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The wide coverage and biological relevance of the Gene Ontology (GO), confirmed through its successful use in protein function
prediction, have led to the growth in its popularity. In order to exploit the extent of biological knowledge that GO offers in
describing genes or groups of genes, there is a need for an efficient, scalable similarity measure for GO terms and GO-annotated
proteins. While several GO similarity measures exist, none adequately addresses all issues surrounding the design and usage of
the ontology. We introduce a new metric for measuring the distance between two GO terms using the intrinsic topology of the
GO-DAG, thus enabling the measurement of functional similarities between proteins based on their GO annotations. We assess
the performance of this metric using a ROC analysis on human protein-protein interaction datasets and correlation coefficient
analysis on the selected set of protein pairs from the CESSM online tool. This metric achieves good performance compared to the
existing annotation-based GO measures. We used this new metric to assess functional similarity between orthologues, and show
that it is effective at determining whether orthologues are annotated with similar functions and identifying cases where annotation
is inconsistent between orthologues.

1. Introduction

Worldwide DNA sequencing efforts have led to a rapid
increase in sequence data in the public domain. Unfortu-
nately, this has also yielded a lack of functional annotations
for many newly sequenced genes and proteins. From 20% to
50% of genes within a genome [1] are still labeled unknown,
uncharacterized, or hypothetical, and this limits our ability
to exploit these data. Therefore, automatic genome annota-
tion, which consists of assigning functions to genes and their
products, has to be performed to ensure that maximal benefit
is derived from these sequencing efforts. This requires a
systematic description of the attributes of genes and proteins
using a standardized syntax and semantics in a format that
is human readable and understandable, as well as being
interpretable computationally. The terms used for describing
functional annotations should have definitions and be placed
within a structure of relationships. Therefore, an ontology is
required in order to represent annotations of known genes

and proteins and to use these to predict functional annota-
tions of those which are identified but as yet uncharacterized.

By capturing knowledge about a domain in a shareable
and computationally accessible form, ontologies can provide
defined and computable semantics about the domain knowl-
edge they describe [2]. In biology, ontologies are expected
to produce an efficient and standardized functional scheme
for describing genes and gene products. Generally, such
an ontology should be designed to cover a wide range of
organisms, ensuring the integration of biological phenomena
occurring in a wide variety of biological systems. In addition,
it must be dynamic in nature in order to enable the design to
incorporate new knowledge of gene and protein roles over
time. One of the biggest accomplishments in this area is the
creation of the gene ontology (GO) [3], which currently
serves as the dominant and most popular functional
classification scheme [4, 5] for functional representation and
annotation of genes and their products. The construction
of the gene ontology (GO) [3] arose from the necessity for
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organizing and unifying biology and information about
genes and proteins shared by different organisms. At its
outset, GO aims at producing a dynamic, structured and
controlled vocabulary describing the role of genes and their
products in any organism, thus allowing humans and
computers to resolve language ambiguity.

GO provides three key biological aspects of genes and
their products in a living cell, namely, complete description
of the tasks that are carried out by individual proteins, their
broad biological goals, and the subcellular components, or
locations where the activities are taking place. GO consists
of three distinct ontologies, molecular function (MF),
biological process (BP), and cellular component (CC), each
engineered as a directed acyclic graph (DAG), allowing a
term (node) to have more than one parent. Traditionally,
there were two types of relationships between a parent and
a child. The “is a” relation means that a child is a subclass
or an instance of the parent, and the “part of” relation
indicates the child is a component of a parent. Thus, each
edge in a GO-DAG represents either an “is a” or a “part of”
association. However, another relationship has emerged,
namely, “regulates”, which includes “positively regulates”
and “negatively regulates”, and provides for relationships
between regulatory terms and their regulated parents [6]. As
we are only interested in the GO-DAG topology in the sense
that where a term occurs, its parents also occur, regardless of
whether the term regulates the parent term or not, we only
use the relations “is a” and “part of” here, and these are
treated equally. The is a relationships are more prominent,
constituting approximately 88% for BP, 99% for MF, and
81% for CC, of all the relationships, so the impacts of part of
relationships are less significant.

The GO has been widely used and deployed in several
protein function prediction analyses in genomics and prote-
omics. This growth in popularity is mainly due to the funda-
mental organization principles and functional aspects of its
conception displayed by its wide coverage and biological rele-
vance. Specific tools, such as the AmiGO browser [7, 8], have
been developed for making GO easy to use and have signifi-
cantly contributed to the large expansion of GO in the exper-
imental and computational biology fields. Nowadays, GO is
the most widely adopted ontology by the life science com-
munity [9], and this superiority has been proven by successes
resulting from its use in protein function prediction. The GO
annotation (GOA-UniProtKB) project arose in order to pro-
vide high-quality annotations to gene products and is applied
in the UniProt knowledgebase (UniProtKB) [10–13]. It also
provides a central dataset for annotation in other major
multispecies databases, such as Ensembl and NCBI [14].

