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Summary 
Drug development typically comprises a combination of pre-clinical experimentation, clinical trials, and statistical data-driven analyses. Therapeutic 
failure in late-stage clinical development costs the pharmaceutical industry billions of USD per year. Clinical trial simulation represents a key 
derisking strategy and combining them with mechanistic models allows one to test hypotheses for mechanisms of failure and to improve trial 
designs. This is illustrated with a T-cell activation model, used to simulate the clinical trials of IMA901, a short-peptide cancer vaccine. Simulation 
results were consistent with observed outcomes and predicted that responses are limited by peptide off-rates, peptide competition for den-
dritic cell (DC) binding, and DC migration times. These insights were used to hypothesise alternate trial designs predicted to improve efficacy 
outcomes. This framework illustrates how mechanistic models can complement clinical, experimental, and data-driven studies to understand, 
test, and improve trial designs, and how results may differ between humans and mice.
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Abbreviations: BFA: Brefeldin A Decay; BIMAS: Bioinformatics and Molecular Analysis Section; DC: Dendritic cells; DMSO: Dimethyl Sulfoxide; FCS: Flow 
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Introduction
Many therapeutic agents fail in the later-phase II/III stages of 
development. With tens of thousands of clinical trials regis-
tered per year [1], a failure rate of 54% at phase III [2] and 
a cost of anywhere from $40m USD to $3b USD per trial 
[3], these failures cost the biopharmaceutical industry many 
billions of USD per year. It is therefore critical to understand 
whether early suboptimal or unexpected results are attribut-
able to intervention design (such as dose scheduling and target 
patient population) and/or a therapeutic mechanism of action 
inappropriate for the targeted disease biology. In silico model-
ling is well-suited for this purpose, allowing quantitative and 
qualitative comparison of large numbers of patient or drug 
effects more quickly, cheaply, and ethically than in vivo study. 
It can narrow down the field of plausible hypotheses to guide 
experimental work and inform intervention design. There are 
two broad, extensively used methodologies that can be used 
to this end: data-driven techniques and mechanistic models. 
Data-driven techniques include machine-learning algorithms 
such as neural networks, which can be trained on data and 
used to predict the output of new inputs; such techniques are 
utilised by online shopping websites to provide customers 
suggestions based on previous purchases. An even simpler ex-
ample is the calculation of the correlation of observables with 

different patient properties, which allows one to infer the im-
portance of properties such as age, for example, by examining 
the correlation of outcome with age. Mechanistic models, on 
the other hand, are a set of equations or rules that directly de-
scribe relevant biology, with parameters that can be linked to 
observable quantities. The best known example in biochem-
istry is perhaps enzyme kinetics, which links the formation 
of enzyme–substrate complexes with reactant concentrations 
and affinity constants. Data-driven techniques can be used in 
a clinical context to predict how metrics such as overall sur-
vival may change with study design or in a different popu-
lation (e.g. refs. [4, 5]). Despite their great predictive power, 
data-driven or statistical models do not generally contain a 
direct representation of the relevant biology and so are less 
well-suited to the study of hypothetical disease and drug 
mechanisms of action. Mechanistic models, which describe rel-
evant biology with equations or simulations, are much better 
suited to in silico experimentation and hypothesis testing 
about mechanisms of action. Mechanistic model parameters 
usually have direct biological analogues, many of which can 
be controlled and tested in a clinical setting. One example of 
a mechanistic modelling study investigated the effect of bone 
morphogenetic protein treatment on paediatric disease of the 
bone [6], to understand the conditions under which disease 
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severity is reduced by treatment and to stratify patients into 
responders, non-responders, and asymptomatic populations. 
An example applied to a clinical context predicted that short 
peptide cancer vaccines may preferentially select low-avidity 
T-cells, unless one optimises the dosage to reduce pMHC den-
sity on individual antigen-presenting dendritic cells (DCs) [7, 
8]. However, compared to data-driven or statistical model-
ling, mechanistic modelling is less frequently used in a clinical 
context; a Web of Knowledge search for papers containing 
‘machine learning clinical’ published between 2017 and 2021 
yielded 17450 results, versus 4778 for ‘mechanistic model 
clinical’. The specific data-driven technique ‘neural network 
model clinical’ yields 7709 results. Nonetheless, mechanistic 
modelling is well-positioned to take advantage of the ever-
increasing quantitative understanding of disease biology and 
mechanisms. In this study, we will demonstrate how in silico 
simulation of clinical trials can be used to test a biological 
hypothesis in silico to understand the mechanisms of clinical 
failure and improve upon trial designs, rather than merely to 
fit models to data. We will focus on published clinical trials of 
a short-peptide cancer vaccine, as an example.

It has been proposed that the immune system may not 
launch an attack on tumours that it has the potential to 
recognise because it lacks sufficient activating stimuli, due, 
for example, to inhibition of effector or antigen-presenting 
cells within the tumour microenvironment and its draining 
lymph nodes, or to a lack of stimulating peptide antigens. 
Invoking the cancer-immunity cycle of Chen and Mellman 
[9], the first three stages of the cycle are expected to contain 
a bottleneck to an immune response in this case. Therapeutic 
cancer vaccines contain tumour-associated peptides to ‘jump-
start’ the cycle into a self-perpetuating anti-tumour response, 
have been a subject of study for many years [10], but have 
not yet seen wide clinical success. These vaccines encompass 
many mechanisms of action, from introduction of tumour-
associated peptides to viruses engineered to express tumour 
antigen. Typical examples of the 1136 reported cancer vac-
cine clinical trials (as of July 2020) are the phase I–III clinical 
trials of IMA901 [11, 12], which is a renal cell carcinoma 
short peptide vaccine containing nine 9-amino acid peptides 
specific to HLA-A02* MHC-I. These peptides are tumour 
associated antigens, overexpressed on renal cell carcinoma 
cells. The vaccine showed clinical efficacy in phases I and II, 
as assessed by vaccine-induced immune responses against one 
or more peptides, though no patient responded to more than 
three of the nine peptides, and most responded to zero or 

one peptide(s). Furthermore, the trial failed in phase III when 
overall survival was used to assess efficacy, though the un-
derlying reasons were unclear. It is feasible that a more ro-
bust immune response against a wider range of peptides may 
have improved this phase III outcome. However, it was uncer-
tain as to which, if any, alternate clinical intervention design 
would have been capable of driving such improvements.

The purpose of this study is to test the hypothesis that the 
unbinding of vaccine peptides from antigen presenting cells 
due to differing pMHC affinities could limit responses to 
short peptide vaccines, by exploring whether a model based 
on this mechanism of action is consistent with observed pa-
tient data and with the generally greater efficacy of short pep-
tide vaccines in mouse studies [13, 14]. We developed a series 
of in silico models of the vaccination site, the lymphatics and 
the lymph node, where the immune responses to short pep-
tide vaccines are evoked. Like Kumbhari et al. [7, 8] and the 
phase I–II trials of IMA901, we use activation of an immune 
response as a surrogate for vaccine success. Unlike Kumbhari 
et al., however, our aim is not to optimally fit trial data or to 
optimise model outputs. We aim to use our mechanistic model 
to run in silico clinical trials with the same designs as IMA901 
phases I–III in order to test our hypothesis, by determining if 
our proposed mechanism of action is consistent with clinical 
observations. Similarly, we fit parameters that are expected 
to vary from patient to patient for each simulated patient in 
each phase of IMA-901 so as to match observed data, but 
we do not anticipate that the resulting patient parameter 
values would be the only values that could lead to a fit to 
data. Instead, we seek to determine whether the existence of a 
fit depends on peptide properties in a manner consistent with 
our hypothesis. A secondary aim of this study is to test poten-
tial changes to the designs of IMA-901 that may have yielded 
improved patient responses, in light of simulated results. This 
study demonstrates how in silico, mechanistic modelling can 
be used to propose and test biological hypotheses, a method-
ology that is invaluable as the amount and quality of quanti-
tative biological and clinical data increases.

