors of the electron transport chain when they act in conjunction with SHAM.
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Appendix A

Driman-11-ol (2): a white-coloured crystalline solid, yield 90%, and m.p.:106 ◦C. 1H
NMR (200 MHz, CDCl3) δ 3.87 (1H, dd, J = 10.7, 4.6 Hz, Ha-C11), 3.59 (1H, dd, J = 10.7,
4,5 Hz, Hb-C11), 0.96 (3H, d, J = 7.5 Hz, 12-Me), 0.86 (6H, s, 13-Me and 14-Me), 0.82 (3H, s,
15-Me).13C NMR (50 MHz, CDCl3) δ 61.02 (C11), 56.50 (C5), 55.71 (C9), 41.96 (C3), 39.89
(C1), 37.56 (C10), 34.46 (C7), 33.57 (C14), 33.24 (C4), 28.51 (C8), 21.63 (C13), 18.39 (C6), 17.49
(C2), 17.08 (C17), 15.60 (C12).

Driman-11-oic acid (3): a white-colored solid, 70% yield, and m.p: 130 ◦C. 1H NMR
(200 MHz, CDCl3) δ 2.29 (1H, m), 1.21 (3H, s, CH3), 1.10 (3H, d, J = 7.2 Hz, CH3), 0.86 (3H,
s, CH3), 0.84 (3H, s, CH3). 13C NMR (50 MHz, CDCl3) δ 180.36 (C11), 59.33 (C9), 55.87 (C5),
42.09 (C3), 39.49 (C1), 37.22 (C10), 33.97 (C7), 33.43 (C4), 33.18 (C13), 31.52 (C8), 21.59 (C14),
18.12 (C12), 17.29 (C15), 17.26 (C6), 16.11 (C2).
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