Considering its wide use, the issues related to its design
and usage have been qualified as critical points [15] to be
taken into account for effectively deploying GO in genome
annotation or analysis. One of the issues is associated with
the depth of GO, which often reflects the vagaries in different
levels of biological knowledge, rather than anything intrinsic
about the terms [2]. Consequently, two genes or proteins may
be functionally similar but technically annotated with differ-
ent GO Ids. Although several approaches have been designed

to assess the similarity and correlation between genes [16–
21] using their sequences or gene expression patterns from
high-throughput biology technologies, some methods exist
for measuring functional similarities of genes based on their
GO annotations but these have their drawbacks. An effective
approach should be able to consider the issue related to the
depth of the GO-DAG raised previously and provide a clear
relation of how similar a parent and child are using only the
GO-DAG topology. This should apply to gene or protein GO
annotations derived from different sources and be indepen-
dent of the size of the GO-DAG, as GO is still expanding.

Several GO term similarity measures have been pro-
posed for characterizing similar terms, each having its own
strengths and weaknesses. These similarity measures are par-
titioned into edge- and node-based approaches according to
Pesquita et al. [9]. Edge-based similarity measures are based
mainly on counting the number of edges in the graph to
get the path between two terms [22, 23]. Among them, we
have the longest shared path (LP) approach implemented
in the GOstats package of Bioconductor [24] and the Intel-
liGO approach suggested by Benabderrahmane et al. [25].
Although these approaches use only the intrinsic structure of
the hierarchy under consideration, they generally suffer from
the fact that they consider only the distance between terms,
ignoring their position characteristics within the hierarchy.
Thus, nodes at the same level have the same semantic
distance to the root of the hierarchy, producing a biased
semantic similarity between terms. In order to alleviate this
issue, edges can be weighted differently depending on their
level in the hierarchy to influence the similarity scores [26].
Unfortunately, using these edge weighting approaches does
not completely resolve the problem [9]. The node-based
approaches use the concept of information content, also
called semantic value, to compare the properties of the terms
themselves and relations to their ancestors or descendants,
and these measures are referred to as IC-based (information
content-based) approaches [27].

Here we introduce a new semantic similarity measure of
GO terms based only on the GO-DAG topology to determine
functional closeness of genes and their products based on the
semantic similarity of GO terms used to annotate them. This
measure incorporates position characteristic parameters of
GO terms to provide an unequivocal difference between
more general terms at the higher level, or closer to the root,
and more specific terms at the lower level, or further from
root node. This provides a clearer topological relationship
between terms in the hierarchical structure. This new mea-
sure is a hybrid node- and edge-based approach, overcoming
not only the issue related to the GO-DAG depth, as stated
previously, but also the issues related to the dependence on
the annotation statistics of node-based approaches and those
related to edge-based approaches in which nodes and edges
at the same level are evenly distributed.

2. Materials and Methods

In this section we survey existing annotation- and topology-
based approaches and set up a novel GO semantic similarity
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metric in order to measure GO term closeness in the hier-
archy of the GO-directed acyclic graph (DAG). This novel
GO term semantic similarity measure is derived in order
to ensure effective exploitation of the large amounts of
biological knowledge that GO offers. This, in turn, provides a
measurement of functional similarity of proteins on the basis
of their annotations from heterogeneous data using semantic
similarities of their GO terms.

2.1. Existing GO-IC-Based Semantic Similarity Approaches.
We are interested in the IC-based approaches, and unlike the
graph-based or hybrid approach introduced by Wang et al.
[28], which is based on the intrinsic structure of the GO-
DAG, that is, only uses the GO-DAG topology to compute the
semantic similarity, other measures do not consider only the
topology. Most of them are adapted from Resnik [29] or Lin’s
[30] methods, in which the information content (or semantic
value) of a term conveying its biological description and
specificity is based on the annotation statistics related to the
term [2, 31], and thus they have a natural singularity problem
caused by orphan terms. Here these approaches are referred
to as Resnik-related approaches. In these approaches, the
more often the term is used for annotation, the lower its
semantic value, and as pointed out by Wang et al., this may
lead to different semantic values of the GO terms for GO
annotation data derived from different sources. However,
each biological term in the ontology is expected to have a
fixed semantic value when used in genome annotation. The
semantic value is defined as the biological content of a given
term, and this is particularly a problem in the hierarchical
structure of the GO-DAG if the information will be used to
predict functions of uncharacterized proteins in the genome,
since one source can annotate a given protein with a term
at a low level and another source with a term at a higher
level in the hierarchy. Furthermore, the description and
specificity of a given term in GO essentially depends on its
GO annotation specification, translated by its position in the
GO-DAG structure or topology.

To overcome these limitations, Wang introduced a topol-
ogy-based semantic similarity measure in which the semantic
value of a term z is given by

ICW (z) =
∑

t∈Tz

Sz(t), (1)

where Tz denotes the set of ancestors of the term z including
z, and Sz(t) is calculated as follows:

Sz(t) =
⎧
⎨
⎩

1, if t = z,

max{ωe ∗ Sz(t′) : t′ ∈ Ch(t)}, otherwise,
(2)

with Ch(t) being the set of children of the term t, and ωe the
semantic contribution factor for “is a” and “part a” relations
set to 0.8 and 0.6, respectively. The semantic similarity of the
two GO terms is given by

SW
(
x, y

) =
∑

t∈Tx∩Ty

(
Sx(t) + Sy(t)

)

ICW (x) + ICW
(
y
) . (3)

It has been shown that the Wang et al. approach performs
better than Resnik’s approach in clustering gene pairs accord-
ing to their semantic similarity [27, 28].