Results
Model summary: schematic of vaccination and 
T-cell activation
Induction of peptide-specific effector cytotoxic T lymphocytes 
by intradermal peptide vaccination requires peptide presenta-
tion by DCs to T-cells in the lymph node (LN) that drains 

Key points

• IMA901 is a renal cell carcinoma cancer vaccine containing nine short peptides. No patient gave an immune 
response to more than three of the peptides.

• Simulations of IMA-901 were used to test the hypothesis that the response to short peptide vaccines could be 
limited by the off-rates of short peptides from major histocompatibility complex (MHC)-I.

• The hypothesis was found to be consistent with the results of IMA901.
• Results suggest that IMA901 could have been improved by reducing peptide competition or dendritic cell mi-

gration times, or alternative vaccine delivery strategies.
• Clinical trial simulations can identify important biological mechanisms and inform experiments that can im-

prove the designs of clinical trials.
• Simulations based on mechanistic, rather than data-driven, models provide insight into mechanisms of action 

and can be used to generate and test biological hypotheses.
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the vaccination site. Peptides bind to DCs at the injection site 
and these cells then migrate to the LN to potentially drive 
an immune response against the peptides. Quantitative un-
derstanding of the relevant processes leading to immune 
response generation by effector T-cells requires an in silico 
model of the cellular and peptide interaction dynamics at 
the vaccination site (dermis), along the lymphatic vessels and 
within the draining LN. A schematic summary of the model 
is presented in Fig. 1A and described in detail in Methods: 
Computational model of vaccination. A complete list of 
parameters and assumptions are given in Tables 1 and 2. The 
model consists of three parts: the dermis, the lymphatics, and 
the lymph node.

• Dermal injection site (Fig. 1Ai): Peptides compete for 
sites on DC MHC-I receptors. It is assumed that short 
peptides may only be presented on MHC-I by direct 
binding, as it is unlikely for short peptides that enter the 
cell to reach the endoplasmic reticulum without cleavage 

by cytoplasmic peptidases. Cleaved short peptides would 
be too short for loading onto MHC-I. Free peptide is 
cleared from dermis by the vasculature (due to their 
low molecular weight [15]), after which the remaining 
peptide-MHC-I complexes dissociate exponentially due 
to normal ligand-receptor kinetics.

• Lymphatic transit (Fig. 1Aii): After several hours in the 
dermis, DCs migrate to the draining lymph node, carry-
ing varying amounts of bound peptide.

• Lymph node model (Fig. 1Aiii): In the draining LN are 
T-cells that are cognate to any peptides bound to DC 
MHC-I. Simulated T-cells and DCs are represented in 
an agent based model, i.e. with physical cells whose 
movement and interactions are tracked over time, as 
previously reported [16]. T-cells that come into contact 
with DCs have a chance of activation that depends on 
the amount of cognate antigen bound to the DC and the 
threshold number of T-cell receptors that must be ligated 
for activation. The output of the model is the maximum 

Figure 1. A summary of the model and methods used to conduct in-silico clinical trials, modified from [16]. (A) Model schematic, split into three 
sections. The injection site is modelled by a set of equations that represent peptide competition, binding to dendritic cell MHC-I and clearance from 
the vasculature. Unbinding of this initial amount of peptide from MHC-I is modelled in all sections of the model. Dendritic cell migration is modelled 
by a simple exponential distribution fitted to experimental measurements of their migration efficiency. T-cell–dendritic cell interactions in the lymph 
node are modelled by an agent-based model, see Methods: Computational model of vaccination. (B) Schematic of a simulated clinical trial. A patient 
cohort is produced with random values of patient-specific parameters. For each patient, the lymph node model is simulated with each peptide and the 
expected number of peptide responses is calculated. Three distinct simulated trials are performed to indicate the variability of results, and the numbers 
of patients responding to zero, one, two, or three peptides are compared to IMA901’s results. (C) Schematic of the data-fitting procedure using 
Approximate Bayesian Computation; see text in Results: Simulated clinical trial results for IMA901 phases I–I. (D) Quantitative details of each phase 
of IMA901: the number of patients enrolled, the number of peptides administered to each patient and the days on which peptides were administered 
(4 mg of each on each visit).
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probability of successful T-cell activation for each pep-
tide, defined as the probability that a given T-cell has at 
least one activating interaction with cognate peptide-
carrying DCs.

To simulate the results of a clinical trial, a cohort of virtual 
patients with random parameters (drawn from plausible bi-
ological values, as informed by literature measurements) is 
defined, equal in size to one of the phases of IMA901 [11, 12]. 
For each virtual patient in turn, the maximum probability of 
T-cell activation over the course of the entire trial schedule is 
calculated. The number of patients and the schedule of each 
phase of IMA901 are displayed in Fig. 1D. We may calcu-
late the number of patients expected to respond to 0, 1, 2, 
or 3 peptides from the simulated clinical trials and compare 
them to the results of IMA901. To test whether the model is 
consistent with those results, we used Approximate Bayesian 
Computation to iteratively update patient parameter 
distributions (such as time spent migrating in the lymphatics) 
until simulated trial results fit the data, as presented in Fig. 
1C. The numbered circles in the figures correspond to dif-
ferent parts of the process:

1. Random patient parameter distribution means and stand-
ard deviations are initially uniformly drawn over a range. 
Each sample from these distributions is a set of Gaussian 
distributions that describes a population of patients.

2. For each sample, patient parameters are drawn from 
the population Gaussians and used to simulate a clini-
cal trial. Each trial is assigned a score equal to the root 
mean square difference between simulated and observed 

results of IMA901. Low scores are accepted and high 
scores rejected.

3. The accepted parameter sets are used to change the 
probability distributions for the means and standard 
deviations of population parameter distributions.

4. The process is repeated until convergence with IMA901.

Our hypothesis was that the off-rate of vaccine peptides from 
MHC-I are the limiting factor for patient responses to each 
short peptide. We could test this by checking whether accu-
rate replication of the results of IMA901 depends critically on 
the off-rates used for vaccine peptides, or not.

Results: Summary of results from a study of the 
standalone model
A previous study of the standalone model [16] sought to in-
vestigate how the maximum probability of T-cell activation 
depended on model parameters. The assumptions that short 
peptides are cleared rapidly by the vasculature and that they 
must bind directly to MHC-I to be presented by DCs results 
in an initial population of peptide-MHC-I complexes that 
falls exponentially over time according to the peptide-MHC 
off-rate. For very fast off-rates, almost all peptide dissociates 
from MHC-I before the DCs reach the lymph node and the 
maximum probability of T-cell activation becomes zero. 
There is a sharp transition as this off-rate is lowered (or 
equivalently, the time taken for DC migration is lowered), to 
a region where further changes in off-rate have no impact, i.e. 
when it is low enough that there is sufficient peptide in the 
lymph node to activate T-cells for the entire lifespan of DCs 
in the lymph node. At such low off-rates, parameters such as 
the numbers of DCs and T-cells have an influence on T-cell 
activation probability. This behaviour can also be seen in Fig. 
2D. This model suggested that peptide off-rates may be a key 
determinant of vaccine design, and led to this study, in which 
we test for consistency of this hypothesis with existing clin-
ical data. A published sensitivity analysis of model outputs 
to various parameters [16] gives intuitive results: in the slow 
off-rate region, only factors relating to cell interactions (such 
as cell counts) are important. In the fast off-rate region, there 
is no T-cell response, and so nothing for which to measure the 
sensitivity of parameters. In the transition region, the model is 
sensitive to both cell and antigen-related parameters.

