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Abstract: The role of glucosylsphingosine (lyso-Gb1), a downstream metabolic product of
glucosylceramide, for monitoring treated and untreated children with Gaucher disease (GD) has
not yet been studied. We reviewed the clinical charts of 81 children (<18 years), 35 with mild type
1 GD (GD1), 34 with severe GD1 and 12 with type 3 GD (GD3), followed at Shaare Zedek Medical
Center between 2014–2018. Disease severity for GD1 was based on genotypes. Forty children (87%)
with severe GD1 and GD3 received enzyme replacement therapy (ERT) compared to two children
(6%) with mild GD1. Lyso-Gb1 measurements were conducted on dried blood spot samples taken
at each clinic visit. Lyso-Gb1 levels were significantly lower in children with mild compared to
severe GD1 (p = 0.009). In untreated children, lyso-Gb1 levels were inversely correlated with platelet
counts. During follow-up, lyso-Gb1 increased in almost 50% of untreated children, more commonly
in younger children. In treated children, lyso-Gb1 levels were inversely correlated with hemoglobin
levels. The increase of lyso-Gb1 while receiving ERT, seen in eight children, was partly associated
with compliance and weight gain. Lyso-Gb1 seems to be a useful biomarker for monitoring children
with GD and should be included in the routine follow-up. Progressive increase in lyso-Gb1 levels in
untreated children suggests ERT initiation.
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1. Introduction

Gaucher Disease (GD) is among the most prevalent, recessively inherited, lysosomal storage
disorder caused by a deficiency in the enzyme β-glucocerebrosidase. The deficient enzymatic
activity, results in the lysosomal accumulation of its substrate glucosylceramide, most prominently in
macrophages [1]. Glycosphingolipid-laden macrophages, referred to as Gaucher cells, accumulate in
the visceral tissues liver, spleen and bone marrow, inducing a pleiotropic array of symptoms, including
hepatosplenomegaly and pancytopenia, in addition to bone complications such as non-specific bone
pain, bone crises, avascular necrosis and pathologic fractures [2]. Three variants of GD are generally
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distinguished based on the absence (GD 1) or the presence of central nervous system involvement (GD
2 or GD 3).

In the past, the majority of GD cases manifested during childhood and adolescence, with almost
half of the cases diagnosed before ten years of age [3]. In early symptomatic disease, early intervention
with enzyme replacement therapy (ERT) has become the standard of care since 1991 [4], and it has led
to improved GD-related symptoms and significant reduction of complications (particularly bone crises
and osteonecrosis) [5]. With the extended use of carrier screening for GD, the phenotype of children
with GD had changed, and many of them are asymptomatic or mildly symptomatic at diagnosis [6,7].
Under these circumstances, the question arises to whom ERT should be given and when to initiate
it, as some of those children will remain asymptomatic for many years, while others may develop
irreversible complications that may be avoided by early initiation of ERT.

Glucosylsphingosine (lyso-Gb1), a deacylated form of glucosylceramide, is also degraded by the
glucocerebrosidase. Lyso-Gb1 was proved to be a highly sensitive and specific biomarker for diagnosis
and monitoring of adults patients with GD [8,9]. This is the first study reporting the role of lyso-Gb1
for monitoring disease status in a relatively large cohort of treated and untreated children with GD.

2. Results

The clinical phenotype of all children at their last visit is presented in Table 1. As expected, the
majority of children with severe GD1 and GD3 received ERT, whereas the majority of children with
mild GD1 were untreated. At the time of the last visit, lyso-Gb1 levels were significantly lower in
children with mild GD1 compared to those with severe GD1 (p = 0.009) and not different from children
with GD3 (p = 0.81). No significant differences were found between children with mild and severe
GD1 regarding the age, gender, platelet count, hemoglobin levels and spleen and liver MN (multiples
of normal) volume. Significantly larger spleen and liver MN volume were found in children with GD3
compared to those with GD1 (p = 0.007 and p = 0.005, respectively).

Table 1. Epidemiologic and clinical phenotype of the study cohort at the last visit.