On the edge-based similarity approaches, Zhang et al.
[32] introduced a GO-topology-based approach to assess
protein functional similarity for retrieving functionally
related proteins from a specific proteome, overcoming the
common issue of other edge-based approaches mentioned
previously. This was achieved by computing a measure called
the D value, which depends only on the children of a given
GO term and is numerically equal to the sum of D values
of all its children. Thus, the D value of a GO term is
calculated using a recursive formula starting from leaves in
the hierarchical structure, where the D-value of all leaves are
equal and set to the inverse multiplicative of the count of the
root obtained by recursively summing the counts of all the
direct children from the bottom up, with the count of the
leaf set to 1. Note that the count of a given nonleaf term is
just the number of all paths from that term node to all leaves
connected to the term. In this approach, the D value for a
pair of terms x and y is given by

D
(
x, y

) = min
{
D(z) : z ∈A

(
x, y

)}
. (4)

However, a general limitation common to all these se-
mantic similarity measures is that none of them fully address
the issue related to the depth of the GO-DAG as stated
previously; that is, the depth sometimes reflects vagaries
in different levels of knowledge. An example is where the
structure is just growing deeper in one path without spread-
ing sideways. In the context of the GO-DAG, such a term is
sometimes declared obsolete and automatically replaced by
its parent. Thus, to consider this issue, we are introducing a
topological identity or synonym term measure based on term
topological information in which a parent term having only
one child and that child term having only that parent are
assumed to be topologically identical and they are assigned
the same semantic value. This provides an absolute difference
between more general terms closer to the root and more
specific terms further from the root node, depending on the
topology of the GO-DAG, that is, whether a branch splits into
more than one possible path of specificity. Furthermore, this
is consistent with the human language in which the semantic
similarity between a parent term and its child depends on the
number of children that the parent term possesses and also
the number of parents that the child term has. Intuitively a
parent having more children loses specificity and this parent
is no longer relevant to be used for its child specification, thus
leading to a lower similarity score between this parent and
each of its children.

To illustrate this, let us consider the hierarchical structure
in Figure 1 where “a”, “b”, “c”, “d”, and “e” are terms used
to annotate proteins in a given genome and these terms are
linked by the relation “is a”. For the Zhang et al. approach,
the semantic values of “b” and “d” are the same, which is
1.09861 (− ln(1/3)), but it fails to distinguish between “d”
and “e”, which would be expected to have different semantic
values. The Wang et al. approach will assign different
semantic values to “b” and “d”; the semantic value of
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Figure 1: Fictitious hierarchical structure illustrating the computa-
tion of term semantic values. Terms are nodes with “r” as a root.

“b” is 2.44 and that of “d” is 2.952, although they are
topologically identical in the sense that there is no other
option going down the DAG except to “d”. For annotation-
based approaches, if we consider a genome, for example,
which has been annotated by two different labs, referred to
as heterogeneous sources, it is likely that the terms “b” and
“d” will not occur at the same frequency, in which case “b”
and “d” will have different semantic values. For this new
measure, the term “b” has only one child “d”, which has
only one parent “b” (no sideways spread) and therefore the
term “d” does not have additional value compared to “b”
in the illustration in Figure 1. This means that “b” and “d”
are topologically identical (synonymous) and have the same
fixed semantic value, equal to 1.38629. This is different to the
semantic value of the term “e”, which is 3.46574 as “e” could
be “derived” from two different branches.

2.2. GO Term Topological Information and New GO Term
Similarity Approach. Translating the biological content of a
given GO term into a numeric value, called the semantic
value or topological information, on the basis of its location
in the GO-DAG, requires knowledge of the topological
position characteristics of its immediate parents. This leads
to a recursive formula for measuring topological information
of a given GO term, in which the child is expected to be
more specific than its parents. The more children a term
has, the more specific its children are compared to that
term, and the greater the biological difference. In addition,
the more parents a term has, the greater the biological
difference between this term and each of its parent terms.
The three separate ontologies, namely, molecular function
(MF), biological process (BP), and cellular component (CC)
with GO Ids GO: 0003674, GO: 0008150, and GO: 0005575
respectively, are roots for the complete ontology, located at

level 0, the reference level, and are assumed to be biologically
meaningless. Unless specified explicitly, in the rest of this
work the level of a term is considered to be the length of
the longest path from the root down to that term in order
to avoid a given term and its child having the same level.
NGO and LGO will, respectively, express the set of GO terms
and links, (x, y) ∈ LGO represents the link or association
between a given parent x and its child y, and the level of the
link (x, y) is the level of its source node x. Finally, [x, y] ∈
NGO indicates that the level of term x is lower than that of y.

Definition 1. The topological information ICT(z) of a given
term z ∈ NGO is computed as

ICT(z) = − ln
(
μ(z)

)
, (5)

where μ(z) is a topological position characteristic of z,
recursively obtained using its parents gathered in the set
Pz = {x : (x, z) ∈ LGO}, and given by

μ(z) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1, if z is a root,

∏

x∈Pz

μ(x)
Cx

, otherwise,
(6)

with Cx being the number of children of parent term x.