Results: Predicted probability of vaccine response 
for an individual
We define a simulated patient by a set of random patient-
specific parameters, for instance, the number of DCs recruited 
in the dermis. The immune response of each simulated patient 
is estimated from a model of T-cell activation, which considers 
the dermis, draining lymphatics, and lymph node, as detailed 
in Brown et al. [16]. Two example patients are considered 
in Fig. 2, with panel A showing the dynamics in the dermis. 
Here, multiple peptides compete with each other and endoge-
nous (self) peptides for DC MHC-I sites, that are rapidly filled 
due to the large free peptide concentration. Free peptide is 
cleared by the vasculature from the dermis within hours and 
the distribution of peptides bound to MHC-I subsequently 
becomes determined by the peptide-MHC-I off-rate of each 
peptide. The presentation of most of the simulated peptides 
by MHC-I drops to a negligible level on a faster timescale 
than DC emigration from the dermis, and subsequently do 

Table 1. Complete list of model parameters

Sym  Parameter  Patient/peptide 
specific 

A Fraction of MHC-I bound in dermis Peptide

b Contact radius Biophysical

D DCs migrated to lymph node Patient

F T-cell free path Biophysical

FDC DC mean free path Biophysical

koff Peptide off-rate from MHC-I receptors Peptide

N MHC-I in T-cell–DC contact region Biophysical

P Time of first DC arrival (see caption) Patient

p Spread of dermal departure times Patient

ϕ T-cell precursor frequency Patient

ρ Density of T-cells in paracortex (see caption) Patient

rtot Number of MHC-I receptors per DC Biophysical

R LN (paracortex) radius Biophysical

T T-cell activation threshold Biophysical

v T-cell velocity Biophysical

w DC velocity Biophysical

Peptide and patient-specific parameters that are varied to fit data are 
marked in boldface. Peptide off-rates from MHC-I koff are fixed for specific 
peptides of interest, to measured/simulated values. The number of antigen-
specific T-cells in the lymph node paracortex is equal to ϕ × ρ, and as only 
the overall number impacts model outputs, only the precursor frequency 
is varied. The time of the first dendritic cell arrival P is equal to the time 
that the first cell leaves the dermis plus the lymph transit time, hence only 
the latter is varied. The values and references for parameters that are not 
varied have been previously published [16].
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not contribute to T-cell activation. In particular, note that all 
peptides form roughly similar proportions of initial pMHC-I 
complexes, including peptides 8 and 9 (MUC1 and RGS5), 
which have sufficiently short half-lives to ensure their lifetime 
in pMHC-I complexes is much shorter than the timescale 
of migration to the lymph node. Thus, the presence of such 
peptides is predicted in Fig. 2A to significantly reduce the an-
tigen available for presentation.

Fig. 2B shows a probability distribution for the propor-
tion of DCs that successfully migrate from the dermis to the 
lymph node, fit to clinical measurements [17]. These results 
show that fewer than 3% of DCs successfully migrate to the 
draining lymph node in any particular patient. Each simu-
lated patient draws a random migration efficiency from this 
distribution. This random efficiency is multiplied by the DC 

density in the dermis (600 mm-2 [18]) and the assumed disper-
sion area of the vaccine (0.6 cm2) to define the number of DCs 
to be simulated in the lymph node for each vaccine dose and 
each virtual patient. Panels C and D show the predicted max-
imum probability of T-cell activation for two virtual patients, 
i.e. individuals with slightly differing biological parameters. 
Panel C shows the probability of activation against the 
number of successfully migrated DCs. Panel D shows it as a 
function of the off-rate of an antigen of interest. The typical 
number of DCs that migrate to the draining lymph node is 
predicted to be between 360 and 1440 (migration efficiency 
of 1–4%), and so response to a given peptide is predicted 
to be driven by its off-rate from MHC-I, not the number of 
migrating DCs. Results illustrate how the model is highly sen-
sitive to antigen off-rates, with a ‘transition’ between a region 

Table 2. Key assumptions made in the model (see ref. [16] for more information.)

 Vaccine Site 

Vaccine components other than the peptides are assumed to be non-limiting. 

The concentration of peptides at the vaccination site is assumed to take the constant value of 200 µM. 

The number of dendritic cells (DCs) per square millimetre of dermis is assumed to be 600 [18], and the initial dispersion area of injected vaccine 
solution is assumed to be 0.6 cm2. 

The concentration of DCs at the vaccination site is assumed to be 2 × 10−7 µM. The number of DCs that successfully migrate to the lymph node is 
assumed to be between about 1 and 4 as fit by an exponential distribution (Figure 2B [17]).

Peptide on-rates are assumed to be equal. 

Short peptides are assumed to bind directly to MHC-I receptors, which typically present ‘self’-peptides produced within the DC. 

Each inactivated DC is assumed to initially have 105 receptors, for a receptor density of 2 × 10−2 µM. 

Peptide is assumed to be cleared overwhelmingly by the vasculature rather than the lymphatics and so is not encountered by DCs as they move 
through the lymphatic vessels. 

Any new MHC-I receptors up-regulated during DC maturation are assumed to be independent of the initial population of MHC-I receptors that 
could be bound to the short peptide. Together with the assumption that peptide is cleared rapidly by the vasculature and rebinding can be ignored, 
this means only the exponential decay of the initial cognate antigen proportion needs to be considered, not any other self-peptides.

DCs are assumed to begin to migrate after several hours, leading to no free peptide being present in the lymphatic vessels for typical off-rates. It is 
hence assumed that peptide rebinding can be ignored. 

Lymph Node

The lymph node is assumed to be non-inflamed and thus focus is on the probability of a first successful encounter between naïve T-cells and DCs.

T-cells in the model are present in the lymph node at the beginning of the simulation, but DCs carrying varying proportions of peptide antigen are 
assumed to arrive gradually from the vaccination site at physiological rates. 

DCs are assumed to reach the lymph node at a constant rate λ = (D− 1)/p, where D is the total number of DCs and the last DC arrives at time 
t = p. A model in which arrival times are random has also been tested. 

The assumed lifetime of activated DCs within the lymph node is 48 hours [40–45]

T-cell and DC velocities and mean free paths are assumed to be similar between mice and humans. 

DCs are generally assumed to be stationary in the lymph node. This assumption has been tested for validity. 

T Cells and Interactions

Cognate peptide–MHC-I complexes, self peptide-MHC-I complexes and T-cell receptors (TCRs) are assumed to be expressed uniformly on the 
surface of DCs and T-cells. 

When a T-cell interacts with a DC, it is assumed to be activated with a (binomial) probability that depends on the amount of cognate antigen 
presented by the DC. As only the number of cognate antigen and the total number on the DC are important, all other self-peptides can be ignored.

Sampling of pMHC-I by the T-cell is assumed to occur with replacement, allowing use of the binomial distribution instead of the hypergeometric 
distribution. The difference between the binomial and hypergeometric distributions is no more than 0.1 for any input cognate antigen ratio A, for 
the assumed number of MHC-I in the T-cell–DC contact region. 

