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Abstract Although midbrain dopamine (DA) neurons have been thought to primarily encode

reward prediction error (RPE), recent studies have also found movement-related DAergic signals.

For example, we recently reported that DA neurons in mice projecting to dorsomedial striatum are

modulated by choices contralateral to the recording side. Here, we introduce, and ultimately reject,

a candidate resolution for the puzzling RPE vs movement dichotomy, by showing how seemingly

movement-related activity might be explained by an action-specific RPE. By considering both

choice and RPE on a trial-by-trial basis, we find that DA signals are modulated by contralateral

choice in a manner that is distinct from RPE, implying that choice encoding is better explained by

movement direction. This fundamental separation between RPE and movement encoding may help

shed light on the diversity of functions and dysfunctions of the DA system.

DOI: https://doi.org/10.7554/eLife.42992.001

Introduction
A central feature of dopamine (DA) is its association with two apparently distinct functions: reward

and movement (Niv et al., 2007; Berke, 2018). Although manipulation of DA produces gross effects

on movement initiation and invigoration, physiological recordings of DA neurons have historically

shown few neural correlates of motor events (Wise, 2004; Schultz et al., 1997). Instead, classic stud-

ies reported responses to rewards and reward-predicting cues, with a pattern suggesting that DA

neurons carry a ‘reward prediction error’ (RPE) — the difference between expected reward and

observed reward — for learning to anticipate rewards (Schultz et al., 1997; Barto, 1995;

Cohen et al., 2012; Coddington and Dudman, 2018; Soares et al., 2016; Hart et al., 2014). In this

classic framework, rather than explicitly encoding movement, DA neurons influence movements indi-

rectly by determining which movements are learned and/or determining the general motivation to

engage in a movement (Niv et al., 2007; Collins and Frank, 2014; Berke, 2018).

Complicating this classic view, however, several recent studies have suggested that subpopula-

tions of DA neurons may have a more direct role in encoding movement. For example, we recently

reported that whereas DA neurons projecting to ventral striatum showed classic RPE signals, a sub-

set of midbrain DA neurons that project to the dorsomedial striatum (DMS) were selective for a

mouse’s choice of action (Parker et al., 2016). In particular, they responded more strongly during

contralateral (versus ipsilateral) choices as mice performed a probabilistic learning task

(Parker et al., 2016). In addition, there have been several other recent studies that reported phasic

changes in DA activity at the onset of spontaneous movements (Dodson et al., 2016; Howe and

Dombeck, 2016; Howe et al., 2013; da Silva et al., 2018; Barter et al., 2015; Syed et al., 2016).

Moreoever, other studies have shown that DA neurons may have other forms of apparently non-RPE
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signals, such as signals related to novel or aversive stimuli (Menegas et al., 2017; Horvitz, 2000;

Ungless et al., 2004; Matsumoto and Hikosaka, 2009; Lammel et al., 2011).

These recent observations of movement selectivity leave open an important question: can the

putatively movement-related signals be reconciled with Reinforcement Learning (RL) models describ-

ing the classic RPE signal? For instance, while it seems plausible that movement-related DA signals

could influence movement via directly modulating striatal medium spiny neurons (DeLong, 1990),

these signals are accompanied in the same recordings by RPEs which are thought to drive cortico-

striatal plasticity (Reynolds et al., 2001). It is unclear how these two qualitatively different messages

could be teased apart by the recipient neurons. Here we introduce and test one possible answer to

this question, which we argue is left open by Parker et al. (2016) results and also by other reports

of movement-related DA activity: that these movement-related signals actually also reflect RPEs, but

for reward predictions tied to particular movement directions. Specifically, computational models

like advantage learning (Baird, 1994) and actor-critic (Barto et al., 1983) learn separate predictions

about the overall value of situations or stimuli and about the value of specific actions. It has long

been suggested these two calculations might be localized to ventral vs dorsal striatum respectively

(Montague et al., 1996; O’Doherty et al., 2004; Takahashi et al., 2008). Furthermore, a human

neuroimaging experiment reported evidence of distinct prediction errors for right and left move-

ments in the corresponding contralateral striatum (Gershman et al., 2009).

This leads to the specific hypothesis that putative movement-related signals in DMS-projecting

DA neurons might actually reflect an RPE related to the predicted value of contralateral choices. If

so, this would unify two seemingly distinct messages observed in DA activity. Importantly, a choice-

specific RPE could explain choice-related correlates observed prior to the time of reward. This is

because temporal difference RPEs do not just signal error when a reward is received, they also have

a phasic anticipatory component triggered by predictive cues indicating the availability and timing

of future reward, such as (in choice tasks) the presentation of levers or choice targets

(Montague et al., 1996; Morris et al., 2006; Roesch et al., 2007). This anticipatory prediction error

is proportional to the value of the future expected reward following a given choice — indeed, we

henceforth refer to this component of the RPE as a ‘value’ signal, which tracks the reward expected

for a choice. Crucially, a choice-specific value signal can masquerade as a choice signal because, by

definition, action and value are closely related to each other: animals are more likely to choose

actions that they predict have high value. In this case, a value signal (RPE) for the contralateral choice

will tend to be larger when that action is chosen than when it is not (Samuelson, 1938). Altogether,

given the fundamental correlation between actions and predicted value, a careful examination of the

neural representation of both quantities and a clear understanding of if and how they can be differ-

entiated is required to determine whether or not movement direction signals can be better

explained as value-related.