A topological position is thus a function μ : NGO →
[0, 1], such that for any term t ∈ NGO, μ(t) defines a
reachability measure of an instance of term t. Obviously,
μ is monotonically increasing as one moves towards the
root; that is, if t1 is a t2, then μ(t1) ≤ μ(t2). For the top
node or root, the reachability measure is 1. Furthermore,
this reachability measure takes into account information
of parents of the term under consideration through their
reachability measures and that of every parent’s children
by incorporating the number of children that each parent
term has in order to quantify how specific a given child is
compared to each of its parent terms.

Note that, in general, the information we possess about
something is a measure of how well we understand it and
how well ordered it is. μ(z) provides a precise indicator of
all we know about the term z in the DAG structure. As
μ is decreasing when moving towards leaves and a strictly
positive defined function, the multiplicative inverse of μ is
an increasing function. This implies that 1/μ(z) is a measure
of how we understand the term z and how ordered it is in the
DAG, which merely means that the inverse of μ(z) measures
the information we possess about the term z in the context
of the DAG structure. The formula in (5) is a logarithmic
weighting of the inverse of μ(z), referred to as topological
information and measuring what we know about the term
z in the DAG structure.

To illustrate the way this approach works, consider the
hierarchical structure shown in Figure 2. In this DAG from
top to bottom, we have the following.

(i) The topological position characteristic of the root 0
is μ(0) = 1, and so its topological information is
ICT(1) = − ln(1) = 0.



Advances in Bioinformatics 5

(1/82944, 11.33)

(1/48, 3.87) (1/864, 6.76)

(1/1728, 7.45)

(1/6, 1.79)

(1/2, 0.69)

(1/24, 3.18)(1/4, 1.39)

(1/2, 0.69)

(1, 0)

(1/3456, 8.15)(1/3456, 8.15)

0

1 2

43

6

8 9

5

7

10 11

Figure 2: Hierarchical structure illustrating how our approach
works. Nodes are represented by integers from 0 to 11 with 0 as a
root. The numbers beside each node represent its topological posi-
tion characteristic and information content.

(ii) As 1 and 2 have only parent 0, which has only these
two children with μ(0) = 1, this yields μ(1) =
1/2 = μ(2), and so their topological information is
ICT(1) = − ln(1/2) = 0.69315 = ICT(2).

(iii) 3 has only one direct parent 1 with μ(1) = 1/2 and
this parent has two children, we have μ(3) = 1/4,
and its topological information is then ICT(3) =
− ln(1/4) = 1.38639.

(iv) 4 has two direct parents 1 and 2. 1 has two children
with μ(1) = 1/2 and 2 has three children with μ(2) =
1/2. Thus, its topological position characteristic is
the product of topological position characteristics of
its parents, respectively, divided by the number of
children for each parent μ(4) = 1/4∗ 1/6 = 1/24 and
its topological information is ICT(4) = − ln(1/24) =
3.17806.

(v) 5 has only one direct parent 2, which has three chil-
dren and μ(2) = 1/2. Its topological position charac-
teristic is μ(5) = 1/6 and its topological information
is ICT = − ln(1/6) = 1.79176.

Unlike edge-based approaches where nodes and edges
are uniformly distributed, and edges at the same level of the
ontology correspond to the same semantic distance between
terms [9], in this new approach these parameters depend
on the topological position characteristic of terms, which
are not necessarily the same. In this illustration, nodes 3, 4,
and 5 are at the same level but they do not have the same
topological position characteristic, thus leading to different
topological information or semantic values. Furthermore,
the aforemetioned illustration reveals that the product in
formula (6) of topological position characteristic must be
carefully considered when implementing the approach, since

the exponential tail-off with increasing depth is severe
depending on the density of the hierarchical structure under
consideration. Here, we suggest computing μ(z) iteratively
when performing this product, and every time the multi-
plication is done, the obtained value must immediately be
converted to a pair of numbers (α,β) such that μ(z) = α10β

with 0.1 ≤ α < 1 and β < 0. This means that every time
the product is performed, the new value is converte to
this format so that in the end, the topological position
characteristic is just given by (α,β) such that μ(z) = α10β

and ICT = − ln(α)− β ln(10).

Definition 2. Let [x, y] ∈ NGO; x and y are topologically

identical or synonym terms and denoted by x
GO= y, if the

following properties are satisfied.

(i) ICT(x) = ICT(y) or μ(x) = μ(y).

(ii) There exists one path pxy from x to y.

Therefore, two GO terms are equal if and only if they are
either the same or topologically identical terms. Suppose that
there exists a path pxy from term x to term y, x is a more gen-
eral term compared to y, or y is more specific compared to x

and denoted by x
GO
< y if ICT(x) < ICT(y) or μ(y) < μ(x).

The topological position μ provides a new way of
assessing the intrinsic closeness of GO terms. Two terms in
the GO-DAG may share multiple ancestors as a GO term
can have several parents through multiple paths. Therefore,
we define the topological position μs(x, y) of x and y as
that of their common ancestor with the smallest topological
position characteristic, that is,

μs
(
x, y

) = min
{
μ(t) : t ∈A

(
x, y

)}
, (7)

where A(x, y) =A∪{x, y} with A being the set of ancestral
terms shared by both terms x and y. Finally, the semantic
similarity score of the two GO terms is given by

SGO
(
x, y

) = ICT
(
x, y

)

max
{

ICT(x), ICT
(
y
)} , (8)

with ICT(x, y) = − lnμs(x, y) being the topological informa-
tion shared by the two concepts x and y.