DCs and T-cells have multiple interactions over several hours [40, 46–48] and ‘integration’ of multiple such interactions leads to the final activa-
tion state of T-cells [40, 46, 47, 49], but it is assumed that a minimum amount of cognate antigen is required for any given interaction to contrib-
ute towards activation. Noting that antigen on the DC surface is monotonically decreasing in time, we have the corollary that if the first of such 
interactions fails, then all of them will fail. This and other assumptions (such as the lymph node not being inflamed) mean that the model’s output 
is the maximum probability of T-cell activation.

The variation of TCR affinities for different antigen is ignored; it is assumed that there is a precursor frequency ϕ of T-cells capable of recognising 
the antigen with approximately equal affinity. This is equivalent to choosing a cut-off affinity beyond which T-cell activation is successful, and is 
consistent with our calculation of a maximum probability of T-cell activation.

Immunological response is assumed to be an appropriate surrogate of clinical efficacy.
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where there is zero probability of activation and a region to 
where activation probability is finite but insensitive to fur-
ther reductions in antigen off-rate. Peptides whose off-rates 
are far below this transition are those for which no response 
could ever be driven in the clinic and are not viable. Peptide 
off-rates in or near the transition region could drive a re-
sponse in patients, depending on factors such as the migra-
tion time of DCs to the draining lymph node. Such factors 
could be controlled through clinical intervention design, e.g. 
by changing the mode of administration. In simulations of the 
clinical trial, peptides must compete for MHC-I sites on DCs, 
which increases the dependence of patient response proba-
bility on off-rates. A typical time course for the proportion of 
MHC-I molecules bound to peptides of interest is shown in 
Fig. 2A. Any off-rates significantly faster than other vaccine 
peptides, as for peptides 8 and 9 in the figure, will not evoke 
an immune response.

Results: Simulated clinical trial results for IMA901 
phases I–III
To test the hypothesis that peptide off-rates drive the patient 
response distributions seen in IMA901 phases I-III, the model 
was used to simulate clinical trials with the same design as 
the phases of IMA901, as shown in Fig. 1B and as described 
in detail in Methods: Simulated clinical trials. We fit simu-
lated results to observed data by varying the distributions of 
various parameters that are expected to vary from patient 

to patient, which are highlighted in bold-face in the list of 
parameters in Table 1. The resulting fits to the data are shown 
in Fig. 3. Panel A shows the mean and standard deviation of 
parameters for the patients in each phase of IMA901. These 
distributions differ slightly for each phase. The distributions 
for phases II and III are similar compared to the distribution 
for phase I (see Supplementary Appendix A). Panels B, D, and 
E show the number of patients that respond to 0, 1, 2, or 3 
peptides in the real and simulated trials of IMA901; the sim-
ulated results are consistent with those of IMA901. Panel C 
shows the probability that a virtual patient responds to each 
specific peptide against the total number of peptide responses 
made by that virtual patient. The peptides GUC-1, ADF-2, 
and MET-1 are predicted to yield the most patient responses.

Notably, the fits in panels B, D, and E could only be achieved 
when peptide off-rates were assumed to take their meas-
ured values. The model could not be fit to data when values 
predicted by NetMHC or Bioinformatics and Molecular 
Analysis Section (BIMAS) [19, 20] were used for peptide off-
rates, indicating that the hypothesis that the off-rates are crit-
ical for response is consistent.

Results: Measurement of IMA901 peptide off-rates
Simulated clinical trials could not be fit to the results of 
IMA901 phases I-III if estimates of the peptide off-rates 
from utilities such as BIMAS or NetMHC 4.0 were used 
(Supplementary Appendix C). Instead, the half-lives of the 

Figure 2, (A) Example results of the injection site model, showing peptide binding, the clearance of remaining free peptide from the vasculature 
and gradual unbinding of remaining peptides according to their off-rates. (B). Experimental measurements of dendritic cell migration efficiency with 
a simple exponential fit. The number of dendritic cells that successfully reach the lymph node in each virtual patient is drawn from this distribution. 
(C,D). Example results of the lymph node model for two virtual patients: the probability of simulated T-cell activation as a function of (C) the number of 
cognate-antigen carrying dendritic cells, when every interaction leads to activation or (D) pMHC-I off-rate. Solid lines indicate the probability for each 
(cognate) T-cell and dotted lines the probability of at least one (cognate) T-cell interacting. The shaded regions indicate probabilities between 6 and 24 
hours, whilst the central lines indicate the probability after 12 hours. (E). Parameter values corresponding to the two virtual patients in panels C and D. 
*Note that in panel C, interaction probability is plotted against the number of migrating dendritic cells, so the fixed value in the table is not used. Also in 
panel C, the off-rate of peptide from MHC-I is fixed to 0.

http://academic.oup.com/immunotherapyadv/article-lookup/doi/10.1093/immadv/ltac017#supplementary-data
http://academic.oup.com/immunotherapyadv/article-lookup/doi/10.1093/immadv/ltac017#supplementary-data
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peptides of IMA901 were measured (Fig. 4). They were 
measured with a fluorescence polarisation assay repeated 
at two different concentrations of fluorescent peptide 
(FLPSDC*FPSV; see Methods: Measurement of peptide-
MHC-I off-rates) and an MHC-I flow cytometry assay 
(BFA decay). The measured values are very different from 
those predicted by BIMAS and NetMHC 4.0, both in order 
of magnitude and in the distribution of peptide half-lives. 
However, the experimental values also differ from each 

other. The BFA decay data predicts a more uniform distri-
bution of half-lives than the fluorescence experiment; five 
peptides have very similar half-lives, and the remaining two 
– judged to be very poor binders by every other measure 
– have a significantly lower or undetectable half-life. The 
fluorescence polarisation assay measured the binding of fluo-
rescent peptide to immobilised MHC-I as bound peptides 
of interest unbind, which may be less indicative of in vivo 
behaviour than the BFA decay assay, which measures the 

Figure 3. Results of fitting a simulated clinical trial to phases I–III of IMA901. (A) Parameters values for each patient in each phase are drawn from the 
Gaussian distributions indicated, the means and variances of which were fitted to data. The dendritic cell distribution is an exponential fit to literature 
data [17]. (B) The number of patients who responded to 0, 1, 2, or 3 peptides in the real and simulated trials of phase I. Error bars for the simulated trial 
are the standard deviation over three repeats. (C) The probability of a simulated patient responding to each peptide plotted against the total number of 
responses that the same virtual patient made in phase I. For example, a virtual patient expected to respond to 2.0 peptides has around a 90% chance 
of responding to GUC-001 and an 80% chance of responding to ADF-002. (D, E) Results of the simulated clinical trials that match phase II (D) and phase 
III (E). Note that the parameter distributions are different to each other and to phase I, and (*) that the number of patients responding to two or three 
peptides are combined in the data for IMA901-301 (phase III). The dashed bar is the prediction of the number of patients who respond to 3 peptides in 
the simulated trial.

Figure 4. A comparison of the half-lives for each peptide, according to two algorithms ([19, 20]) and measurements by two techniques. The darker 
the cell shading, the higher the value in that column. ‘Fluorescence’ and ‘BFA’ refer to assays used to measure half-lives, as detailed in Results: 
Measurement of IMA901 peptide off-rates. Note that the rank order of each peptide differs for each technique, and that the average half-life measured 
by experiment differs greatly from the predicted values.
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rate of loss of MHC-I from the surface of B-cells. However, 
previous authors have shown that MHC-I recycling is faster 
in B-cells than in DCs, which are the cells of interest [21], 
and the BFA decay assay specifically measures the loss of 
pMHC-I complexes, not of peptide, and so may not be a 
good estimate of peptide off-rates from the MHC-I mole-
cule. Furthermore, the fluorescence polarisation experiment 
had a much higher dynamic range (signal-to-noise ratio) 
than the B-cell BFA decay experiment or a repetition of the 
fluorescence polarisation experiment with 24nM of fluores-
cent peptide, rather than 12  nM. Hence, we only present 
the 12 nM fluorescence polarisation data in the fluorescence 
column of Fig. 4, and this is the data used for all experi-
mentally based estimates of IMA901 peptide off-rates and 
presented results, unless otherwise stated.

