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The epidermal growth factor receptor (EGFR) is one of most potent oncogenes that

are commonly altered in cancers. As a receptor tyrosine kinase, EGFR’s kinase activity

has been serving as the primary target for developing cancer therapeutics, namely

the EGFR inhibitors including small molecules targeting its ATP binding pocket and

monoclonal antibodies targeting its ligand binding domains. EGFR inhibitors have

produced impressive therapeutic benefits to responsive types of cancers. However,

acquired and innate resistances have precluded current anti-EGFR agents from offering

sustainable benefits to initially responsive cancers and benefits to EGFR-positive cancers

that are innately resistant. Recent years have witnessed a realization that EGFR

possesses kinase-independent (KID) pro-survival functions in cancer cells. This new

knowledge has offered a different angle of understanding of EGFR in cancer and

opened a new avenue of targeting EGFR for cancer therapy. There are already many

excellent reviews on the role of EGFR with a focus on its kinase-dependent functions

and mechanisms of resistance to EGFR targeted therapies. The present opinion aims

to initiate a fresh discussion about the function of EGFR in cancer cells by laying out

some unanswered questions pertaining to EGFR in cancer cells, by rethinking the unmet

therapeutic challenges from a view of EGFR’s KID function, and by proposing novel

approaches to target the KID functions of EGFR for cancer treatment.
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HIGHLIGHTS

- EGFR possesses oncogenic pro-survival functions independent of its tyrosine kinase activity.
- Targeting EGFR’s kinase independent functions may overcome cancer resistance to current
EGFR inhibitors.

INTRODUCTION

Structure-function based studies have firmly established the foundation of our knowledge about the
canonical function of epidermal growth factor receptor (EGFR), a receptor tyrosine kinase that can
dimerize, autocross-phosphorylate, and initiate a cascade of down-stream signals (1). Assuming
that elevation of the default tyrosine kinase function of EGFR, owning to over-expression or
kinase activating mutations, is all that cancer cells depend on in driving malignancy, the canonical
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tyrosine kinase function of EGFR has served as a beacon directing
the design of EGFR targeted therapies for cancer. However,
current potent EGFR inhibitors, small molecules of tyrosine
kinase inhibitors (TKI) competing with ATP for kinase activation
and monoclonal antibody inhibitors (mAb) preventing EGFR
from being activated by its ligands, have exhibited limited
efficacies and have been challenged by innate and acquired
resistance in the clinic (2, 3). The majority of EGFR positive
cancers do not respond to TKIs nor to mAbs, e.g., non-
small lung cancers expressing wild-type EGFR, representing the
innate resistance to TKIs. A fraction of EGFR positive cancers
expressing EGFR with kinase activating mutation, non-small
cell lung cancer (NSCLC) in particular, transiently respond to
TKIs, however, these cancers develop acquired resistance to
TKIs within about 1 year of therapy without exception, which
exemplifies the acquired resistance (4–7). The exact mechanism
underlying sensitivity to anti-EGFR mAbs remains undefined.
Only a small fraction of EGFR positive cancers represented
by advanced colorectal cancers expressing wild type KRAS
respond to anti-EGFR mAbs although acquired resistance also
commonly occurs (8, 9). The mechanism responsible for the
innate resistance is largely unexplored.

The realization that EGFR possesses pro-survival functions
independent of its kinase activity over the past decade has opened
a new window for a better understanding the role of EGFR in
cancer and offered a novel approach of targeting this powerful
oncogene for cancer therapy.

ALTERATIONS OF EGFR IN CANCER

EGFR is one of the most frequently altered oncogenes in solid
cancers (1, 10). There are two types of pathological alterations

TABLE 1 | Alterations of EGFR in cancers and application of EGFR inhibitors.

Cancer types EGFR overexpression (%) Activating mutations (%) Application of TKIs Application of mAbs

Lung

NSCLC 50–90 (34, 48, 49) 10–20 in not East Asian (50) Yesa No

20–60 in East Asian (51)

Prostate 40–100 (31) Rare (52–54) No No

Breast 27–90 (55, 56) Rare (57) No No

Colon and Rectum 80 (44, 58) Rare (59) No Yesc

Head and Neck 90–95 (60) Rare (61) No Yesd

Esophagogastric 27–44 (62, 63) Rare (64) No No

Liver 68 (36, 37, 65) Rare (66, 67) No No

Glioblastoma 40 (68, 69) 25 (24, 70, 71) No No

Cervix 54 (45) Rare (72) No No

Ovary 30–70 (73, 74) rare (75) No No

Bladder 70 (76) Rare (77, 78) No No

Kidney 73–94 (79–81) Rare (82) No No

Pancreas 65–95 (83–85) Rare (86) Yesb

(Marginal efficacy) (87)