The semantic similarity measure SGO proposed here is
referred to as the GO-universal similarity measure [33], as
it induces a distance or a metric, dGO, given by dGO(x, y) =
1 − SGO(x, y) (see Supplementary Material available online
at doi:10.1155/2012/975783), which in Information Theory
is known as a universal metric [34]. The more topological
information two concepts share, the smaller their distance
and the more similar they are. Moreover, the similarity
formula in (8) emphasizes the importance of the shared
GO terms by giving more weight to the shared ancestors
corrected by the maximum topological information, and
thus measuring how similar each GO term is to the other.
Thus, for two GO terms sharing less informative ancestors
the distance is greater and the similarity is smaller, while for
two GO terms sharing more informative ancestors, they are
closer and their similarity is higher.
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Figure 3: Subgraph of the GO BP. Each box represents a GO term with GO ID, D value (Zhang et al. measure). This is used to illustrate our
approach and compare its effectiveness to the Zhang et al. approach.

To illustrate the GO-universal approach, we use (5) and
(6) to compute the reachability measure μ(z) and topological
information measure ICT(z) of GO terms z in a minimum
spanning graph shown in Figure 3 adapted from [32]. Results
are shown in Table 1 for our approach and the Zhang et al.
approach. To relate the scale of Zhang et al. to ours, the D
value of a given term is considered to be the probability of
usage or occurrence of the term in the structure as suggested
by Zhang et al. This means that the information content (IC)
of a term x is calculated as

ICZ(x) = − ln(D(x)). (9)

Moreover, two approaches, Resnik and Lin’s approaches, are
used for scaling the semantic similarity measure induced by
ICZ between 0 and 1. The uniform Resnik’s measure is given
by

SZuR
(
x, y

) = max
{

ICZu(a) : a ∈A
(
x, y

)}
, (10)

where ICZu(a) is the uniform ICZ(a) obtained by dividing
ICZ(a) by the maximum scale whose value is lnN where
N is the total number of terms within the ontology under
consideration. ICZu(a) is therefore computed as follows:

ICZu(a) = ICZ(a)
ln N

, (11)

where N is the number of terms in the ontology under con-
sideration. Lin’s semantic similarity measure is given by

SZL
(
x, y

) = max

{
2× ICZ(a)

ICZ(x) + ICZ
(
y
) : a ∈A

(
x, y

)
}
. (12)

As we can see, the more specific the term, that is, the further it
is from the root node, the higher its topological information,
meaning that children are more informative or more specific
than their parents, and for two GO terms in the same path,
the more specific one will either be more informative or
topologically identical to that closer to the root. This is not
the case for the Zhang et al. approach, in which the semantic
values of the terms at the same level tend to be uniform and
a child term is not necessarily more specific than a given
parent term, independent of the number of parents that the
child term has. Our method distinguishes these different
local topologies.

We calculate the semantic similarity between every two
consecutive GO terms in Figure 3 and results are given
in Table 2 for three different approaches. The formula in
(6) shows that, for our approach, the contribution of a
given parent to the term depends on the parent reachability
measure. The smaller the reachability measure of that parent
and the fewer children it possesses, the higher its similarity
compared to another parent of the term. From the results
in Table 2, we see that GO:0042771 is more similar to
GO:0008630 than to GO:0030330, both of which are its
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Table 1: Names and characteristics of GO terms in Figure 3, including topological position characteristics μ and information content ICT

from our approach and ICZ and ICZu from the Zhang et al. approach.

GO Id Level μ ICT ICZ ICZu

GO:0042770 6 0.0456910e-27 6.525565e+01 10.11006 0.71747

GO:0042772 7 0.1142274e-28 6.664195e+01 12.30729 0.87340

GO:0030330 7 0.1142274e-28 6.664195e+01 11.20867 0.79544

GO:0000077 7 0.0171747e-34 8.235221e+01 10.92099 0.77502

GO:0008630 10 0.0335723e-86 2.014164e+02 12.30729 0.87340

GO:0006978 8 0.0434930e-57 1.343825e+02 12.30729 0.87340

GO:0006977 9 0.0419985e-79 1.850743e+02 12.30729 0.87340

GO:0042771 11 0.1278292e-116 2.691569e+02 12.30729 0.87340

GO:0031571 8 0.1103023e-50 1.173338e+02 12.30729 0.87340

GO:0031572 8 0.0735349e-50 1.177393e+02 12.30729 0.87340

GO:0031573 8 0.4293676e-36 8.373851e+01 12.30729 0.87340

GO:0031574 8 0.2206046e-50 1.166406e+02 12.30729 0.87340

Table 2: Semantic similarity values between child-parent pairwise terms in Figure 3 from the Wang et al. and Zhang et al. approaches
are compared to our approach. SW refers to the semantic similarity between two GO terms obtained using the Wang semantic similarity
approach from G-SESAME (Gene Semantic Similarity Analysis and Measurements) Tools. D values, SZ , SZuR, and SZL refer to the Zhang et
al. approach and SGO refers to the semantic similarity approach developed here.