Results: Simulation of potential improvements to 
intervention design
Previous work [16] and results presented so far indicate that 
simulated patient responses to short peptides are particularly 
sensitive to peptide–MHC-I off-rates, the number of avail-
able MHC-I sites for peptide presentation and the amount 
of time DCs spend migrating from the injection site to the 

draining lymph node. These parameters all affect the amount 
of peptide presented to T-cells in the lymph node and can 
be manipulated by clinical intervention design. We used our 
model to test the effect of various alterations to intervention 
design on virtual patient response probabilities, by comparing 
the results of a simulation of IMA901 phase II. Several of 
the measured half-lives are much lower than the others and 
are predicted to never evoke a response in virtual patients, as 
noted in the discussion of Fig. 2A above. We tested a vaccine 
from which these ineffective peptides were removed. In this 
case, competition for MHC-I sites during the loading phase is 
reduced and there is a greater initial number of sites available 
for the remaining peptides. This results in improved response 
distributions, as shown in Fig. 5A and B.

We also tested a scenario in which the migration time 
from the vaccination site to the draining lymph node is 
reduced to values appropriate for drainage from mouse 
dermis or, with further reductions in transit time, of an al-
ternative formulation from human muscles, shown in Fig. 
5C. This results in a much longer amount of time for T-cells 
and DCs to interact before peptide-MHC-I complexes dis-
sociate, and so too results in an improved response distri-
bution. Finally, we tested a design in which migration times 

Figure 5. Tests of potential alterations to the intervention design to improve patient responses. Grey bars indicate the observed results of the phase II 
trial of IMA901. Simulated trial results match these results (as in Fig. 3D) with the parameters specified in Fig. 3A. The yellow bars in each panel indicate 
how results change with each of the following alterations: (A) the 3 peptides with the fastest measured off-rates are removed, (B) the 4 peptides with 
the fastest measured off-rates are removed, (C) lymph transit time is reduced from 30 to 10 hours (while also noting that transit times of alternative 
liposomal vaccine formulations from muscle to lymph are dramatically reduced), and (D) the changes in both B and C.
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and the number of peptides are reduced, in which case 
nearly all patients are predicted to respond to all five re-
maining peptides (Fig. 5D).

Discussion
In this study, we have presented a framework with which one 
can test the consistency of a hypothesised mechanism of clin-
ical failure with observations. We employed a mechanistic 
model to capture the dominant behaviour of the biological 
system, rather than using a more statistical approach to iden-
tify the correlates most associated with outcome. This allows 
identification of important biology without encoding large 
numbers of parameters and effects of unknown size. Our aim 
was to test the consistency of a proposed mechanism (that 
peptide off-rates from MHC-I are critical for short peptide 
vaccine success) with observed data, for which mechanistic 
models are better suited than more statistical approaches. In 
other words, it is whether a fit is possible that is important, 
not what ‘the’ fit is.

To illustrate this approach, we have simulated the short 
peptide vaccine clinical trials, IMA901 101, 202, and 301 
[11, 12]. This required the development of a mechanistic 
model describing short peptide vaccination and T-cell ac-
tivation from the dermis to the lymph node. The general 
behaviour of this model has been previously published [18], 
but results and discussion of assumptions are summarised in 
Methods: Computational model of vaccination for complete-
ness. Each realisation of the model represents a virtual patient 
with unique parameters. Two virtual patients are compared in 
Results: Predicted probability of vaccine response for an indi-
vidual. Model results are highly sensitive to peptide off-rates 
and related parameters (as presented previously [16]), for ex-
ample, the initial amount of bound peptide and the time taken 
for DCs to migrate to the draining lymph node. This follows 
from the assumption that peptides bind directly to MHC-I 
and are not processed by the normal antigen presentation ma-
chinery, as any short peptide taken up by DCs would have 
to reach the endoplasmic reticulum without being cleaved by 
peptidases to do so. As supported by the results of Figs 2A and 
5A, this leads to the hypothesis that the results of IMA901 
were impacted by peptide competition in the dermis and the 
fast off-rates of several of the peptides. The probability of im-
mune response calculated from the model is sensitive to pep-
tide off-rates only when peptide half-lives are similar to or 
less than the timescale of DC migration to and persistence 
in the lymph node; small changes to very long half-lives will 
not impact the overall amount of peptide bound to MHC-I in 
the lymph node. Sensitivity to peptide off-rates is a necessary 
but not sufficient requirement for the model to support our 
hypothesis that the unbinding of vaccine peptides from an-
tigen presenting cells due to differing pMHC affinities could 
limit responses to short peptide vaccines, as model sensitivity 
to off-rates does not guarantee that off-rates could explain 
clinical observations. Simulations of the clinical trial IMA901 
over a cohort of virtual patients led to with model predictions 
that were consistent with observed outcomes. Moreover, 
simulated trial results are only consistent when peptide off-
rates take their measured values rather than estimated values 
obtained from online utilities such as BIMAS and NetMHC 
4.0 (see Supplementary Appendix C), which reinforces the hy-
pothesis that short peptide off-rates are critical for vaccine re-
sponse, and makes it less likely that the fit is trivial or a simple 

result of overfitting with numerous parameters. We note that 
the model could not have predicted the results of phase III 
using only the results of phases I and II, as it was not intended 
to be a predictive model. It could, however, have implicated 
peptide off-rates and competition as a potential limit on vac-
cine efficacy, in line with our study aims.

Off-rates predicted by online utilities were inconsistent 
not only with measured values but with each other, both in 
order of magnitude and in rank order of peptides, though 
they correctly predicted which peptides would bind poorly. 
Previous authors have made similar observations; a recent 
study evaluating performance of computational models 
in predicting CD8+ epitopes found that no existing algo-
rithm performs ‘substantially’ better than random [22], and 
a study introducing MHCflurry, an MHC-I binding affinity 
prediction package that the authors present as an improve-
ment over NetMHC and NetMHCpan, found that all three 
algorithms predict affinities several orders of magnitude away 
from measured values for most simulated peptides [23]. This 
shows that care must be taken when extrapolating the results 
of machine learning outside of the dataset used to train such 
models. As detailed in Results: Measurement of IMA901 pep-
tide off-rates, we measured peptide off-rates by two different 
techniques and with two different concentrations of fluores-
cent labelled peptides, and expect that the measurements ac-
quired from the 12 nM fluorescent assay is the most reliable, 
so use this for our estimates of IMA901 peptide off-rates, un-
less otherwise stated. Peptide on-rates were not measured with 
their off-rates. We have assumed that they are equal among 
vaccine peptides, noting that previous research has found that 
MHC-I affinity is determined mainly by the off-rate [24, 25], 
perhaps because the rate of the initial binding event is similar 
among peptides of equal size, or that it is diffusion-limited 
when peptide concentration is very large (as is the case in a 
vaccination).