Thus, we examined whether DA signals in DMS-projecting DA neurons are better understood as

a contralateral movement signal or as a contralateral RPE. To tease apart these two possibilities, we

measured neural correlates of value and lateralized movement in our DA recordings from mice per-

forming a probabilistic learning task. Since value predictions are subjective, we estimated value in

two ways: (1) by using reward on the previous trial as a simple, theory-neutral proxy, and (2) by fit-

ting the behavioral data with a more elaborate trial-by-trial Q-learning model. We compared the

observed DA modulations to predictions based on modulation either by movement direction and/or

the expected value (anticipatory RPE) of contralateral or chosen actions.

Ultimately, our results show that DMS-projecting DA neurons’ signals are indeed modulated by

value (RPE), but, crucially, this modulation reflected the value of the chosen action rather than the

contralateral one. Thus, the value aspects of the signals (which were not lateralized) could not

explain the contralateral choice selectivity in these neurons, implying that this choice-dependent

modulation indeed reflects modulation by contralateral movements and not value.

Results

Task, behavior and DA recordings
Mice were trained on a probabilistic reversal learning task as reported previously (Parker et al.,

2016). Each trial began with an illumination in the nose port, which cued the mouse to initiate a
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nose poke (Figure 1a). After a 0–1 second delay, two levers appeared on both sides of the nose

port. Each lever led to reward either with high probability (70%) or low probability (10%), with the

identity of the high probability lever swapping after a block of variable length (see

Materials and methods for more details, Figure 1b). After another 0–1 second delay, the mouse

either received a sucrose reward and an accompanying auditory stimulus (positive conditioned stim-

ulus, or CS+), or no reward and a different auditory stimulus (negative conditioned stimulus, or CS-).

Given that block transitions were not signaled to the mouse, mice gradually learned to prefer the

lever with the higher chance of reward after each transition. To capture this learning, we fit their

choices using a standard trial-by-trial Q-learning model that predicted the probability of the animal’s

choice at each trial of the task (Figure 1c, Table 1). In the model, these choices were driven by a

pair of decision variables (known as Q-values) putatively reflecting the animal’s valuation of each

option.

Figure 1. Mice performed a probabilistic reversal learning task during GCaMP6f recordings from VTA/SN::DMS terminals or cell bodies. (a) Schematic

of a mouse performing the task. The illumination of the central nosepoke signaled the start of the trial, allowing the mouse to enter the nose port. After

a 0–1 second jitter delay, two levers were presented to the mouse, one of which result in a reward with high probability (70%) and the other with a low

probability (10%). The levers swapped probabilities on a pseudorandom schedule, unsignaled to the mouse. (b) The averaged probability of choosing

the lever with high value before the switch, 10 trials before and after the block switch, when the identity of the high value lever reversed. Error bars

indicate ±1 standard error (n = 19 recording sites). (c) We fit behavior with a trial-by-trial Q learning mixed effect model. Example trace of 150 trials of a

mouse’s behavior compared to the model’s results. Black bars above and below the plot indicate which lever had the high probability for reward;

Orange dots indicate the mouse’s actual choice; Blue dots indicate whether or not mouse was rewarded; Grey line indicates the difference in the

model’s Q values for contralateral and ipsilateral choices. (d) Surgical schematic for recording with optical fibers from the GCaMP6f terminals

originating from VTA/SN. (e) Example recording from VTA/SN::DMS terminals in a mouse expressing GCaMP6f (top) or GFP (bottom). (f, g) Previous

work has reported contralateral choice selectivity in VTA/SN::DMS terminals (Parker et al., 2016) when the signals are time-locked to nose poke (f) and

lever presentation (g). ‘Contra’ and ‘Ipsi’ refer to the location of the lever relative to the side of the recording. Colored fringes represent ±1 standard

error (n=12 recording sites).

DOI: https://doi.org/10.7554/eLife.42992.002

The following figure supplement is available for figure 1:

Figure supplement 1. Recording from VTA/SN::DMS cell bodies (n = 7 recording sites).

DOI: https://doi.org/10.7554/eLife.42992.003
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As mice performed this task, we recorded activity from either the terminals or cell bodies of DA

neurons that project to DMS (VTA/SN::DMS) using fiber photometry to measure the fluorescence of

the calcium indicator GCaMP6f (Figure 1d,e; Figure 1—figure supplement 1a,b). As previously

reported, this revealed elevated activity during contralateral choice trials relative to ipsilateral choice

trials, particularly in relation to the nose poke and lever presentation events (Figure 1f,g; Figure 1—

figure supplement 1c) (Parker et al., 2016).

Predictions of contralateral and chosen value models
In order to examine how value-related activity might (or might not) explain seemingly movement-

related activity, we introduced two hypothetical frames of reference by which the DMS DA neurons’

activity may be modulated by predicted value during trial events prior to the outcome: the DA sig-

nals could be modulated by the value of the contralateral option (relative to ipsilateral; Figure 2a) or

by the value of the chosen option (relative to unchosen; Figure 2b). Note that both of these modula-

tions could be understood as the anticipatory component (occasioned at lever presentation) of a

temporal difference RPE, with respect to the respective action’s value.