No

aMarketed drugs: Gefitinib, Erlotinib, Icotinib, Afatinib, Decomitinib, Osimertinib, Olmutinib.
bMarketed drug: Erlotinib.
cMarketed drugs: Cetuximab, Panitumumab.
dMarketed drug: Cetuximab.

of EGFR in cancers, one is kinase-activating mutation in EGFR
and the other is over-expression of the EGFR protein. The
kinase-activating mutations, which lead to increased tyrosine
kinase activity of EGFR, can be primary or secondary to anti-
EGFR therapies (11–13). Over-expression of EGFR protein can
be associated with/without EGFR gene amplifications (14–21).
Primary kinase-activating mutations in EGFR occur often in
NSCLC and glioblastoma, but rarely in other types of cancers.
In NSCLCs, EGFR is mutated in about 30–40% of East Asian
patients and about 5–15% in non-East Asian patients (22, 23).
In about 30% of glioblastomas, the 2–7 exons of EGFR are
deleted which gives rise to an extracellular domain truncated
EGFR named EGFRvIII whose tyrosine kinase is constantly
active due to its ligand independent dimerization (24). As to
secondary mutations contributing to the acquired resistance to
anti-EGFR therapies, the T790M mutation accounts for 50%
of resistance in NSCLC patients treated with first and second-
generation TKIs (25–27). The C797S mutation is seen in T790M
selective TKI treated NSCLC patients, however, its incidence
remains unknown (28, 29). Mutations in the extracellular
domain of EGFR were found in a few resistant colorectal
cancer (CRC) patients after treatment with monoclonal antibody
Cetuximab (30).

Unlike the EGFR kinase-activating mutations that occur
mainly in NSCLC patients, wild-type EGFR protein is commonly
over-expressed in many types of solid cancers and is often
associated with negative prognosis (31–47), i.e., over-expression
of wild-type EGFR is a more common phenomenon than EGFR
mutations in solid cancers and promotes disease progression.
Alterations of EGFR in 13 types of solid cancers and their
responses to anti-EGFR agents are summarized in Table 1. It
is worth noting that the majority of EGFR positive cancers do
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not respond to current anti-EGFR agents. Anti-EGFR therapies
are mainly used for treating three types of cancers, which are
NSCLC bearing kinase-activating mutations in EGFR for TKIs
(4, 88, 89), about 10% of advanced metastatic colorectal cancers
(CRCs) for anti-EGFR mAbs (90, 91), and locoregional advanced
head and neck cancers (HNCs) for combination of mAbs with
radiotherapy (92, 93).

THE MECHANISTIC BASIS FOR CURRENT
ANTI-EGFR CANCER THERAPIES

Our understanding of EGFR started from the purification of
the epidermal growth factor (EGF) (94), the default ligand of
EGFR, the discovery of the intrinsic tyrosine kinase activity
of EGFR (95), and the cloning of the EGFR gene (96). The
canonical function of EGFR is initiated by ligand binding,
which results in EGFR dimerization, cross-phosphorylation of
its counterpart in the dimer at a few tyrosyl residues located at
the carboxyl intracellular domain of EGFR, and subsequently
these phosphorylated microdomains serve as docking sites for
signal transductors to trigger downstream signaling cascades (1).
This canonical mechanism of EGFR function has served as the
authentic guidance for designing EGFR targeted therapeutics.

With regard to TKIs, there has been so called four generations
of them. The first generation TKIs are represented by Gefitinib
and Erlotinib, each of which reversibly competes with ATP
to bind to EGFR (97). The second generation of TKI is
represented by Afatinib that covalently binds to the ATP binding
pocket to irreversibly inhibit EGFR’s kinase activity regardless
of EGFR mutations (98–100). The third generation of TKIs are
represented by Osimertinib and Olmutinib that preferentially
and covalently inhibit the T970M mutant of EGFR that is
responsible for about 50% of acquired resistance to the earlier
generation of TKIs (101–103). The fourth generation of TKIs,
which preferentially inhibit the T790M/C797S EGFRmutant that
leads to some resistance to the 3rd generation TKIs, are under
early phases of preclinical development. The first 4th generation
of TKI is represented by an allosteric inhibitor EAI045 that is
effective in inhibiting the kinase activity of T790M/C797S only in
combination with anti-EGFR mAb Cetuximab but not as a single
agent (104), and its underlying mechanism is unknown. Updated
molecular principals of design, action, and clinical impact of
these TKIs have been comprehensively reviewed (105). Regardless
of the mutational selectivity of the TKIs, their effectiveness is
determined by their capability of inhibiting the tyrosine kinase
activity of a given form of EGFR, i.e., the tyrosine kinase activity
of EGFR is the primary target.