Total Mild Type 1 Severe Type 1 Type 3

N 81 35 34 12
Age, years* 11 (1–18) 11 (4–18) 12 (2–16) 9.5 (1–18)

Male, % 38 (47%) 16 (38%) 18 (52%) 4 (33%)
ERT* 42 (51%) 2 (5.7%) 30 (88%) 10 (83%)

Platelet count, ×103/mL 214 (59–383) 251 (134–383) 209 (76–334) 190 (59–322)
Hemoglobin, mg/dl 12.9 (8.7–16.4) 12.8(11.5–16.4) 13.15 (9.2–15.3) 12.4 (8.7–16.3)

Spleen (MN)* 1.3 (0–16.7) 1.3 (0.5–4.7) 1.3 (0.6–10.3) 3.4 (1.2–16.7)
Liver (MN)* 1.4 (0.3–3.6) 1.4 (1–2.3) 1.3 (0.3–2.8) 2.3 (1.3–3.5)

Lyso-Gb1 level, ng/mL* 76.3 (4.9–495) 64 (4.9–208) 98 (7.3–495) 100.4 (21.4–210)
Weight, Kg* 37.8 (10.1–76) 34.1 (14.7–70.9) 49 (15.4–76) 29.8 (10.1–52.2)

*, median (range); ERT, Enzyme replacement therapy; MN, multiple of normal; Kg, kilogram.

In all groups combined, the lyso-Gb1 significantly correlated with platelet count (p < 0.0001,
r = −0.42) and hemoglobin levels (p = 0.003, r = −0.35), but not with liver MN volume, spleen MN
volume, child’s age, and weight. When analyzing according to genotype, a significant correlation
between lyso-Gb1 and platelet was found only in children with mild GD1 and a significant correlation
between lyso-Gb1 and hemoglobin was found only in children with severe GD1. Similarly, when
analyzing according to treatment status, irrespective of genotype, a significant inverse correlation was
found between lyso-Gb1 and platelet count only in untreated children (p = 0.002 vs. p = 0.178 [in
treated children]) and between lyso-Gb1 and hemoglobin level only in treated children (p = 0.01 vs.
p = 0.197 [in untreated children]) (Figure 1).
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Figure 1. (A) Correlation analysis between lyso-Gb1 levels and the platelet count in treated (hollow 80 
dots, dotted line) and untreated children (full dots, continuous line). (B) Correlation analysis between 81 
lyso-Gb1 levels and the hemoglobin level in treated (hollow dots, dotted line) and untreated children 82 
(full dots, continuous line). 83 
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thrombocytopenia, anemia, and hepatosplenomegaly. Importantly, although lyso-Gb1 was not used 86 
for treatment decisions, significantly higher levels of lyso-Gb1 levels were found in the pre-ERT 87 
group compared to untreated children (p = 0.0003). 88 

Table 2. Clinical characteristics and laboratory levels at first visit of ten children with pre-treatment 89 
measurements and all untreated children. 90 
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236.5 (117–339) 82.5 (68–228) Platelet count, ×103/mL 

12.7 (11.1–15.7) 11.1 (6.7–12.4) Hemoglobin, mg/dl 

1.35 (0.5–5.2) 3.9 (1.1–22.9) Spleen (MN)* 

1.7 (1–3) 2.4 (1.2–4.5) Liver (MN)* 

61.45 (6.1–157) 262.5 (101–1270) Lyso-Gb1 level, ng/mL* 

*, median (range); MN, multiple of normal. 91 
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in eight children, all from the on-ERT group (Table 4). Retrospective analysis of the clinical charts 96 
found compliance issues and weight gain (>15%) without dose adjustment, as a possible explanation. 97 
Age was not associated with the pattern of change in treated children (Figure 2A). 98 
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The group of children whose lyso-Gb1 levels increased during follow-up were significantly younger 100 
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unchanged during follow-up (p = 0.01) (Figure 2B). 102 

Table 3. Pattern of change in lyso-Gb1 (ng/mL) levels from baseline to last measurement in untreated 103 
children, treated children with pretreatment measurements and in treated children with both 104 
measurements on therapy. 105 
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Figure 1. (A) Correlation analysis between lyso-Gb1 levels and the platelet count in treated (hollow
dots, dotted line) and untreated children (full dots, continuous line). (B) Correlation analysis between
lyso-Gb1 levels and the hemoglobin level in treated (hollow dots, dotted line) and untreated children
(full dots, continuous line).