The first possibility is modulation by the value of the contralateral (relative to ipsilateral) action

(Figure 2a; such signals have been reported in human neuroimaging, [Gershman et al., 2009,

Palminteri et al., 2009] but not previously, to our knowledge examined in DA recordings in ani-

mals). The motivation for this hypothesis is that, if neurons in DMS participate in contralateral move-

ments, such a side-specific error signal would be appropriate for teaching them when those

movements are valuable. In this case, the relative value of the contralateral (versus ipsilateral) choice

modulates DA signals, regardless of whether the choice is contralateral or ipsilateral. Thus, when the

DA signals are broken down with respect to both the action chosen and its value, the direction of

value modulation would depend on the choice: signals are highest for contralateral choices when

these are relatively most valuable, but lowest for ipsilateral choices when they are most valuable

(because in this case, contralateral choices will be relatively less valuable). Assuming mice tend to

choose the option they expect to deliver more reward, such signals would be larger, on average,

during contralateral choices than ipsilateral ones (Figure 2a), which could in theory explain the con-

tralateral choice selectivity that we observed (Figure 1f,g).

The second possibility is that value modulation is relative to the chosen (versus unchosen) option

(Figure 2b). This corresponds to the standard type of ‘critic’ RPE most often invoked in models of

DA: that is, RPE with respect to the overall value of the current state or situation (where that state

reflects any choices previously made), and not specialized to a particular class of action. Indeed,

human neuroimaging studies have primarily reported correlates of the value of the chosen option in

DA target areas (Daw et al., 2006; Boorman et al., 2009; Li and Daw, 2011), and this also has

been observed in primate DA neurons (Morris et al., 2006).

If DMS-projecting DA neurons indeed display chosen value modulation (Figure 2b), rather than

contralateral value modulation, the value modulation for both contralateral and ipsilateral choices

Table 1. Fitted Parameters for Q-learning model from PyStan.

25th, 50th, and 75th percentile of the alpha, beta, and stay parameters of the Q-learning mixed effect

model. These are the the group-level parameters that reflect the distribution of the subject-level

parameters.

25th percentile 50th percentile (median) 75th percentile

Alpha (learning rate) 0.581607 0.611693 0.639946

Beta (inverse temperature) 0.926501 0.990275 1.058405

Stay 0.883670 0.945385 1.008465

DOI: https://doi.org/10.7554/eLife.42992.004

The following source data is available for Table 1:

Source data 1. Mixed effect Q-learning model parameters.

Parameters from the mixed effect Q-learning model, including group-level and individual-level parameters, and

the mean and range of data across samples from the model. See ’Q Learning Mixed Effect Model’ in the

Materials and methods section for more details.

DOI: https://doi.org/10.7554/eLife.42992.005
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would be similar. In this case, value modulation could not in itself account for the neurons’ elevated

activity during contralateral trials, which we have previously observed (Figure 1f,g). Therefore, to

account for contralateral choice preference, one would have to assume DA neurons are also selective

for the contralateral action itself (unrelated to their value modulation; Figure 2c).

DA in dorsomedial striatum is modulated by chosen value, not
contralateral value
Next, we determined which type of value modulation better captured the signal in DA neurons that

project to DMS by comparing the GCaMP6f signal in these neurons for high and low value trials. We

focused on the lever presentation since this event displayed a clear contralateral preference

(Figure 1g). As a simple and objective proxy for the value of each action (i.e., the component of the

RPE at lever presentation for each action), we compared signals when the animal was rewarded

(high value), or not (low value) on the previous trial. (To simplify the interpretation of this compari-

son, we only included trials in which the mice made the same choice as the preceding trial, which

accounted for 76.6% of the trials.) The traces (Figure 3a) indicated that the VTA/SN::DMS terminals

were modulated by the previous trial’s reward. The value-related signals reflected chosen value —

responding more when the previous choice was rewarded, whether contralateral or ipsilateral — and

therefore did not explain the movement-related effect. This indicated that the DMS-projecting DA

neurons represented both chosen value and movement direction (similar to Figure 2c). The effect of

contralateral action modulation was also visible in individual, non-z-scored data in both VTA/SN::

DMS terminals (Figure 3—figure supplement 1) and VTA/SN::DMS cell-bodies (Figure 3—figure

supplement 2).

We repeated this analysis using trial-by-trial Q values extracted from the model, which we rea-

soned should reflect a finer grained (though more assumption-laden) estimate of the action’s value.

Figure 2. Schematics of three possible types of value modulation at lever presentation. Trials here are divided

based on the difference in Q values for chosen and unchosen action. (a) Contralateral value modulation postulates

that the signals are selective for the value of the contralateral action (relative to ipsilateral value) instead of the

action chosen. This means that the direction of value modulation should be flipped for contralateral versus

ipsilateral choices. Since mice would more often choose an option when its value is higher, the average GCaMP6f

signals would be higher for contralateral than ipsilateral choices. (b) Alternatively, the signals may be modulated

by the value of the chosen action, resulting in similar value modulation for contralateral and ipsilateral choices.