Currently, there are two FDA approved anti-EGFR mAbs for
cancer therapies in the USA, Cetuximab and Panitumumab for
metastatic colorectal cancer (9, 106, 107), and Cetuximab for
locoregional head and neck cancer (92). The exact mechanisms
underlying the therapeutic effects of the anti-EGFR mAbs
remain to be defined, although the rationale for the design
of these mAb is primarily rooted at blocking EGFR from
being activated by its ligands (108–111). Proposed mechanisms
mediating the therapeutic effects of anti-EGFR mAbs include

inhibition of EGFR’s kinase dependent downstream signals (108),
down-regulation of membranous EGFR by induction of EGFR
internalization and subsequent degradation in late endosomes
(112), and induction of antibody-dependent cell-mediated
cytotoxicity (113). However, neither the phosphorylation status
nor the expression levels of EGFR in cancer tissues is predictive
for efficacy of anti-EGFR mAbs (107, 114, 115). The therapeutic
effect of anti-EGFR Abs cannot be solely attributed to inhibition of
EGFR’s tyrosine kinase activity.

Persistent Challenges to Current
Anti-EGFR Cancer Therapies
EGFR TKIs have clearly been clinically efficacious in responsive
types of cancers (expressing kinase-activating mutations in
EGFR), however, the benefits are often limited to improving the
progression free survival (PSF) and quality of life rather than
the overall survival (OS) (116–121). EGFR mAbs alone or in
combination with chemotherapies have achieved an increase in
unsustainable OS to <10% of metastatic colorectal cancer (122),
and EGFR mAb in combination with radiotherapy has been
shown to increase the 5 year OS rate by about 10% to regionally
advanced head and neck cancers (123). Overall, meaningful
clinical benefits offered by the current anti-EGFR agents are
limited. Two major unmet challenges have stymied the efficacy
of EGFR targeted cancer therapies.

The first challenge is the acquired resistance toward the anti-
EGFR drugs, which has also been the research focus of EGFR
targeted therapy. Expectedly, molecular adaptations at two levels,
adaptive mutations in EGFR gene and adaptive gain-of-function
of alternative survival and growth pathways play important roles
in the development of acquired resistance to anti-EGFR drugs.
As to TKI acquired resistance, reported resistant mechanisms
include secondary amplification of and mutations in EGFR
such as the T790M and C797S, gain-of-activities of alternative
oncogenic pathways such as RAF/MEK/MAPK/ERK, PI3K/Akt,
and MET regulated signal pathways, which has been extensively
reviewed (4, 5, 88, 124, 125). Regarding anti-EGFR mAbs,
mechanisms of acquired resistance are largely unclear, which is
understandable given that the exact mechanism of action of these
drugs has not been fully understood. Nevertheless, secondary
mutations in the extracellular domain of EGFR, mutations in
KRAS, NRAS and C-Met, loss of PTEN and activating mutations
in PIK3CA, and gain-of-activity in the IGFR pathway have been
associated with acquired resistances of some cases of colorectal
cancer (8, 9, 126, 127).

The second challenge is the innate resistance to anti-
EGFR drugs, which is much more prevalent than the acquired
resistance. Although EGFR TKIs are potent in inhibiting the
kinase activity of wild-type EGFR, cancers expressing wild-type
EGFR, such as lung cancer (128–131), head and neck cancers
(132), prostate cancer (133), and ovarian cancer (134), do not
respond to TKIs regardless of the expression level of EGFR.
In addition, NSCLCs with certain kinase activating exon 20
insertions are often insensitive to TKIs (135–138). There is
about more than 80% of advanced colorectal cancers that do
not respond to anti-EGFR mAbs (127). Many other types of
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EGFR positive cancers, such as prostate cancer (139, 140), and
ovarian cancer (33) are innately resistant to anti-EGFR mAbs.
One speculation has been that EGFR is simply unimportant for
those cancers that are innately resistant to EGFR kinase inhibitor.
This assumption has been negated by the observations of severe
cell death upon down-regulating EGFR proteins in cancer cells
of cancers innately resistant to EGFR kinase inhibitors, e.g.,
prostate cancer cells (141, 142), breast cancer, ovarian cancer
cells, wild-type EGFR expressing lung cancer cells, wild-type
EGFR expressing colon cancer cells (142–144), renal cancer (79),
and glioma (145). In other words, EGFR is indispensable for
the survival of cancer cells that are innately resistant to EGFR
kinase inhibitors.

Unanswered Questions Pertaining to
EGFR’s Kinase Dependent (KD) Role in
Cancer Cells, and Their Impacts on
Current Anti-EGFR Cancer Therapies
It has been more than a half century since the finding of EGF
(94), the default physiological ligand of EGFR, from which
the whole field of growth factors stemmed (95, 96). There is
a large body of literature on EGFR biology which has firmly
established the molecular mechanisms underlying its tyrosine
kinase function and the canonical signal cascades governed by its
kinase. However, when it comes to the utilization of these well-
established theories to target EGFR for cancer therapy, the reality
has raised some questions challenging the comprehensiveness of
our knowledge on EGFR in cancer.