Pre-ERT data, available for ten children, were compared to the first visit data of the 28 untreated
children (Table 2). As expected, children eventually treated had more symptomatic disease, i.e.,
thrombocytopenia, anemia, and hepatosplenomegaly. Importantly, although lyso-Gb1 was not used
for treatment decisions, significantly higher levels of lyso-Gb1 levels were found in the pre-ERT group
compared to untreated children (p = 0.0003).

Table 2. Clinical characteristics and laboratory levels at first visit of ten children with pre-treatment
measurements and all untreated children.

Pre-Treatment Un-Treated

N 10 28
Age, years 5.5 (2–14) 8.5 (1–16)

Male, % 5 (55%) 11 (37%)
Platelet count, ×103/mL 82.5 (68–228) 236.5 (117–339)

Hemoglobin, mg/dl 11.1 (6.7–12.4) 12.7 (11.1–15.7)
Spleen (MN)* 3.9 (1.1–22.9) 1.35 (0.5–5.2)
Liver (MN)* 2.4 (1.2–4.5) 1.7 (1–3)

Lyso-Gb1 level, ng/mL* 262.5 (101–1270) 61.45 (6.1–157)

*, median (range); MN, multiple of normal.

The patterns of change in lyso-Gb1 levels from baseline to the last visit for untreated children,
treated children with pre-ERT measurements and treated children with both measurements on-ERT
are shown in Table 3. In treated children, the drop of lyso-Gb1 was significantly higher in the pre-ERT
group compared to the on-ERT group (p = 0.007) (Table 3). Lyso-Gb1 levels increased with time
in eight children, all from the on-ERT group (Table 4). Retrospective analysis of the clinical charts
found compliance issues and weight gain (>15%) without dose adjustment, as a possible explanation.
Age was not associated with the pattern of change in treated children (Figure 2A).

In untreated children, lyso-Gb1 levels increased with time in almost half of the cohort (Table 3).
The group of children whose lyso-Gb1 levels increased during follow-up were significantly younger at
baseline compared to the group of children whose lyso-Gb1 levels dropped or remained unchanged
during follow-up (p = 0.01) (Figure 2B).
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Table 3. Pattern of change in lyso-Gb1 (ng/mL) levels from baseline to last measurement in
untreated children, treated children with pretreatment measurements and in treated children with both
measurements on therapy.

Untreated
Treated, Pretreatment Baseline

Yes No

N 28 10 30
Male 11 5 16

Age, years* 12 (4–18) 8.5 (3–18) 16 (3–19)
Months of follow-up* 31.85 ( 6.7–45) 27.6 (6.7–44) 28.75 (9.3–49.9)

Number of visits 3 (2–6) 4 (3-6) 4 (2–9)
Unchanged** (n) 9 (32%) 1 (10%) 5 (16%)

Increased (n) 13 (46%) 0 (0%) 8 (26%)
Increase change* 12 (1.29–128) 67.4 (5.7–368)

Decreased (n) 6 (21%) 9 (90%) 17 (56%)
Decrease change* 11.2 (4–50.4) 143.6 (13–1207.7) 32.7 (4.2–172)

*, median (range); **, <10% change from baseline; n, number.
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Table 4. Clinical and laboratory characteristics of eight children whose lyso-Gb1 increased on enzyme replacement therapy.

Age (Y)* Gender Genotype Mo. on
Tx*

Dosa
u/kg/mo*

Follow
Up (mo)