We do not model T-cell receptor affinity for peptide-
MHC molecules, instead assuming that there is a precursor 
frequency of all T-cells that could recognise each antigen. 
Defining a precursor frequency is equivalent to defining a 
proportion of T-cells that have at least a minimum affinity for 
a given peptide. This fits our strategy to seek the ‘maximum’ 
probability of T-cell response, rather than precise quantifi-
cation of the extent of T-cell response. Low affinity T-cells 
can become activated after many interactions with antigen 
presenting cells, but we do not need to model this complexity 
if we instead quantify the number of T-cells whose affinity 
is just high enough to have at least one successful interac-
tion. As we do not quantify the strength of T-cell responses, 
the use of T-cell receptor affinities instead of a ‘minimum af-
finity’ (precursor frequency) would not alter our conclusions. 
Similarly, though DCs present a variety of peptides, our use of 
the binomial distribution to calculate the probability that at 
least a minimum amount of antigen cognate to a given T-cell 
is present means that it is valid to ignore other peptides, in-
cluding self peptides. See the list of assumptions in Methods: 
Computational model of vaccination for details.

Simulated clinical trial results were fit to those of IMA901 by 
altering input patient parameter distributions. Only a subset 
of model parameters was fit (see Methods: Computational 
model of vaccination); specifically, only those parameters that 
are controllable and expected to vary between patients were 
fit. That many patient parameters may be expected to vary 
among populations raises the question of whether the model 

http://academic.oup.com/immunotherapyadv/article-lookup/doi/10.1093/immadv/ltac017#supplementary-data
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has been overfit to data and whether a single ‘fit’ is mean-
ingful. We aimed not to precisely predict the parameter values 
of IMA901’s patients (such as numbers of migrating DCs), 
but rather to test whether the proposed mechanism for short 
peptide vaccination failure (high off rates or peptide compe-
tition leading to a loss of pMHC-I complexes before T-cell 
activation) is consistent with observations. Indeed, there are 
many possible patient population distributions that could 
fit the data and care should be taken when interpreting pa-
rameter values of individual fits. For example, the number of 
antigen-specific T-cells was predicted to be lower in phase III 
than phases I-II (Fig. 3), but this is one fit of many potential 
fits and may not be a universal truth. Instead, comparisons 
should be made between the ‘posterior’ density plots of all 
possible parameters that lead to simulated trials that match 
observed results, as obtained from Approximate Bayesian 
Computation and shown in Supplementary Appendix A. In 
other words, model parameters are not identifiable, but this 
is not surprising, because activation of the immune system is 
a random process and must be robust to differing parameters 
values among different patients and different infection 
scenarios. Other authors have previously shown that bio-
logical model parameters are rarely identifiable and usually 
exhibit ‘sloppy’ sensitivities [26]. In such cases, one should in-
stead focus on quantification of observable outputs and their 
uncertainty.

Comparison of the posterior distributions of pos-
sible patient parameters that could fit observed data (see 
Supplementary Appendix A) in each phase indicates that pa-
tient parameters distributions are equivalent between phases 
II and III of IMA-901, and so the observed difference in the 
number of peptide responses given by patients is predicted 
to be the result of randomness. However, the same analysis 
indicates that the patient population of phase I is distinct from 
the other two phases, at least in terms of parameter values. 
The prior anticipation was that the population in phase III 
would give the differing fit, as Sunitinib, which was given to 
all patients in the Phase III trial, has been (controversially) 
reported to reduce antigen presenting cell migration [27–29] 
and thus may reduce peptide response probabilities. There 
are multiple potential reasons for phase I’s required param-
eter values to be different. For instance, the difference may be 
due to the presence of a fluorescent peptide from Hepatitis B 
Virus in the vaccine in phase I. However, this difference would 
be expected to manifest as a requirement for more restrictive 
patient parameters to fit data, e.g. a smaller proportion of 
MHC-I bound to DCs leaving the dermis, and the predicted 
phase I parameter distributions are actually shifted in the op-
posite direction. Alternatively, it is possible that parameter 
distributions for phase I’s population are different because 
of the smaller sample size, which would mean that phase I’s 
results are an outlier and this would explain why simulated 
trial fits for phase I may appear to be worse than for phase 
II and III.

Use of a mechanistic model allows us to test alterations 
to IMA901’s intervention design, after fitting. Results in 
Results: Simulation of potential improvements to interven-
tion design suggest that patient response distributions could 
be improved by reducing the number of peptides competing 
at the vaccination site, thus increasing the initial number 
of sites available to each peptide. We demonstrated this by 
removing peptides with the worst off-rates, although this 

was under the assumption that all peptides have the same 
on-rate to MHC-I. If these on-rates are different, the initial 
composition of peptides bound to MHC-I would differ and 
may thus alter the best choice of peptides to remove. The aim 
of IMA901 was to generate a broad anti-tumour response, 
hence the administration of multiple peptides. This require-
ment competes with that of reducing peptide competition for 
MHC-I sites. Though we predict that some peptides lead to 
stronger immune responses than others, especially due to var-
iation in off-rates, it may be that less immunogenic peptides 
nonetheless yield a stronger anti-tumour response in partic-
ular patients. Furthermore, peptides with a higher T-cell pre-
cursor frequency may more readily induce T-cell activation 
than other peptides, but we have assumed that the precursor 
frequency of T-cells specific to each antigen is equal in each 
patient to avoid overfitting (see Methods: Computational 
model of vaccination). In both cases, it may not be appropriate 
to remove the peptides predicted to be the least immuno-
genic. Potential solutions for the competing aims of reducing 
peptide competition and encouraging a response to a broad 
repertoire of peptides are to target multiple human leukocyte 
antigen (HLA) sub-types, to use multiple vaccine sites (pos-
sibly draining to the same lymph node) and to increase the 
persistence of peptide in the dermis and/or within DCs. We 
also demonstrated improved predicted outcomes on reducing 
the amount of time that DCs spend migrating to the lymph 
node. Noting that transit times are reduced in mouse rela-
tive to human and are much lower in alternative liposomal 
vaccine formulations delivered to muscle, this suggests that 
efficacy in mouse models may be exaggerated and alternative 
delivery routes using different formulations may be benefi-
cial. Furthermore, the prediction that the immune response 
to a vaccine is dependent on timescale and peptide compe-
tition is important as it suggests that short peptide vaccines 
are uniquely susceptible to the unbinding – and hence the fast 
off-rates – of vaccine peptides.

These results exemplify the ability of in silico studies to 
complement experimental and clinical investigation. Possible 
differences between mouse models and human patients can 
be identified and accounted for, alterations to intervention de-
sign can be tested before a final design is taken forward, and 
any model failures or missing biology can be easily identified 
and remedied. Mechanistic models are particularly well suited 
to identify potentially important biological mechanisms, 
which may be further investigated by experiment. The use of 
in silico modelling to identify problems before moving into 
larger trials has enormous potential to save resources and to 
reduce, replace, and refine animal experiments. In silico mod-
elling is well established within the life sciences and in clin-
ical studies (e.g. refs. [4–6]), but in silico experimentation and 
combined experimental-modelling studies are less common 
[30]. This approach holds great potential to accelerate dis-
covery in human medicine in the coming years.

Methods
Methods: Computational model of vaccination
We developed an in silico model of a short peptide vaccina-
tion from the injection site (dermis) to CD8+ T-cell activa-
tion in the draining lymph node. A schematic of the model 
is shown in Fig. 1A, a list of its parameters and assumptions 
are given in Tables 1 and 2. Not all of the listed parameters 

http://academic.oup.com/immunotherapyadv/article-lookup/doi/10.1093/immadv/ltac017#supplementary-data
http://academic.oup.com/immunotherapyadv/article-lookup/doi/10.1093/immadv/ltac017#supplementary-data
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are varied when fitting to data in the main text; only those 
that are controllable or are patient-specific. The model can be 
split into three parts: peptide–DC dynamics in the injection 
site, migration of DCs to the lymph node, and DC–T-cell dy-
namics in the lymph node [16].