Question 1: Given the fact that increased protein expression
level of EGFR correlates with cancer progression and over-
expression of wild-type EGFR is tumorigenic, why do wild-type
EGFR expressing cancers not respond to TKIs?

Our understanding of EGFR began from studying the function
of wild-type EGFR using cancer cells (146, 147) and non-
cancerous cells (148–151). Regardless of the cell types being
used, TKIs have exhibited potent in vitro and in vivo effects on
inhibiting the tyrosine kinase activity of wild-type EGFR. Over-
expression of wild-type EGFR is tumorigenic in several types of
cells (152–155), validating that wild-type EGFR is oncogenic. On
one hand, protein levels of EGFR, but not its phosphorylation
status, is strongly associated with disease progression and poor
prognosis of many types of cancers that rarely express mutated
EGFR (31, 32, 34, 38, 55, 76, 80, 156–160). Examples of cancers
that exhibit increased EGFR expression along with disease
progress and do not respond to TKIs include prostate cancer
(133), ovarian cancer (157), pancreatic cancer (161), colorectal
cancer (162), head and neck cancer (40), cervical cancer (163),
and lung cancers expressing wild-type EGFR (128, 152, 164).
On the other hand, EGFR mutations but not protein expression
levels are associated with responsiveness to EGFR TKIs (165).
There is no doubt that wild-type EGFR protein promotes cancer
progression, but why do cancers expressing wild-type EGFR not
respond to EGFR TKIs?

Explanation to this puzzling phenomenon has been that
the wild-type EGFR expressing/overexpressing cancers are not
addicted to EGFR function for growth/survival, however, this
assertion is challenged by observations that TKIs are potent in

inhibiting the growth of wild-type EGFR expressing cells (166–
171) and by studies showing wild-type EGFR expressing cells
cannot survive after EGFR knockdown by siRNA (142, 145, 172–
174). These observations suggest that the EGFR wild-type cancer
cells may be not addicted to EGFR’s kinase activity but rely on
the existence EGFR for survival, i.e., the survival of cancer cells is
sustained by EGFR without involving its kinase activity.

Question 2: Why does the phosphorylation status of EGFR
not correlate with cancer progression nor with responsiveness to
anti-EGFR drugs?

There is no doubt that activation of the tyrosine kinase
activity of EGFR, regardless of its mutational status, promotes cell
proliferation and tumor growth of experimental models, which
has served as the scientific basis supporting the targeting of the
kinase activity of EGFR for cancer therapies (175). However,
on one hand the level of total EGFR protein expression is
closely associated with poor prognosis of many types of cancers
including those cancers resistant to anti-EGFR agents (31, 32, 34,
38, 39, 80, 156–159) and gene copy number of EGFR is currently
one of the most reliable predictors for sensitivity to anti-EGFR
therapeutics; on the other hand, the level of phosphorylated
EGFR is not a reliable predictor of NSCLC’s sensitivity to TKIs
and mutational status of EGFR is (89, 176, 177)—why?

The lack of association between pEGFR levels and disease
status has been hypothetically attributed to a sum of technical
inconsistences among studies, such as technical variations in
performing immunohistochemistry, qualities of anti-pEGFR
antibodies, procedures of cancer tissue preservation in the
clinic, and patient sample size employed for analysis. These
possibilities portray a virtually impossible mission to having
these issues resolved. However, it does not stop the proposition
of an untested concept that if the kinase activity of EGFR
is indeed not critically involved in progression of cancers
expressing wild-type EGFR but the total level of EGFR protein
is, shouldn’t we start considering a possibility that EGFR may
own powerful oncogenic functions independent of its tyrosine
kinase activity? This possibility is supported by a recent study that
loss-of-function mutations of all the phosphorylatable tyrosyl
residues of the C-terminal domain of a kinase-activating EGFR
mutant retains its oncogenic function (178), i.e., the kinase
dependent down-stream signaling of EGFR is not required for its
oncogenic function.

Question 3: Why do the TKI responsive cancers not overlap
with the anti-EGFR mAbs responsive cancers?

Both TKIs and anti-EGFR mAbs are potent in inhibiting
the tyrosine kinase activity of EGFR in cancer cells, however,
oddly the responsive cancer types of these two kinds of anti-
EGFR reagents do not overlap at all. TKIs are approved for
NSCLC especially for cancers expressing mutated EGFR (179,
180), whereas anti-EGFR mAbs are approved for KRAS wild-
type colorectal cancer and local regional head and neck cancers
(40, 106). Currently, there is no positive biomarker available for
selection of cancer types that are favorable to anti-EGFR mAbs,
although KRASmutations are a negative predictor for anti-EGFR
mAbs in treating colorectal cancer (181). An obvious question
raised by this discrepancy between suitable cancer types of TKIs
vs. mAbs is: Is inhibition of the kinase activity of EGFR primarily
accountable for the efficacy of anti-EGFR mAbs?
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Question 4: Is the tyrosine kinase activity of EGFR the shared
primary driver of EGFR’s pro-growth and pro-survival functions?