This type of value modulation will not in itself produce contralateral selectivity seen in previous results. (c)

However, if the signals were modulated by the chosen value and the contralateral choice, the averaged GCaMP6f

would exhibit the previously seen contralateral selectivity.

DOI: https://doi.org/10.7554/eLife.42992.006
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Figure 3. DA neurons that project to DMS were modulated by both chosen value and movement direction. (a) GCaMP6f signal time-locked to lever

presentation for contralateral trials (blue) and ipsilateral trials (orange), as well as rewarded (solid) and non-rewarded previous trial (dotted) from VTA/

SN::DMS terminals. Colored fringes represent ±1 standard error from activity averaged across recording sites (n = 12). (b) GCaMP6f signal for

contralateral trials (blue) and ipsilateral trials (orange), further binned by the difference in Q values for chosen and unchosen action. Colored fringes

represent ±1 standard error from activity averaged across recording sites (n = 12). (c) Mixed effect model regression on each datapoint from 3 seconds

of GCaMP6f traces. Explanatory variables include the action of the mice (blue), the difference in Q values for chosen and unchosen actions (orange),

their interaction (green), and an intercept. Colored fringes represent ±1 standard error from estimates (n = 12 recording sites). Black diamond

represents the average latency for mice pressing the lever, with the error bars showing the spread of 80% of the latency values. Dots at bottom mark

timepoints when the corresponding effect is significantly different from zero at p<0.05 (small dot), p<0.01 (medium dot), p<0.001 (large dot). P values

were corrected with Benjamini Hochberg procedure. (d-f) Same as (a-e), except with signals from VTA/SN::DMS cell bodies averaged across recording

sites (n = 7) instead of terminals.

DOI: https://doi.org/10.7554/eLife.42992.007

The following figure supplements are available for figure 3:

Figure supplement 1. Four Examples of non-Z-scored Individual Sessions of Photometry Data from VTA/SN::DMS Terminals.

DOI: https://doi.org/10.7554/eLife.42992.008

Figure supplement 2. Four Examples of non-Z-scored Individual Sessions of Photometry Data from VTA/SN::DMS Cell-Bodies.

DOI: https://doi.org/10.7554/eLife.42992.009

Figure supplement 3. Mixed effect model regression on GCaMP6f traces of VTA/SN::DMS terminals (n = 12 recording sites) using the difference in Q

values for contralateral and ipsilateral choices.

DOI: https://doi.org/10.7554/eLife.42992.010

Figure supplement 4. Analysis of DA signals time-locked to nose poke.

DOI: https://doi.org/10.7554/eLife.42992.011

Figure supplement 5. Kernels for each significant behavioral event from the multiple event kernel analysis.

DOI: https://doi.org/10.7554/eLife.42992.012

Figure 3 continued on next page
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(For this analysis, we were able to include both stay and switch trials.) Binning trials by chosen (minus

unchosen) value, a similar movement effect and value gradient emerged as we have seen with the

previous trial outcome analysis (Figure 3b). Trials with higher Q values had larger GCaMP6f signals,

regardless which side was chosen, again suggesting that VTA/SN::DMS terminals were modulated

by the expected value of the chosen (not contralateral) action, in addition to being modulated by

contralateral movement.

To quantify these effects statistically, we used a linear mixed effects regression at each time point

of the time-locked GCaMP6f. The explanatory variables included the action chosen (contra or ipsi),

the differential Q values (oriented in the reference frame suggested by the data, chosen minus

unchosen), the value by action interaction, and an intercept (Figure 3c). The results verify significant

effects for both movement direction and action value; that is, although a significant value effect is

seen, it does not explain away the movement effect. Furthermore, the appearance of a consistent

chosen value effect across both ipsilateral and contralateral choices is reflected in a significant value

effect and no significant interaction during the period when action and value coding are most promi-

nent (0.25–1 seconds after lever presentation), as would have been predicted by the contralateral

value model. (There is a small interaction between the variables earlier in the trial, before 0.25 sec-

onds, reflecting small differences in the magnitude of value modulation on contralateral versus ipsi-

lateral trials.) Conversely, when the regression is re-estimated in terms of contralateral value rather

than chosen value, a sustained, significant interaction does emerge, providing formal statistical sup-

port for the chosen value model; see Figure 3—figure supplement 3.

We performed the same value modulation analyses on the cell bodies, rather than terminals, of

VTA/SN::DMS neurons (Figure 3d–f). This was motivated by the possibility that there may be

changes in neural coding between DA cell bodies and terminals due to direct activation of DA termi-

nals. In this case, we found very similar modulation by both chosen value and contralateral move-

ment in both recording locations.

To verify the robustness of these findings, we conducted further followup analyses. In one set of

analyses, we investigated to what extent the DA signals might be tied to particular events other

than the lever presentation. First, we repeated our analyses on DA signals time-locked to nose poke

event (Figure 3—figure supplement 4) and found the same basic pattern of effects. The effect was

still clearest close to the average lever presentation latency, suggesting that the modulation of DA

signals is more closely related to lever presentation. To more directly verify that our conclusions are

independent of the specific choice event alignment, we fit a linear regression model with kernels

capturing the contribution of three different events (Nose Poke, Lever Presentation, and Lever Press)

simultaneously (Figure 3—figure supplement 5). The results of this multiple event regression were

consistent with the simpler single-event regression in Figure 3a,d.