Methods: Peptide–dendritic cell dynamics in the 
injection site
The vaccine includes both peptides and adjuvant, which are 
both subjected to diffusion and clearance through the vascu-
lature and lymphatics. Larger molecules diffuse more slowly, 
so the diffusion area of the adjuvant is more limited than 
the peptides. However, smaller molecules are cleared more 
quickly, primarily by the vasculature [15, 31–33]. The lim-
iting factor for binding to DC MHC-I is hence the peptide 
rather than the adjuvant, so the latter is ignored in further 
modelling and DCs within the effective dispersal area of short 
peptides are assumed to be activated and migratory.

Peptide binding in the dermis is modelled by a set of ODEs,

dl
dt

= kof fc− konrl − kclearl,

dr
dt

= kof fc− konrl,

dc
dt

= konrl − kof fc,
(1)

where l, r, and c are the concentrations of free peptide (ligand), 
free MHC-I receptors and bound peptide-MHC-I complexes, 
respectively, and r + c = rtot is constant. These equations follow 
from the law of mass action, which has been extensively 
validated in many models, with a long history and a statis-
tical mechanical basis [34]. They are particularly similar to 
the equations which are subsequently simplified (using low 
enzyme concentration and fast complex formation) to give 
Michaelis-Menten kinetics for enzymes, which share similar 
features to MHC-I binding.

These equations simplify in the context of a short peptide 
vaccination. Small molecules are cleared primarily through the 
vasculature, and for molecules of the size of nine amino acids, 
almost none are cleared through the lymphatics [15, 31–33]. 
In particular, clearance through the vasculature occurs on a 
timescale of minutes [31–33]) and DCs only begin to migrate 
after several hours, motivating our assumption that there 
is no free peptide present in the lymphatic vessels and that 
rebinding can be ignored, in which case these equations are 
effectively dcdt = −kof fc in the lymphatic vessels. Perturbation 
analysis can also be used to show that this effective single 
equation also holds in the dermis after an initial transient 
timescale, in a similar manner to the reduction of law of mass 
action enzyme dynamics to Michaelis-Menten kinetics [35]. 
Note that to model nine peptides at once, l, c, and koff can be 
replaced by peptide-specific variables such as li and ci, with 0 
≤ i < 9. In this case, the equations would be coupled because 
the total number of free and bound receptors is a constant, 
r+

8∑
i=0

ci = rtot.

Methods: Migration of dendritic cells to the lymph 
node
Dendritic cells begin to migrate from the dermis to the 
draining lymph node after several hours. Experimental data 
[17] indicate that the migration efficiency (proportion of 

migrating DCs that are later found in the draining lymph 
node) is of order 1%. We fit an exponential distribution to 
the experimental data and draw random numbers of DCs 
from the fit for use in the lymph node model. The arrival time 
of DCs to the lymph node can be assumed to be random or 
linear, but previous work [16] indicates that this has little im-
pact on results, so we assume that DCs arrive at a constant 
rate between the arrival of the first and last cells. The propor-
tion of dendritic MHC-I that are bound to short peptides, A, 
is assumed to fall exponentially over time due to the peptide–
MHC-I off-rate koff,

dA
dt

(t) = −kof fA (t) .
(2)

Methods: Dendritic cell–T-cell dynamics in the 
lymph node
The maximum probability of T-cell activation is calculated 
by a model whose details have been previously published [16] 
and which is shown in Figs 1A (schematic) and 2 (results). 
It is an agent-based model in which a defined number of 
simulated DCs are assumed to arrive at staggered times to 
the lymph node with a proportion of their MHC-I bound 
to a peptide of interest. This proportion falls over time as 
peptide–MHC-I (pMHC-I) unbind due to receptor binding 
kinetics (Equation 2). Once the DCs reach the paracortex 
of the lymph node, which is modelled as a sphere, they are 
considered stationary in comparison to T-cells. T-cells take 
realistic velocity and free path distributions (run-and-tumble 
or Levy walks, see ref. [16]), searching randomly within the 
lymph node until they make contact with DCs. Upon con-
tact, the T-cells have a chance of activation: assuming that 
a minimum number of T-cell receptors must be ligated for 
successful interaction, the activation probability on contact 
is the probability that at least this number of pMHC-I are in 
the T-cell–DC contact area. The output of the model is the 
probability that at least one simulated T cell is activated. We 
make the following biological assumptions:

1. The probability of T-cell activation depends only on this 
first interaction ‘succeeding’; we ignore downstream e-
vents and assume that if this first interaction fails, then all 
subsequent interactions will also fail. We hence find the 
maximum probability of T-cell activation.

2. We ignore the varying affinity of T-cell receptors for dif-
ferent peptides. Instead, the model invokes the concept 
of a ‘precursor frequency’ of T-cells that can recognise a 
given peptide, to define the number of T-cells that should 
be simulated within the lymph node. This frequency is 
assumed to vary between patients.

3. The precursor frequency of T-cells is not assumed to be 
different for each peptide, in order to reduce the num-
ber of patient parameters to be fit. Had nine different 
variables been defined for precursor frequencies (for each 
peptide in IMA901), then it would be possible to manip-
ulate values to fit any patient response distribution one 
wished, and the model could not have produced useful 
information.

4. We assume that short peptides are not transported 
onto MHC-I after intracellular uptake, as this process 
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would require that they not be cleaved by intracellular 
peptidases. This assumption leads to direct binding as the 
only route for pMHC-I complex formation and leads to 
a strong dependence of results on pMHC-I off-rates and 
related patient parameters.

The values of many parameters, such as T-cell velocities, are 
defined using experimental literature. Other parameters, such 
as the number of DCs that migrate to the lymph node, may 
be expected to vary between patients. The strategy for hand-
ling these parameters is given in Methods: Simulated clinical 
trials.

Methods: Simulated clinical trials
In order to determine whether model hypotheses are con-
sistent with the results of IMA901, we ran simulated clin-
ical trials using the lymph node model described in Methods: 
Computational model of vaccination. The procedure is 
shown in Fig. 1B and is as follows: a virtual patient cohort 
equal in size to one of the phases of IMA901 is created, and 
each patient is given normally distributed random values for 
each parameter that is expected to differ between individuals 
(T-cell precursor frequency, lymph transit time and spread, 
and the proportion of MHC-I available to vaccine peptide in 
the dermis) and that the underlying model is predicted to be 
sensitive to [16]. Dendritic cell migration efficiency for each 
patient is drawn from an exponential distribution fit to exper-
imental data [17]. The system of ODEs described in Methods: 
Peptide–DC dynamics in the injection site is used to determine 
the initial abundance of each peptide, given values for the 
pMHC-I off-rates and assuming equal initial concentrations 
and on-rates.

The lymph node model is then run for each virtual pa-
tient and peptide in turn (using predicted initial abundances 
of each peptide), yielding a predicted probability that 
patients respond to each peptide after the entire vaccination 
schedule. The sum of these gives the expected number of 
peptide responses for each patient and in turn the number 
of patients expected to respond to 0, 1, 2, or 3 peptides, 
which can be compared to the data reported by the authors 
of IMA901. The means and standard deviations of the 
Gaussian distributions for patient parameters (e.g. there is a 
Gaussian distribution for possible lymph transit times, from 
which each patient draws a value) can be controlled to find 
a set of parameter distributions for which simulated trial 
results match the results of IMA901. For presented results, 
the lymph node model is repeated 10 times to reduce un-
certainty of the probability of T-cell response. The entire 
simulated trial is repeated three times, each with different 
random patients, in order to gain an estimate of the varia-
bility of results due to stochasticity in patient parameters. 
We were not aiming to refine the mean output, hence more 
than three repeats were not required.