It has been a conventional statement that EGFR as a
receptor tyrosine kinase plays important roles in promoting cell
growth and survival without differentiating its weight on growth
vs. survival; what is even more equivocal is that the EGFR
regulated cell growth and survival has never beenmechanistically
differentiated. Cell growth and cell survival are totally different
biological events, the former refers to increase in numbers or in
size of individual entity whereas the latter refers to the ability
to cope with stresses in order to stay alive. Growth depends on
survival, however, survival is independent of growth. Cancer is
a disease driven by abnormal cell growth and cell survival, thus
treatment strategies ought to be differentially directed toward
growth and survival.

Accumulated data over the past two decades strongly suggest
that the tyrosine kinase activity of EGFR is predominantly
involved in promoting cell proliferation (175) compared to cell
survival. Consistently, EGFR TKIs and mAbs have constantly
exhibited anti-proliferative effects under physiologically relevant
conditions (182–185), which are often accompanied by surrogate
makers of cell survival but not direct evidence of cell death of
in vitro cultured cells (47, 166, 171, 186–196). Given the current
understanding that the apoptosis process is reversible even at
stages of the activation of caspases (197) and that therapeutic
stresses can cause secretion of DNA fragment containing
exosomes by cancer cells (198, 199), which can interfere the
interpretation of the increase of sub-G0 cells (used to represent
apoptotic cells using flow cytometry) caused by TKI treatments.
Furthermore, TKIs or mAbs do not cause DNA fragmentation
in many types of EGFR-positive cancer cells while their growth
inhibition effects are obvious (166, 167, 169, 200–202). Regarding
the impact of TKIs on cell survival, recent studies have revealed
that TKIs are potent in inducing cytoprotective autophagy that in
turn promotes cell survival (203–207).

It is critical to differentiate EGFR’s pro-growth from its pro-
survival functions, because if the kinase activity of EGFR is not
pivotal for sustaining cancer cell survival, it becomes explainable
that the current anti-EGFR reagents aiming to block the kinase
activity of EGFR are unable to significantly induce death of
cancer cells but are good at transiently inhibiting growth of
cancer cells before cells develop alternative pro-growth signal
pathways resulting in resistance. Re-growth associated gain of
kinase activity mutations in EGFR (such as T709M and C797S)
strongly suggests that the kinase activity of EGFR is important
for cell growth. The dependence on EGFR for survival and the
impact of its kinase activity on cell proliferation raises another
important question: Are the pro-growth and pro-survival
functions of EGFR divergent at its tyrosine kinase activity?

Current Standing of Our Knowledge of
EGFR Biology and EGFR Targeted Cancer
Therapy
Our current understanding of EGFR’s canonical function and
status of its tyrosine kinase targeted cancer therapy can be
summarized as follows:

Validated canonical functions and mechanisms of
EGFR action:

1. The tyrosine kinase activity of EGFR and mechanisms
connecting with its down-stream signal cascades

2. The growth promoting role of the tyrosine kinase activity
of EGFR

3. The oncogenic capacity of EGFR
4. The positive association of EGFR expression with progression

of certain cancers
5. The dependence of kinase-activating mutations in EGFR for

therapeutic effect of TKIs
6. The dependence of kinase-activating mutations in EGFR for a

portion of acquired TKI resistance
7. The fact of unavoidable resistance to current

anti-EGFR therapeutics
8. The clinical benefit of increased progression free survival but

not overall survival for patients suitable for treatment of TKIs.

Overarching challenges:

1. Why do wild-type EGFR expressing/overexpressing cancers
not response to EGFR TKIs?

2. What is the exact mechanism underlying anti-EGFR
mAbs’ therapeutic effect?

3. What is the exact mechanism underlying EGFR’s pro-survival
function in cancer cells?

Realization of the Existence of Kinase
Independent Pro-survival Function of
EGFR in Cancer Cells
As discussed above, when it comes to the question pertaining to
EGFR’s pro-survival function, the kinase activity of EGFR does
not offer a full accountability. The past 10 years have witnessed a
growing body of evidence indicating that EGFR possesses pro-
survival functions that are independent of its tyrosine kinase
activity in cancer cells.