Next, we examined a few other factors that might have affected movement-specific activity. Tak-

ing advantage of the fact that the VTA/SN::DMS cell-bodies data had recordings from both hemi-

spheres in three animals, we directly compared signals across hemispheres in individual mice and

observed that the side-specific effects reversed within animal (Figure 3—figure supplement 6). This

speaks against the possibility that they might reflect animal-specific idiosyncrasies such as side

biases. Finally, we considered whether the contralateral action modulation might in part reflect

movement vigor rather than action value. We addressed this by repeating the analysis in Figure 3c,

f, but including as an additional covariate the log lever-press latency as a measure of the action’s

vigor. For both VTA/SN::DMS terminals and cell-bodies data, the lever-press latency was not a

strong predictor for GCaMP6f signals, and the effect of the original predictors largely remained the

same (Figure 3—figure supplement 7).

Figure 3 continued

Figure supplement 6. Averaged GCaMP6f signals of left and right hemispheres recordings from VTA/SN::DMS cell-bodies data (n = 4 mice,

7 recording sites).

DOI: https://doi.org/10.7554/eLife.42992.013

Figure supplement 7. Mixed effect model regression with latency as nuisance covariate.

DOI: https://doi.org/10.7554/eLife.42992.014
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Direction of movement predicts DMS DA signals
An additional observation supported the interpretation that the contralateral choice selectivity in

DMS-projecting DA neurons is related to the direction of movement and not the value of the choice.

When the signals were time-locked to the lever press itself, there was a reversal of the signal selec-

tivity between contralateral and ipsilateral trials, shortly after the lever press (Figure 4). Although

body tracking is not available, this event coincided with a reversal in the animal’s physical movement

direction, from moving towards the lever from the central nosepoke before the lever press, to mov-

ing back to the central reward port after the lever press. In contrast, there is no reversal in value

modulation at the time of lever press. The fact that the side-specific modulation (and not the value

modulation) followed the mice’s movement direction during the trial further indicated that move-

ment direction explains the choice selectivity in these DA neurons, and resists explanation in terms

of RPE-related signaling.

Discussion
Recent reports of qualitatively distinct DA signals — movement and RPE-related — have revived

perennial puzzles about how the system contributes to both movement and reward, and more spe-

cifically raise the question whether there might be a unified computational description of both com-

ponents in the spirit of the classic RPE models (Parker et al., 2016; Berke, 2018; Coddington and

Dudman, 2018; Syed et al., 2016). Here we introduce and test one possible route to such a unifica-

tion: action-specific RPEs, which could explain seemingly action-selective signals as instead reflecting

RPE related to the value of those actions. To investigate this possibility, we dissected movement

direction and value selectivity in the signals of terminals and cell bodies of DMS-projecting DA neu-

rons (Figure 3). Contrary to the hypothesis that lateralized movement-related activity might reflect a

RPE for contralateral value, multiple lines of evidence clearly indicated that the neurons instead con-

tain distinct movement- and value-related signals, tied to different frames of reference. We did

observe value-related signals preceding and following the lever press, which we did not previously

analyze in the DMS signal and which are consistent with the anticipatory component of a classic RPE

signal (Parker et al., 2016). But because these were modulated by the value of the chosen action,

not the contralateral one, they cannot explain the side-specific movement selectivity. The two signals

Figure 4. DA neurons that project to DMS reversed their choice selectivity after the lever press, around the time

the mice reversed their movement direction. (a). GCaMP6f signal from VTA/SN::DMS terminals time-locked to the

lever press, for contralateral choice trials (blue) and ipsilateral choice trials (orange), as well as rewarded (solid) and

non-rewarded previous trial (dotted). The GCaMP6f traces for each choice cross shortly after the lever-press,

corresponding to the change in the mice’s head direction around the time of the lever press (shown schematically

above the plot). Colored fringes represent ±1 standard error from activity averaged across recording sites (n = 12).

(b) Same as (a), except with signals from VTA/SN::DMS cell bodies averaged across recording sites (n = 7) instead

of terminals.

DOI: https://doi.org/10.7554/eLife.42992.015

Lee et al. eLife 2019;8:e42992. DOI: https://doi.org/10.7554/eLife.42992 8 of 16

Research article Neuroscience

https://doi.org/10.7554/eLife.42992.015
https://doi.org/10.7554/eLife.42992


also showed clearly distinct time courses; in particular, the side selectivity reversed polarity following

the lever press, but value modulation did not.