Parent GO Id Child GO Id SGO SW SZ SZuR SZL

GO:0042770 GO:0042772 0.97920 0.940 10.11006 0.71747 0.90199

GO:0042770 GO:0030330 0.97920 0.940 10.11006 0.71747 0.94847

GO:0042770 GO:0008630 0.32398 0.704 10.11006 0.71747 0.90199

GO:0042770 GO:0000077 0.79240 0.802 10.11006 0.71747 0.96144

GO:0042772 GO:0006978 0.49591 0.882 12.30729 0.87340 1.00000

GO:0030330 GO:0006978 0.49591 0.889 11.20867 0.79544 0.95328

GO:0030330 GO:0006977 0.36008 0.615 11.20867 0.79544 0.95328

GO:0030330 GO:0042771 0.24760 0.696 11.20867 0.79544 0.95328

GO:0008630 GO:0042771 0.74832 0.931 12.30729 0.87340 1.00000

GO:0000077 GO:0031571 0.70186 0.830 10.92099 0.77502 0.94032

GO:0000077 GO:0031572 0.69945 0.850 10.92099 0.77502 0.94032

GO:0000077 GO:0031573 0.98344 0.948 10.92099 0.77502 0.94032

GO:0000077 GO:0031574 0.70603 0.870 10.92099 0.77502 0.94032

GO:0031571 GO:0006977 0.63398 0.774 12.30729 0.87340 1.00000

parents. This is topologically explained by the lower reach-
ability of GO:0008630 compared to GO:0030330 and the
higher number of children the term GO:0030330 possesses.
This reduces its influence on each of its children, becoming
less relevant for it to represent a given child due to the
lower similarity between them. Furthermore, GO:0006977 is
more similar to GO:0031571 than to GO:0030330. This is
numerically due to the influence of GO:0030330, reflected
by its reachability measure, which is lower than that of
GO:0031571. It is topologically caused by the higher level of
the term GO:0031571 compared to the level of GO:0030330,
and therefore gives the term GO:0031571 a higher biological
content property than GO:0030330 for better representing
the child term GO:0006977.

Table 2 also includes the semantic similarity between
every two consecutive GO terms computed using the Zhang
et al. and Wang et al. methods. These results show that

Wang’s semantic similarity measure between a given term
and its immediate child is always greater than 0.6, which is
the semantic factor of “part of” relations, and is independent
of the characteristics of the position of these terms in the
GO-DAG, including the number of children belonging to the
parent term and their levels. This shows how our approach
provides a scalable and consistent measurement method, in
which the semantic similarity of two terms is completely
determined by their reachability measures and that of their
highest informative ancestor, that is, the ancestor with the
smallest reachability measure. Using the intrinsic topology
property of the GO-DAG, the semantic similarity measure
of two terms is in agreement with the GO consortium
vocabulary, in the sense that two terms whose most common
informative ancestor is close to the root share less topological
information compared to those having the highest common
informative ancestor far from the root.
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2.3. Functional Similarity of Proteins Based on GO Similar-
ity. A given protein may perform several functions, thus
requiring several GO terms to describe these functions. For
characterized or annotated pairwise proteins with known
GO terms, functional closeness or GO similarities based on
their annotations and consequently the distances between
these proteins can be evaluated using the Czekanowski-Dice
approach [35] as follows:
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(13)

where TX
GO(p) is the set of GO terms of a given protein p for

a given ontology X = MF, BP, CC, and |TX
GO(p)| stands for

its number of elements.
Czekanowski-Dice’s measure is not convenient for using

in the case of GO term sets, since GO terms may be similar
at some level without being identical. This aspect cannot be
captured in Czekanowski-Dice’s measure which only requires
the contribution from the GO terms exactly matched
between the sets of GO terms of these proteins. One can
attempt to avoid this difficulty by incorporating the true path
rule in the computation of the intersection and union of GO
term sets for proteins. However, in most cases where these
proteins are annotated by successive GO terms in the GO-
DAG, this may lead to the situation where the number of
elements in the union of these sets is equal to that of their
intersection plus one, in which case, the functional closeness
of these proteins is forced to converge to 1, independently of
the biological contents of the GO terms in the GO-DAG.

To overcome this problem, we set up a functional similar-
ity between proteins which emphasizes semantic similarity
between terms in their sets of GO terms considered to be
uniformly distributed. This functional similarity is given by
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where SGO(t,TX
GO(p)) = 1 − dGO(t,TX

GO(p)), with dGO(t,
TX

GO(p)) being the distance between a given term t and a
set of terms TX

GO(p) for a given protein p, mathematically
defined as follows:
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Thus, owing to the fact that dGO(s, t) = 1 − SGO(t, s), we
obtain
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GO

(
p
)}
. (16)

This shows that the functional closeness formula emphasizes
the importance of the shared GO terms by assigning more
weight to similarities than differences. Thus, for two proteins
that do not share any similar GO terms, the functional
closeness value is 0, while for two proteins sharing exactly
the same set of GO terms, the functional closeness value is 1.
The functional similarity between proteins in (14) is a value
that ranges between 0 and 1 and indicates the percentage of
similarity the two proteins share, on average, based on their
annotations. For example, a functional similarity between
two proteins of 0.9 means that these proteins are 90% similar,
on average, based on their annotations.