In cancer cells, by comparison of the effects of an EGFR TKI
and EGFR siRNA, it was found that EGFR maintained survival
of prostate cancer cells independent of its kinase activity, i.e.,
TKI inhibited cell proliferation without effecting on cell survival
whereas loss-of-EGFR expression induced by siRNA knockdown
led to severe autophagic cell death that could be rescued by
a kinase-dead EGFR (142). Furthermore, this study found that
the sodium/glucose co-transporter 1 (SGLT1) played a critical
role in mediating the KID pro-survival function of EGFR by
maintaining active glucose uptake of cancer cells (142).

The existence of KID pro-survival function of EGFR has
also been revealed in different types of cancer cells involving
several cellular functional domains that include the plasma
membrane, the autophagic machinery, and the mitochondrion.
Within the plasma membrane, kinase independently, EGFR
interacts with SGLT1 to maintain active glucose uptake (142),
interacts with the system x−c antiporter to maintain cystine
import (145), interacts with fatty acid synthase to maintain de
novo fatty acids synthesis (208), and interacts with the mTORC2
complex to suppress Akt (143). Within the autophagy domain,
inhibition of the kinase activity of EGFR promotes pro-survival
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autophagy (205, 207, 209) and endosomal kinase inactive EGFR
interacts with LAPTM4B to promote pro-survival autophagy
under nutrient starvation stress (210). As for mitochondrion,
kinase independently, EGFR inhibits mitophagy via repressing
intracellular activation of Akt (143), and EGFR interacts with
PUMA to inhibit apoptosis (211). An update on the kinase-
independent functions of EGFR in cancer cells is summarized in
Figure 1.

In non-cancerous cells, one of two kinase-impaired EGFR
mutants was found to be able to oppose IL3-removal induced
apoptosis of an EGFR negative noncancerous hematopoietic 32D
by undefined mechanisms (212), and knockout of EGFR in mice
is lethal (213) but mice with a loss-of-kinase mutation in EGFR
are viable with only mild defects in the eyes and skin (214). The
discrepant phenotypes of EGFR knockout mice and mice bearing
loss-of-kinase mutant EGFR argues that EGFR also exhibits KID
functions in non-cancerous cells, however, this is beyond the
scope of this review. The existence of KID pro-survival function
of EGFR is undeniable.

Implication of KID Functions of EGFR in
Advancing Our Understanding the Role of
EGFR in Cancer
While much more research effort is needed to fully unveil the
KID pro-survival function of EGFR in cancer cells, the discovery

and realization of EGFR’s KID pro-survival function bears a
profound implication on overcoming the aforementioned long-
lasting challenges of EGFR targeted cancer therapies.

First of all, it offers an alternative interpretation to the
clinical failures of EGFR kinase inhibitors. Regarding cancers
expressing/overexpressing wild-type EGFR, such as head and
neck, prostate, and ovarian cancer, which are innately resistant
to EGFR TKIs, a new interpretation is that these types of cancers
are more dependent on EGFR’s KID function for survival rather
than on its kinase activity for growth. This possibility is supported
by the fact that, without TKI treatment, the phosphorylation
status of EGFR does not correlate with disease progression nor
with prognosis of many cancers but the total EGFR protein
level does (31, 32, 34, 38, 39, 80, 156–159) and further that
the innate TKI resistant cancer cells cannot survive without
EGFR (141–143, 215), and that disconnecting the EGFR’s kinase
activity from its downstream kinase cascades does not affect
EGFR’s oncogenic function (178). Regarding the acquired TKI
resistance, an alternative interpretation is that TKI treatment
shifts EGFR’s kinase dependent function toward its KID pro-
survival function that offers cancer cells addicted to EGFR’s
kinase activity for growth an adaptive window to develop
alternative proliferative mechanisms circumventing the EGFR
kinase dominated pathway under the constant exposure to
TKIs. This possibility is supported by the observation showing
that in cancer cells EGFR exists in two types of status, a

FIGURE 1 | Known kinase-independent functions of EGFR in cancer cells. Currently known kinase-independent (KID) functions of EGFR locate at three functional

domains of cancer cell. One is in the plasma membrane where EGFR interacts with SGLT1, Xc−, fatty acid synthase (FASN), and the mTORC2 complex to support

transportation of glucose, cystine, de novo fatty acid synthase, and repressing mitophagy, respectively. The second function domain is the endosomal autophagy

machinery where kinase inactive EGFR promotes pro-survival autophagy. The third domain is the mitochondrial domain where kinase inactive EGFR interacts with