Our hypothesis that apparently movement-related DA correlates might instead reflect action-spe-

cific RPEs (and our approach to test it by contrasting chosen vs. action-specific value) may also be

relevant to other reports of DAergic movement selectivity. For example, Syed et al. recently

reported that DA release in the nucleus accumbens (NAcc) was elevated during ‘go’, rather than

‘no-go’, responses, alongside classic RPE-related signals (Syed et al., 2016). This study in a question

analogous to the one we raise about Parker’s (Parker et al., 2016) DMS results: could NAcc DA

instead reflect an RPE specific for ‘go’ actions? This possibility would be consistent with the struc-

ture’s involvement in appetitive approach and invigoration (Parkinson et al., 2002), and might unify

the RPE- and ‘go’-related activity reported there via an action-specific RPE (argument analogous to

Figure 2a). The analyses in the Syed et al. study did not formally compare chosen- vs. action-specific

value, and much of the reward-related activity reported there appears consistent with either account

(Syed et al., 2016). However, viewed from the perspective of our current work, the key question

becomes whether the value-related DA signals on ‘go’ cues reverses for ‘no-go’ cues, as would be

predicted for an action-specific RPE. There is at least a hint (albeit significant only at one timepoint

in Syed et al.’s Supplemental Figure 9E) that it does not do so (Syed et al., 2016). This suggests

that NAcc may also have parallel movement-specific and chosen value signals, which would be

broadly confirmatory for our parallel conclusions about DMS-projecting DA neurons.

The RPE account of the DA signal has long held out hope for a unifying perspective on the sys-

tem’s dual roles in movement and reward by proposing that the system’s reward-related signals ulti-

mately affect movement indirectly, either by driving learning about movement direction preferences

(Montague et al., 1996) or by modulating motivation to act (Niv et al., 2007). This RPE theory also

accounts for multiple seemingly distinct components of the classic DA signal, including anticipatory

and reward-related signals, and signals to novel neutral cues. However, the present analyses clearly

show that side-specific signals in DMS resist explanation in terms of an extended RPE account, and

may instead simply reflect planned or ongoing movements.

Specifically, our results are consistent with the longstanding suggestion that DA signals may be

important for directly initiating movement. Such a signal may elicit or execute contralateral move-

ments via differentially modulating the direct and indirect pathways out of the striatum

(Alexander and Crutcher, 1990; Collins and Frank, 2014; DeLong, 1990). The relationship

between unilateral DA activity and contralateral movements is also supported by causal manipula-

tions. For instance, classic results demonstrate that unilateral 6-hydroxydopamine (6-OHDA) lesions

increase ipsilateral rotations (Costall et al., 1976; Ungerstedt and Arbuthnott, 1970). Consistent

with those results, a recent study reports that unilateral optogenetic excitation of midbrain DA neu-

rons in mice led to contralateral rotations developed over the course of days (Saunders et al.,

2018). Importantly, however, our own results are correlational, and we cannot rule out the possibility

that the particular activity we study could be related to a range of functions other than movement

execution, such as planning or monitoring. Another function that is difficult to distinguish from

movement execution is the motivation to move. Although motivation is a broad concept and difficult

to operationalize fully, our results address two aspects of it. First, one way to quantify the motivation

to act is by the action’s predicted value; thus, our main result is to rule out the possibility that neural

activity is better accounted for by this motivational variable. We also show that lever press latency

(arguably another proxy for motivation) does not explain the contralateralized DA signals (Figure 3—

figure supplement 7).

Although the movement-related DA signal might be appropriate for execution, it is less clear

how it might interact with the plasticity mechanisms hypothesized to be modulated by RPE aspects

of the DA signal (Frank et al., 2004; Steinberg et al., 2013; Reynolds and Wickens, 2002). For

instance, how would recipient synapses distinguish an RPE component of the signal (appropriate for

surprise-modulated learning) from an overlapping component more relevant to movement elicitation

(Berke, 2018)? We have ruled out the possibility that the activity is actually a single RPE for action

value, but there may still be other sorts of plasticity that might be usefully driven by a purely move-

ment-related signal. One possibility is that plasticity in the dorsal striatum itself follows different

rules, which might require an action rather than a prediction error signal (Saunders et al., 2018;

Yttri and Dudman, 2016) For instance, it has been suggested that some types of instrumental learn-

ing are correlational rather than error-driven (Doeller et al., 2008) and, more specifically, an early
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model of instrumental learning (Guthrie, 1935) recently revived by (Miller et al., 2019) posits that

stimulus-response habits are not learned from an action’s rewarding consequences, as in RPE mod-

els, but instead by directly memorizing which actions the organism tends to select in a situation.

Although habits are more often linked to adjacent dorsolateral striatum (Yin et al., 2004), a move-

ment signal of the sort described here might be useful to drive this sort of learning. Investigating

this suggestion will likely require new experiments centered around causal manipulations of the sig-

nal. Overall, our results point to the need for an extended computational account that incorporates

the movement direction signals as well as the RPE ones.

Another striking aspect of the results is the co-occurrence of two distinct frames of reference in

the signal. Lateralized movement selectivity tracks choices contralateral versus ipsilateral of the

recorded hemisphere — appropriate for motor control — but the value component instead relates

to the reward expected for the chosen, versus unchosen, action. This value modulation by the cho-

sen action is suitable for a classic RPE for learning ‘state’ values (since overall value expectancy at

any point in time is conditioned on the choices the animal has made; Morris et al., 2006), and also

consistent with the bulk of BOLD signals in human neuroimaging, where value-related responding

throughout DAergic targets tends to be organized on chosen-vs-unchosen lines (Daw et al., 2006;

Boorman et al., 2009; Li and Daw, 2011; O’Doherty, 2014).