Baseline
Lyso- Gb1

Change from Baseline Possible
ExplanationLyso-Gb1 PLT Hb Spleen MN Liver MN

9 male Severe
GD1 72 36.7 140 79↑ 9↓ 0.5≈ 0.5≈ 0.4≈

9 male Severe
GD1 81.2 52 23.6 168 18↑ 31↓ 0.4≈ Weight gain**

18 male Severe
GD1 92.3 42 18.6 95 368↑ 24↓ 1.1↓ 1.8↑ 0.3≈ Compliance

18 female Severe
GD1 130.9 35 36.9 281 180↑ 18↓ 0.5≈ 0.6↓ 0.1≈

10 male Severe
GD1 90.3 42 40.0 164 48↑ 56↓ 1.1↑ 1.4↓ 0.2≈

14 male Severe
GD1 113.7 114 38.3 45 6↑ 4≈ 1.3↓ 6.4↑ 1.2↓ Weight gain**

16 male Severe
GD1 137.0 50 30.2 124 77↑ 20↑ 2.5↓ 0.6↓ 0.3≈ Weight gain**

17 male GD3 124.8 60 18.6 32 13↑ 20↓ 1.3↑ 0.5↑ 0.8↑

Y, year; mo, months; PLT, platelets; Hb, hemoglobin; *, at last visit; **, more than 15% increment in the weight percentage.
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Figure 2. Age at first visit of the children with decreased, increased, and unchanged lyso-Gb1 levels 112 
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Time of follow-up and weight change were not associated with the pattern of change of lyso-114 
Gb1 levels in treated and untreated children. 115 
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between disease severity and lyso-Gb1 levels was observed by us and others [12]. With the change in 129 
the phenotype of children with GD, a useful biomarker to guide therapy decisions in untreated 130 
children is important. 131 

In treated children, the lyso-Gb1 increase in some of the cases was associated with compliance 132 
and significant weight gain (>15%). We believe that the increase in lyso-Gb1 was related to lower ERT 133 
dose/kg and not the weight change per se. The linkage between the dose of ERT and response was 134 
previously shown in patients with GD [13]. 135 
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preceding changes in other disease parameters [14]. Initiation of ERT or a substrate reduction agent 137 
had a significant effect on lyso-Gb1 levels, which becomes less robust over time after the maximal 138 
change rate [8–10,15]. Similarly, we show a more considerable lyso-Gb1 change in those with pre-139 
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Figure 2. Age at first visit of the children with decreased, increased, and unchanged lyso-Gb1 levels
(10%) between first and last visit for (A) treated children (B) untreated children.

Time of follow-up and weight change were not associated with the pattern of change of lyso-Gb1
levels in treated and untreated children.

3. Discussion

In this study, we show the potential value of lyso-Gb1 in children with GD both for monitoring
untreated and treated children. An association between GD severity and lyso-Gb1 levels was expressed
in several ways. First, an association between genotype and the lyso-Gb1 level was shown; significantly
higher levels of lyso-Gb1 in children with severe GD1 compared to children with mild GD1 (Table 1).
Second, we found an association between lyso-Gb1 levels and clinical status, i.e., platelet count, in
untreated children (Figure 1A). Third, we show that children who eventually started treatment, based
on clinical criteria, had significantly higher levels of lyso-Gb1 compared to untreated children (Table 2).

Association between genotype and lyso-Gb1 levels are consistent with adult data showing that
patients with less severe disease, i.e., homozygotes N370S, generally show more modest increases
in plasma lyso-Gb1 [10]. As expected, clinical variability was found within the group of N370S
homozygous patients [11]. Within this group of N370S homozygous patients, a clear relationship
between disease severity and lyso-Gb1 levels was observed by us and others [12]. With the change
in the phenotype of children with GD, a useful biomarker to guide therapy decisions in untreated
children is important.

In treated children, the lyso-Gb1 increase in some of the cases was associated with compliance
and significant weight gain (>15%). We believe that the increase in lyso-Gb1 was related to lower ERT
dose/kg and not the weight change per se. The linkage between the dose of ERT and response was
previously shown in patients with GD [13].

Recently, we have shown in adults with GD1 that lyso-Gb1 is a reliable response biomarker
preceding changes in other disease parameters [14]. Initiation of ERT or a substrate reduction agent
had a significant effect on lyso-Gb1 levels, which becomes less robust over time after the maximal
change rate [8–10,15]. Similarly, we show a more considerable lyso-Gb1 change in those with pre-ERT
levels compared to when both lyso-Gb1 levels are on-ERT. Still, lyso-Gb1 levels can also decrease
after a prolonged period of therapy. Follow-up on therapy can reflect treatment response and detect
treatement failures and compliance issues.

In children on ERT, who achieved a normal platelet count, lyso-Gb1 levels correlated only
with hemoglobin levels; a parameter with a slower response to treatment. Similar findings were
reported in the splenectomy era; in splenectomized patients, anemia was more prominent than
thrombocytopenia, whereas, in non-splenectomized patients, thrombocytopenia is typically more
prominent than anemia [3].