PUMA to inhibit apoptosis. KID-EGFR is oncogenic and pro-survival.
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kinase activatable one and a kinase unactivatable one (216).
The kinase activatable EGFR refers to the EGFRs that behave
according to the canonical mechanisms, whereas the kinase
unactivatable EGFR refers to the EGFRs physically interacting
with other proteins at its C-terminal kinase domain, such
as the EGFRs interacting with SGLT1 (216), thus cannot be
autophosphorylated. Supportively, it has been recently reported
that autophosphorylation of the C-terminal domain of EGFR
is not required for EGFR’s oncogenic activity (178). The shift
toward KID function of EGFR by TKI in TKI sensitive cancer
cells is also supported by the observations that TKIs shift EGFR
from non-lipid raft regions to lipid rafts (217) where many
cell survival dependent proteins, such as mTORC2, Na+/K+
ATPase, fatty acid synthase reside (218). Additionally, TKIs,
especially the first generation of TKIs (Gefitinib and Erlotinib),
are capable of causing dimerization of EGFRwithout significantly
altering the level of EGFR protein (219–221) in a manner that is
dependent on EGFR palmitoylation and independent of EGFR’s
kinase activity (222), which implicates that the TKI induced
kinase inactivated EGFR dimer may gain new functions by
recruiting novel interacting proteins. Further supports for the
hypothesis that the kinase activity of EGFR is more critically
involved in the proliferation than in the survival of cancer cells
are offered by two studies: one is a study using rat models
showing that inhibition of EGFR’s kinase activity by TKI was
able to inhibit growth but not the incidence of chemical or
hormonal induced liver cancer (223), and consistently another
study shows that the phosphorylation of the C-terminal tail (a
hub domain that connects the kinase function of EGFR with
its down-stream kinase dependent signaling cascades) is not
required for the oncogenic function of EGFR mutant derived
from lung cancer (178). Thus, we propose a new model of
EGFR function: EGFR exists in two types of functional nodes,
a kinase dependent functional node (the canonical functional
node) that predominantly oversees cell proliferation and a kinase
independent functional node that predominantly oversees cell
survival, which is depicted by Figure 2.

The KID pro-survival function of EGFR also explains the
worse prognosis of patients treated with a combination of
EGFR TKI and chemotherapeutics than those treated with
chemotherapeutics alone (164, 224–227). One explanation to it
is that, in these scenario, the KID oncogenic function of EGFR
might be enhanced by TKIs and thus survivability of cancer cells,
which hampers the cytotoxic effect of the chemotherapeutics.

Secondly, the KID function of EGFR offers an alternative
interpretation to experimental observations that cannot be fully
explained by the kinase function of EGFR. For example, the
contrasting phenotypes between EGFR knockout mice (213)
and loss-of-kinase EGFR mutant mice (214), in the former
model where the EGFR gene was systemically knocked out, the
homozygous EGFR−/− mice die within a week after birth due
to failures of multiple organs especially the lung and the heart,
whereas the Waved-2 mice who lose more than 99% of EGFR’s
tyrosine kinase activity, survive and develop well with only a
minor defect in the hair follicles that give rise curved hairs. The
discrepancies between these two animal models of EGFR mutant
argue that the tyrosine kinase activity is not the sole physiological

FIGURE 2 | A model of two functional statuses of EGFR in cancer cells. The

kinase activatable EGFRs are mainly involved in promoting cell growth,

and the kinase unactivatable EGFRs, which are blocked from autocross-

phosphorylation by interacting proteins, are mainly in charge of promoting

oncogenic cell survival.

function of EGFR and the KID function of EGFR is critical for
the survival, although a proof-of-concept definitive experiment
of rescuing the EGFR knockout mice with a kinase dead form
EGFR needs to be performed.

Thirdly, the KID function of EGFR offers a partial explanation
for the unique therapeutic effect of the anti-EGFRmAbs. Neither
the phosphorylation status nor that for the total EGFR expression
are predictive of responses to anti-EGFR mAbs (107, 115, 177),
suggesting that repression of the kinase activity of EGFR by
these mAbs might not be the primary mechanism underlying
the therapeutic effect of anti-EGFR mAbs. Unlike the TKIs
that can induce EGFR dimerization without activation (219,
220, 228) and are only effective in cancers bearing kinase-
activating mutations in EGFR, anti-EGFR mAbs are capable of
reducing EGFR proteins by shifting the ligand induced EGFR
endocytosis toward the non-recyclable stage, the late-endosomal
stage where EGFR is to be degraded rather than being recycled
back to the plasma membrane as most of the early-endosome
localized EGFR are programed to do (9). Many studies have
proposed that the mAb binding induced EGFR endocytosis and
subsequent degradation is a key mechanism as compared to
antigen dependent cellular cytotoxicity (ADCC) by which anti-
EGFR mAbs execute their therapeutic effect. This is supported
by the observation that both Cetuximab and Panitumumab
are capable of reducing EGFR protein levels, however, unlike
Cetuximab (229–231), Panitumumab, as an IgG2 is less capable of
inducing ADCC (231). The EGFR endocytosis induced by anti-
EGFR mAbs is not free of EGFR recycling, although the balance
between degradation and recycling is tilted toward degradation as
compared to the EGFR ligand binding induced endocytosis (232).
A better understanding ofmechanistic differences between ligand
induced EGFR endocytosis and that induced by anti-EGFR mAb
may lead to discovery of novel actionable targets to enhance
the effect of mAb induced reduction of EGFR protein and the
therapeutic efficacy of anti-EGFR mAbs.
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While the specific mechanisms underlying the KID pro-
survival function of EGFR remains to be fully revealed, existing
evidence is sufficient in concluding that the pro-survival function
of EGFR is regulated by mechanisms that are largely independent
of EGFR’s kinase function. It is proposed that targeting the KID
pro-survival function of EGFR by reducing its protein levels
or interrupting the mechanisms mediating its KID pro-survival
function may lead to novel and more effective approaches of
targeting EGFR for cancer therapy. In this regard, a proof-of-
concept synthetic peptide that can cause degradation of EGFR
has been shown to be effective in treating orthotopic ovarian
cancers in mice by inducing mitophagic cell death of cancer
cells (143).