At the same time, there have been persistent suggestions that given the high dimensionality of

an organism’s action space, distinct action-specific error signals would be useful for learning about

different actions (Russell and Zimdars, 2003; Frank and Badre, 2012; Diuk et al., 2013) or types of

predictions (Gardner et al., 2018; Lau et al., 2017). Along these lines, there is evidence from BOLD

neuroimaging for contralateral error and value signals in the human brain (Gershman et al., 2009;

Palminteri et al., 2009). Here, we have shown how a similar decomposition might explain move-

ment-related DA signals, and also clarified how this hypothesis can be definitively tested. Although

the current study finds no evidence for such laterally decomposed RPEs in DMS, the decomposition

of error signals remains an important possibility for future work aimed at understanding heterogene-

ity of DA signals, including other anomalous features like ramps (Howe et al.,

2013; Berke, 2018; Gershman, 2014; Hamid et al., 2016; Engelhard et al., 2018). Recent studies,

for instance, have shown that midbrain DA neurons may also encode a range of behavioral variables,

such as the mice’s position, their velocity, their view-angle, and the accuracy of their performance

(da Silva et al., 2018; Howe et al., 2013 Engelhard et al., 2018). Our modeling provides a frame-

work for understanding how these DA signals might be interpreted in different reference frames and

how they might ultimately encode some form of RPEs with respect to different behavioral variables

in the task.

Interestingly, our results were consistent across both recording sites with DMS-projecting DA

neurons: the cell bodies and the terminals (Figure 3d–f, Figure 4b). This indicates that the move-

ment selectivity is not introduced in DA neurons at the terminal level, for example via striatal cholin-

ergic interneurons or glutamatergic inputs (Kosillo et al., 2016).

An important limitation of the study is the use of fiber photometry, which assesses bulk GCaMP6f

signals at the recording site rather than resolving individual neurons. Thus it remains possible that

individual neurons do not multiplex the two signals we observe, and that they are instead segre-

gated between distinct populations. Future work should use higher resolution methods to examine

these questions at the level of individual DA neurons. A related limitation of this study is the rela-

tively coarse behavioral monitoring; notably, we infer that the reversal in selectivity seen in Figure 4

reflects a change in movement direction, but head tracking would be required to verify this more

directly. More generally, future work with finer instrumentation could usefully dissect signal compo-

nents related to finer-grained movements, and examine how these are related to (or dissociated

from) value signals.

Materials and methods

Mice and surgeries
This article reports new analysis on data originally reported by (Parker et al., 2016). We briefly sum-

marize the methods from that study here. This article reports on data from 17 male mice expressing
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Cre recombinase under the control of the tyrosine hydroxylase promoter (ThIRES-Cre), from which

GCaMP6f recordings were obtained from DA neurons via fiber photometry.

In the case of DA terminal recordings, Cre-dependent GCaMP6f virus (AAV5-CAG-Flex-

GCamp6f-WPRE-SV40; UPenn virus core, 500nL, titer of 3.53 � 1012 pp ml) was injected into the

VTA/SNc, and fibers were placed in the DMS (M–L ± 1.5, A–P 0.74 and D–V �2.4 mm), with one

recording area per mouse (n = 12 recording sites). The recording hemisphere was counterbalanced

across mice. The mice were recorded bilaterally, with the second site in nucleus accumbens, which is

not analyzed in this paper.

In the case of VTA/SN::DMS cell body recordings, Cre-dependent GCaMP6f virus (AAV5-CAG-

Flex-GCamp6f-WPRE-SV40; UPenn virus core, 500nL, titer of 3.53 � 1012 pp ml) was injected into

the DMS, and fibers were placed on the cell bodies in VTA/SNc (M–L ± 1.4, A–P 0.74, D–V �2.6

mm) to enable recordings from retrogradely labeled cells (n = 4 mice). Three of the mice were

recorded from both hemispheres, providing a total of n = 7 recording sites.

One mouse was used for the GFP recordings as a control condition for VTA/SNc::DMS terminals

recordings (Figure 1e).

Instrumental reversal learning task
The recordings were obtained while the mouse performed a reversal learning task in an operant

chamber with a central nose poke, retractable levers on each side of the nose poke, and reward

delivery in a receptacle beneath the central nose poke.

Each trial began with the illumination of the center nose port. After the mouse entered the nose

port, the two levers were presented with a delay that varied between 0–1 second. The mouse then

had 10 seconds to press a lever, otherwise the trial was classified as an abandoned trial and

excluded from analysis (this amounted to <2% of trials for all mice). After the lever-press, an addi-

tional random 0–1 second delay (0.1 seconds intervals, uniform distribution) preceded either CS-

with no reward delivery or CS+ with a 4 ml reward of 10% sucrose in H20. Reward outcomes were

accompanied by different auditory stimul: 0.5 seconds of white noise for CS- and 0.5 seconds of 5

kHz pure tone for CS+. Every trial ended with a 3 seconds inter-trial delay (after the CS- auditory

stimulus or the mice exit the reward port).