In a study which included treated patients, mainly adults, age had a significant inverse correlation
with plasma lyso-Gb1 [12]. The authors concluded that this likely reflects the fact that children have a
more severe disease at presentation than adults. In our cohort, age was not a predictor of lyso-Gb1



Int. J. Mol. Sci. 2019, 20, 3033 7 of 9

levels in either treated or untreated children. This may be explained by the changing phenotype of
children with GD due to pre-natal screening [6,7] or by the fact that only children were included in
our study.

Interestingly, age did play a role in the pattern of change in lyso-Gb1 levels over time in mildly
effected untreated children. A younger age at first visit was associated with an increase in lyso-Gb1
levels. At an older age, the lyso-Gb1 levels may plateau or even mildly drop. Extended follow-up into
adulthood is needed for those untreated children. The fact that lyso-Gb1 could drop without treatment
suggests that only a consistent and significant increase in lyso-Gb1 levels should lead to treatment
decisions in children presenting with asymptomatic/mildly symptomatic disease.

The additional interesting aspect of our study is the similarity between GD1 and GD3 concerning
lyso-Gb1 levels. This might reflect the fact that the GD3 patients in our center belong to the so-called Type
3b (patients with severe visceral manifestation and relatively minimal neurological abnormalities [16]).
Others are Type 3c (the so-called "cardiac variant" wherein there is minimal visceral involvement and
minimal neurological features but massive calcifications of the aortic and mitral valves [17,18]).

4. Material and Methods

4.1. Patients Samples

Eighty-one consecutive children (<18 years) with GD who visited the Gaucher Unit at Shaare
Zedek Medical Center from July 2014 to December 2018 were included in this study. Lyso-Gb1
measurement had been included in the routine clinical and laboratory assessment during all follow-up
(annual/semiannual) visits.

Disease severity for this study was based on genotypes for GD1, i.e., mild GD1 were all
children the with N370S/N370S or N370S/R496H genotypes and severe GD1 were N370S compound
heterozygotes [19]. Type 3 (neuronopathic disease) was based on clinical phenotype, all with genotypes
known to be associated with GD3. Demographic, baseline, and follow-up clinical and laboratory
data were extracted from the medical records. The multiple of normal (MN) was calculated for
spleen volume and liver volume based on three dimensions by ultrasonography [20,21]. Dried blood
spots (DBS) were collected on filter cards (CentoCard®, Centogene, Rostock, Germany) and lyso-Gb1
analysis was carried out in Centogene, Rostock, Germany. Lyso-Gb1 levels were measured using liquid
chromatography-mass spectrometry of DBS samples (Centogene AG, Rostock, Germany) as previously
described [8]. The study was approved by the Institution Ethics Committee (0291-18-SZMC, 11/2018).

4.2. Statistical Methods

For data analysis, we defined in our study three cohorts. The first was an analysis of data at last
visit for all patients (n = 81), the second was an analysis of data at first visit for untreated patients and
patients with pre-treatment data (n = 38), and the last analysis was of patients data with more than one
visit (n = 68). The delta of every measurement between the last and the first visit was calculated. Log
transformation of lyso-Gb1 was done to achieve normal distribution. Results are presented as median
and range. Correlations between the lyso-Gb1 levels and continuous measurements were tested
by non-parametric Spearman's correlation and Pearson's correlation, for non-normal and normally
distributed data, respectively. Mann–Whitney non-parametric test was used to compare non-normally
distributed data in independent samples. Multivariate analysis was used to clarify the impact of ERT
vs. non-ERT and impact of genotypes (mild vs. severe GD1) on the calculated correlation between the
log of lyso-Gb1 and the other measurements. IBM SPSS version 25 was used for analysis. Results were
considered to be statistically significant when two-tailed p-values were ≤0.01.

5. Conclusions

The correlations found between lyso-Gb1 levels and disease severity as well as the changes in
levels with and without therapy support the importance of using this biomarker in monitoring children
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with GD, both untreated and treated, for the need to start treatment and to follow the response to
therapy, respectively. At this point, we cannot recommend a specific cut-off for lyso-Gb1 levels as
a sole indication for beginning ERT, in part because by the time lyso-Gb1 levels became available
many children were already on ERT. We believe that within the coming years, with a more significant
number of naïve patients, we will be able to define a specific value. In the interim, we strongly
recommend including lyso-GB1 in the routine follow-up of all children with GD and a progressive
increment in lyso-Gb1 should lead to consideration of ERT in untreated children or to a dose increase
in treated children.
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