Note that the approach used here to combine GO term
topological information for calculating protein functional
similarity scores was used in the context of annotation-based
approaches and is referred to as the best match average
(BMA) approach. This approach has been suggested to
be better than the average (Avg) [2] or maximum (Max)
[19] approaches from a biological point of view [36, 37].
However, even Avg and Max approaches can also be used
to combine GO term semantic similarity scores produced
using this new measure to quantify protein functional sim-
ilarity depending on the application. Furthermore, the GO-
universal metric can be used in the context of the SimGIC
approach [9, 38] derived from the Jaccard index based on the
Tversky ratio model of similarity [39], which uses GO term
IC directly in order to compute protein functional similarity
scores, and referred to as SimUIC. These approaches are
generally referred to as term-based approaches. The GO
term topological information scores can also be used to
construct protein functional similarity schemes relying on
other Tversky ratio models, for example, using the Dice
index, referred to as SimDIC, and SimUIX which uses a
universal index, given by
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(17)

3. Results and Discussion

We have developed a semantic value measurement approach
for GO terms using the intrinsic topology of the GO-
DAG and taking into account issues related to the depth
of the structure. We evaluate our method against the Wang
et al. and Zhang et al. topology-based methods for a specific
subgraph of the GO-DAG and then use UniProt data to
compare our similarity scores to those of annotation-based
approaches. Note that the Zhang et al. approach has recently
been shown to perform equally to the Resnik measure and
to perform better than the Wang et al. measure [40] and the
relevance approach which is the Lin enhancement measure
suggested by Schlicker et al. [31].
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3.1. Evaluation of the New Approach. We have seen Section 2
that the GO-universal similarity measure produces effective
semantic similarity scores based on the intrinsic topology
of the GO-DAG by making explicit use of topological rela-
tionships between different terms, thus producing a clearer
representation of these relations. As discussed previously, the
biggest limitation of existing approaches based on Resnik’s
algorithm is that they are constrained by the annotation
statistics related to the terms. On the other hand, although,
like ours, Wang’s measure is based only on the intrinsic
topology of the GO-DAG, one of the drawbacks of their
approach is that it raises a scalability issue since it requires
complete knowledge of the sub-GO-DAG of the two terms
for which the semantic similarity is being computed and
that of all their common ancestors. However, since GO is
expanding and increasing in size, the term relationships
are becoming more and more important. Thus, a semantic
similarity measurement approach should be effective inde-
pendent of the size of the GO-DAG.

Another negative aspect of Wang’s approach is that
it essentially relies on the semantic factors of “is a” and
“part of” relations, and it is not clear for which values of
these semantic factors the semantic similarity measure yields
the optimal value of biological content of terms. Moreover,
these semantic factors make the similarity value between a
given child and its direct parent independent of the number
of children that the parent term has (shown in (3)). Wang’s
semantic similarity measure between a given term and its
immediate child term depends solely on the semantic rela-
tionship (“part of” or “is a”) and is completely independent
of the position characteristics in the hierarchical structure.
However, considering the GO-DAG, the semantic similarity
between a given term and its child should not only depend on
the number of parents the child term possesses, but also on
the number of children that the parent term possesses. The
more children a term has, the smaller the semantic similarity
to each of its children, which is logical.

The Zhang approach, which depends only on the chil-
dren of a given term, often fails to effectively differentiate
a child from its parents, yielding an equal D value and IC
for these terms. It also tends to produce a uniform semantic
similarity between a parent and its children (see Table 2 in
Section 2), which is overestimated to 1 when using Lin’s
approach, whereas these GO terms are biologically and
topologically different. This means that the approach ignores
the fact that a child is more specific than the parent by
assigning them the same semantic value and consequently
the approach fails to distinguish proteins annotated by
these terms, which leads to an overestimation of functional
similarity between these proteins. This case occurs, for
instance, for the child-parent GO terms: GO:0006978
and GO:0042772, GO:0042771 and GO:0008630, and GO:
0006977 and GO:0031571, all of which have identical values.
These observations suggest that a given similarity approach
relying on the intrinsic topology of the hierarchical structure
should consider both GO term parents and children in its
conception.

3.2. Performance Evaluation of the GO-Universal Metric.
We first evaluated the performance of the new metric by
assessing its ability to capture functional coherence in a
human protein-protein interaction network in terms of how
interacting proteins are functionally related to each other.
Expert-curated and experimentally determined human
protein-protein interactions (PPIs) were retrieved from the
IntAct database [41], the Database of Interacting Proteins
(DIP) [42], the Biomolecular Interaction Network Database
(BIND) [43], the Mammalian Protein-Protein Interaction
Database (MIPS) [44], the Molecular INTeraction database
(MINT) [45], and the Biological General Repository for
Interaction Datasets (BioGRIDs) [46]. These networks were
integrated into a single network where we only considered
interactions predicted by at least two different approaches to
alleviate the issue of false positives, as a specific approach may
incorrectly identify an interaction [47]. This has produced a
protein-protein interaction network with 4918 proteins out
of 25831 found in the complete list of reviewed proteins
from the UniProt database at http://www.uniprot.org/ and
9707 interactions out of 29430 combined interactions from
these protein interaction databases. Protein annotations were
retrieved via GOA-UniProtKB [13] using UniProt protein
accessions.