For the reversal learning, each of the levers either had a high probability for reward (70%) or low

probability for reward (10%). Throughout the session, the identity of the high probability lever

changed in a pseudorandom schedule; specifically, each block consisted of at least 10 rewarded tri-

als plus a random number of trials drawn from a Geometric distribution of p=0.4 (mean 2.5). On

average, there were 23.23 ± 7.93 trials per block and 9.67 ± 3.66 blocks per session. Both reported

summary statistics are mean ± standard deviation.

Data processing
All fiber photometry recordings were acquired at 15 Hz. 2–6 recording sessions were obtained per

recording site (one session/day), and these recordings were concatenated across session for all anal-

yses. On average, we had 1307.0 ± 676.01 trials per mouse (858.09 ± 368.56 trials per mouse for

VTA/SN::DMS Terminals recordings and 448.91 ± 455.61 trials per mouse for VTA/SN::DMS Cell-

bodies recordings).

The signals from each recording site were post-processed with a high-pass FIR filter with a pass-

band of 0.375 Hz, stopband of 0.075 Hz, and a stopband attenuation of 10 dB to remove baseline

fluorescence and correct drift in baseline. We derived dF/F by dividing the high-pass filtered signal

by the mean of the signal before high-pass filtering. We then z-scored dF/F for each recording site,

with the the mean and standard error calculated for the entire recording from each site.

The VTA/SN::DMS terminals data consisted of 10108 total trials across 12 recording sites, and

VTA/SN::DMS cell-bodies consisted of 4938 total trials across 7 recording sites.

Q learning mixed effect model
We fit a trial-by-trial Q-learning mixed effect model to the behavioral data from each of the 12 mice

on all recording sites and combined data across mice with a hierarchical model. The model was ini-

tialized with a Q value of 0 for each action and updated at each trial according to:

Qtþ1 ctð Þ ¼Qt ctð Þþa rt �Qt ctð Þð Þ
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where Q is the value for both options, ct is the option chosen on trial t (lever either contralateral or

ipsilateral to recording site), and 0 <= a <= 1 is a free learning rate parameter. The subject’s proba-

bility to choose choice c was then given by a softmax equation:

P ct ¼ cð Þ / exp b �Qt cð Þþ stay � I c;ct�1ð Þð Þ

where b is a free inverse temperature parameter, stay is a free parameter encoding how likely the

animal will repeat its choice from the last trial, and I is a binary indicator function for choice repeti-

tion (1 if c was chosen on the previous trial; 0 otherwise). The three free parameters of the model

were estimated separately for each subject, but jointly (in a hierarchical random effects model) with

group-level mean and variance parameters reflecting the distribution, over the population, of each

subject-level parameter.

The parameters were estimated using Hamiltonian Monte Carlo, as implemented in the Stan pro-

gramming language (version 2.17.1.0; Carpenter et al., 2017). Samples from the posterior distribu-

tion over the parameters were extracted using the Python package PyStan (Carpenter et al., 2017).

We ran the model with 4 chains of 1000 iterations for each (of which the first 250 were discarded for

burn-in), and the parameter adapt_delta set to 0.99. We verified convergence by visual inspection

and by verifying that the potential scale reduction statistic Rhat (Gelman and Rubin, 1992) was close

to 1.0 (<0.003 for all parameters) (Table 1).

We used the sampled parameters to compute per-trial Q values for each action, trial, and mouse.

We calculated the difference between the Q values for the chosen action and unchosen action for

each trial. We binned the difference in these Q values for each trial and plotted the average

GCaMP6f time-locked to lever presentation for each bin (Figure 3b,e).

Regression model
In Figure 3c,f, we performed a linear mixed effect model regression to predict GCaMP6f signal at

each time point based on Q-values, choice (contralateral vs ipsilateral), their interaction, and an inter-

cept. We took the difference in Q values for the chosen vs unchosen levers, then we standardized

the difference in Q values for each mouse and each recording site. GCaMP6f was time-locked to

lever presentation, regressing to data points 1 second before and 2 seconds after the time-locked

event for 45 total regressions. The regression, as well as the calculation of p values, was performed

with the MixedModels package in Julia (Bezanson et al., 2014). The p values were corrected for

false discovery rate over the ensemble of timepoints for each regression variable separately, using

the procedure of Benjamini and Hochberg (Benjamini and Hochberg, 1995) via the MultipleTesting

package in Julia (Bezanson et al., 2014).

Multiple event kernel analysis
In Figure 3—figure supplement 5, we fit a linear regression model to determine the contributions

to the ongoing GCaMP6f signal of three simultaneously modeled events (nose poke, lever presenta-

tion, lever press). To do this, we used kernels, or sets of regressors covering a series of time lags

covering the period from 1 second before to 2 seconds after each event. Each event had four ker-

nels, corresponding to the four conditions from Figure 3a,c (all combinations of contralateral vs ipsi-

lateral trials and previous reward vs no previous reward trials). We solved for the kernels by

regressing the design matrix against GCaMP6f data using least squares in R with the rms package

(Harrell, 2018). The standard error (colored fringes) was calculated using rms’ robcov (cluster

robust-covariance) function to correct for violations of ordinary least squares assumptions due to ani-

mal-by-animal clustering in the residuals.
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