Although the phase I trial of IMA901 contains the marker 
peptide from HBV, the number of responses made to it are 
not reported or of interest. We wish to match the data on 
the number of responses made to the nine vaccine peptides 
to predicted responses, and hence HBV is not modelled – its 
presence would represent only a reduction in the maximum 
number of MHC-I sites bound in the dermis, which in any 
case is determined by fitting of parameters to the reported 
data.

Methods: Measurement of peptide-MHC-I off-rates
Methods: Fluorescence of immobilised MHC-I
Production of MHC-I proteins.

A pHN1+ plasmid encoding the mature human beta 
2-microglobulin protein (β2m hereafter) was obtained from 
Prof P Moss. A pET22b plasmid encoding HLA A*02:01fos 
was obtained as described in [36]. Peptide-loaded MHC-I 
complexes were obtained as in [37] by refolding solubilised 
inclusion bodies of MHC-I heavy chains with solubilised in-
clusion bodies of human β2m and UV-labile MHC class I spe-
cific peptide.

Peptides:

The following HLA-A*02:01 binding peptides were used: 
the UV-labile peptide KILGFVFjV (j represents 3-amino-
3-(2-nitro) phenyl-propionic acid), the fluorescent peptide 
FLPSDC*FPSV (C* denotes TAMRA-labelled cysteine), NLV 
(NLVPMVATV), NAV (NAVPMVATV), ADF-1 (SVASTITGV), 
ADF-2 (VMAGDIYSV), APO-1 (ALADGVQKV), CCN-1  
(LLGATCMFV), GUC-1 (SVFAGVVGV), K67-1 
(ALFDGDPHL), MET-1 (YVDPVITSI), MUC-1 
(STAPPVHNV), HBV-1 (FLPSDFFPSV), and RGS-1 
(LAALPHSCL) were synthesised by GL Biochem.

Fluorescence polarisation experiments:

Fluorescent polarisation measurements were taken using 
an I3x (Molecular Devices) with rhodamine detection car-
tridge. Binding of TAMRA-labelled peptides is reported in 
millipolarisation units (mP) and is obtained from the equa-
tion 1000 S−GP

S+GP , where S and P are background-subtracted 
fluorescence count rates (S is the polarisation emission filter is 
parallel to the excitation filter; P is the polarisation emission 
filter is perpendicular to the excitation filter; and G (grating) 
is an instrument and assay-dependent factor). All experiments 
were conducted at 25°C in duplicate and used phosphate-
buffered saline (PBS) supplemented with 0.5  mg/ml bovine 
gamma-globulin (Sigma), in a volume of 60 μl.

Peptide-receptive HLA-A*02:01fos complexes were 
obtained by mixing 75  nM HLA-A*0201fos loaded with 
UV labile peptides with 1.5 μM human β2m (Fitzgerald) 
and exposing to ≈360 nm light for 20 minutes at 4°C (‘UV 
exposed’). UV-exposed MHC class I molecules were incubated 
with 75 nM of unlabelled peptide overnight at 25°C. The next 
day 12  nM or 24  nM of FLPSDC*FPSV TAMRA labelled 
peptide was added and binding of FLPSDC*FPSV was meas-
ured for approximately 200 hours. Non-linear regression was 
performed, using the one phase association model in Prism.

Methods: B-cell MHC-I BFA decay
Cell lines.

The T2 cell line [38] was maintained in Tetramethyl 
Rhodamine (Sigma-Aldrich) with 10% foetal bovine serum 
(Globepharm), 2  mM L-glutamine (Sigma-Aldrich), and 
10  mM N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic 
acid (Lonza) at 37°C with 5% CO2.

Peptides:

ADF-1 (SVASTITGV), ADF-2 (VMAGDIYSV), APO-1 
(ALADGVQKV), CCN-1 (LLGATCMFV), GUC-1 
(SVFAGVVGV), K67-1 (ALFDGDPHL), MET-1 
(YVDPVITSI), MUC-1 (STAPPVHNV), HBV-1 
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(FLPSDFFPSV), and RGS-1 (LAALPHSCL) were synthesised 
by GL Biochem and re-constituted in 100% Dimethyl 
Sulfoxide (DMSO) to give 10 mM stocks.

BFA Decay:

T2 cells were incubated in 24-well plates at 3 × 105 cells/ml 
in AIM V Serum Free Medium (ThermoFisher) for 18 hours 
at 26°C with 5% CO2 + peptide at 20 μM or DMSO con-
trol. Peptide-loaded cells were washed with PBS to remove 
excess peptide and re-suspended in 0.2  ml AIM V Serum 
Free Medium containing Brefeldin A (Sigma-Aldrich) at 
5  g/ml. Incubated in 96-well plates at 37°C with 5% CO2 
for the specified time points. At the end of the time course 
each well was washed with PBS + 0.5% foetal bovine serum 
(Globepharm), stained with anti-HLA-A2 antibody BB7.2 
[39] followed by goat anti-mouse conjugated with fluorescein 
isothiocyanate (Sigma-Aldrich) and analysed by fluorescence-
activated cell sorting (BD Caliber).

Analysis:

Mean fluorescence intensity measurements were determined 
using FCS Express software. HLA-A2 was expressed as the 
percentage of mean channel fluorescence at time point 0. 
Half-lives were determined from non-linear regression curve 
fits using GraphPad Prism.

Supplementary material
Supplementary data are available at Immunotherapy 
Advances online.

Figure S1: Two-dimensional projections (density plots) of 
the posterior distribution obtained through Approximate 
Bayesian Computation (see text). 10000 sets of random 
values for all parameters are taken from a ‘basket’ (prior  
distribution) of possible sets. Those that yield simulated clin-
ical trial results closest to the real-world results are used to 
form a new basket. This process is repeated 25 times, yielding 
the posterior distribution shown. Areas of higher density in-
dicate regions of parameter space that match the real-world 
data best. The density plots of phases I, II and III are shown 
together, allowing the difference between the phases to be 
visualised.

Figure S2: Two-dimensional projections (density plots) of 
the posterior distributions obtained through Approximate 
Bayesian Computation, where only two parameters are 
allowed to change at a time (indicated in each subpanel). 
This is unlike Figure S1, where every parameter is allowed to 
change at once and 2D projections of the resulting posterior 
distributions are plotted. As before, areas of higher density 
indicate regions of parameter space that match the real-world 
data best. Densities for phases I, II and III are plotted together 
in each panel. Note that the density of parameters that match 
phase I is distinct from those for phase II and III.

Figure S3: Results obtained by matching a simulated clini-
cal trial to the phase I trial of IMA901, as in Fig. 3, but values 
used for the pMHC-I off-rates for the peptides in IMA901 
are obtained from online utilities for estimating pMHC-I off-
rates, BIMAS [20] or NetMHC [19]. The left plot of each pair 
shows one of the best fits (by the sum of squared differences 
between bar heights) for that algorithm. The right plot shows 
the result of greatly increasing the proportion of MHC-I 

bound by peptide in the dermis, in order to try and gain prob-
ability content in the next column along without losing prob-
ability content in the bar for 0 responses.
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