Perspective on EGFR Targeted Cancer
Therapies
EGFR is the most commonly expressed/overexpressed
membranous oncogenic protein in cancer. The majority of
EGFR overexpressing cancer patients are yet to benefit from
current anti-EGFR therapeutics. Targeting the kinase activity of
EGFR is preordained to acquired and innate resistance. Given its
frequent expression in cancers, its powerful oncogenic function,
and easy accessibility for targeting, EGFR remains an ideal
therapeutic target for cancers. A growing body of evidence has
revealed that hijacking kinases for non-kinase usages by cells is
a common phenomenon (233, 234). For cancers, besides EGFR,
it has been found that, kinase independently, AKT promotes

FIGURE 3 | A hypothesis pertaining to EGFR’s divergent roles in regulating growth vs. survival of cancer cells in relevant to TKI resistance. (A) In cancer cells

expressing kinase-activating mutations, the role of EGFR is shifted toward its kinase-dependent functions, which sensitizes these cancers cells to TKI. (B) In cancer

cells over-expressing wild type EGFR, the role of EGFR is shifted toward its kinase-independent functions, which promotes the progression of cancers rather

desensitizes these cancers to TKI. (C) At situation of TKI treatment, the role of EGFR is also tilted toward its kinase-independent functions that allows cancer cells to

survive and develop alternative growth-promoting mechanisms to counteract with TKI’s inhibitory effect.
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cancer cell survival (235), AURKA (Aurora kinase A) enhances
stemness of breast cancer cells (236), cyclin-dependent kinase 6
promotes tumorigenesis of lymphoma (237), cyclin-dependent
kinase 19 promotes cell proliferation of osteosarcoma cells
(238), cyclin E promotes proliferation of liver cancer cells (239),
EphA2 (ephrin type-A receptor 2) promotes invasion and
metastasis of prostate cancer (240), ERKs promote cell cycle
entry of retinoblastoma cells (241), PAK4 (P21-activated kinase
4) promotes adhesion and migration of breast cancer cells (242),
and RIPK1 (receptor-interacting protein kinase 1) promotes
liver carcinogenesis (243). The time is now to step out the box of
the tyrosine kinase function of EGFR and explore new ways of
targeting EGFR.

With the KID functions of EGFR on board, a hypothesis
pertaining to EGFR’s divergent roles in regulating growth vs.
survival of cancer cells in relevant to TKI resistance is proposed
as the following (Figure 3): EGFR exists in two types of status,
one is kinase activatable and the other is kinase unactivatable
(functions as a scaffold protein), the former is mainly in charge
of cell growth, the latter is mainly in charge of survival. In
cancer cells expressing kinase-activating mutations, the role of
EGFR is shifted toward its kinase-dependent functions; while in
cancer cells over-expressing wild type EGFR, the role of EGFR is
shifted toward its kinase-independent functions; at situation of
TKI treatment, the role of EGFR is also tilted toward its kinase-
independent functions that allows cancer cells to survive and
develop alternative growth-promotingmechanisms to counteract
with TKI’s inhibitory effect.

The evidence of KID function of EGFR is somewhat scattering
however undeniable, and more researches on the KID functions
of EGFR are warranted. Targeting EGFR’s KID functions by
either decreasing EGFR protein levels or interfering with

the mechanisms underlying EGFR’s KID functions forecast
significant promise. Currently proposed approaches may include
disrupting the protein-protein interacting complex of KID
EGFR, down-regulating EGFR protein using synthetic molecules
(143, 222), siRNA or protein targeting chimeras (PROTAC)
technologies (244), and manipulating signal pathways controlled
by KID EGFR such as simultaneously activating mTORC2 and
inhibiting mTORC1 (143).
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