For our performance evaluation, we only used proteins
annotated with BP terms in the network produced. This
is because two proteins that interact physically are more
likely to be involved in similar biological processes [40] but
there is no guarantee that they share molecular functions
[48]. Among 25831 proteins found in the complete list of
reviewed proteins in human, 10620 proteins are annotated
with GO BP terms. After removing all uncharacterized
proteins with respect to the BP ontology from the network,
6417 direct interactions remain if we exclude annotations
inferred electronically (IEA) and 7712 direct interactions
remain when using all GO evidence codes (http://www
.geneontology.org/GO.evidence.shtml). This was used as a
positive control set. Lack of complete knowledge about
protein interaction sets makes the generation of a negative
control set challenging, since the fact that two proteins are
not known to interact may simply be because this interaction
has not yet been detected [47]. One of the models suggests
generating a set of negatives from randomly selecting pairs
from all proteins in the dataset under consideration [49, 50].
Thus, negative datasets with equal numbers of protein pairs
as in the positive interaction dataset were built by randomly
choosing annotated human protein pairs in the proteome. In
our context, this is relevant as the probability of randomly
selecting a true protein-protein interaction is very low (less
than 0.052%).

The classification power of the new metric was tested by
receiver operator characteristic (ROC) curve analysis [51]
which measures the true positive rate or sensitivity against
the false positive rate or 1-specificity. The best match average
version of the new metric is compared to the best match
average under the Lin measure and that using the Resnik
measure which has been shown to perform better than
others [52]. Our functional similarity measure inferred using
Jaccard index weighted by topological information (SimUIC)

http://www.uniprot.org/
http://www.geneontology.org/GO.evidence.shtml
http://www.geneontology.org/GO.evidence.shtml
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Figure 4: ROC evaluations of functional similarity approaches based on the human PPI dataset derived from different PPI databases.

is compared to SimGIC and SimUI. The SimUI approach
refers to the union-intersection protein similarity measure,
which is also implemented in the GOstats package [24]. It is
a particular case of simGIC or SimUIC which assumes that
all GO terms occur at equal frequency, in which case, only
the topology of the GO-DAG is needed. This implies that the
SimUI approach assigns equal semantic value or information
content to all terms in the GO-DAG. The area under the
ROC curve (AUC) is used as a measure of discriminative
power, the larger the upper AUC value, the more powerful
the measure is, and a realistic classifier must have an AUC

larger than 0.5. Results found using the ROCR package under
the R programming language [53, 54] are shown in Figures
4(a) and 4(b) for the BMA approach and Figures 4(c) and
4(d) for measures inferred from the Jaccard index (term-
based approaches), and their AUCs and precisions are shown
in Table 3.

These results indicate that all the approaches perform
well. In the context of term-based approaches, the new ap-
proach performs as well as the SimGIC approach, which
is the best annotation-based measure in this case, in terms
of AUC, but it performs slightly better than the SimGIC
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Table 3: Area under ROC curves (AUCs) and precision for the human PPI dataset. For each group, the top score is in bold.

Approaches
Area under curve (AUC) Precision Accuracy

Excluding IEA Including IEA Excluding IEA Including IEA Excluding IEA Including IEA

GO-universal 0.962 0.954 0.841 0.772 0.885 0.816

Resnik 0.933 0.931 0.724 0.701 0.713 0.739

Lin 0.763 0.691 0.610 0.568 0.481 0.549

SimUIC 0.983 0.986 0.930 0.916 0.977 0.979

SimGIC 0.983 0.986 0.922 0.917 0.974 0.974

SimUI 0.975 0.978 0.866 0.845 0.926 0.937

approach in terms of precision excluding IEA and accuracy.
When considering protein functional similarity approaches
derived from GO term semantic similarity scores (first three
rows of Table 3), the new approach outperforms the best
annotation-based approach, namely, BMA under Resnik,
particularly in precision, and accuracy. This also shows that
the new metric is less sensitive to outliers compared to
annotation-based approaches, on top of the fact that it only
uses the intrinsic topology (structure) of the GO-DAG with-
out requiring annotation data. Thus, the new metric per-
forms better overall than the existing approaches, specif-
ically providing the best performances in the context of
annotation-based approaches, namely, BMA under Resnik
and SimGIC. Note that the performance of Resnik and
SimGIC approaches is related to the corpus under considera-
tion because of its dependence on the frequencies of GO term
occurrences in the corpus. This shallow annotation problem
constitutes a serious drawback to these approaches, specif-
ically for organisms with sparse GO annotations [55] and
may negatively affect their performances [52]. The use of the
whole set of annotations may solve this problem but could,
in turn, increase the complexity of these annotation-based
approaches as the number of protein annotations increases
daily. This would potentially hamper the performance of
these approaches in their running time, since reading the
annotation file takes time.

Looking at the two main groups of protein functional
similarity approaches, term-based approaches perform bet-
ter than those using GO term semantic similarity scores. This
is in part due to the fact that models of protein functional
similarity approaches using GO term semantic similarity
scores are based on statistical measures of closeness (Avg,
Max), which are known to be sensitive to scores that lie at
abnormal distances from the majority of scores, or outliers.
This means that these measures may produce biases which
affect protein functional similarity scores. Furthermore, we
investigate if the performance can be improved by leaving
out GO annotations with IEA evidence codes. Interestingly,
no significant improvement is achieved when leaving out
GO annotations with IEA evidence code suggesting that
these IEA annotations are in fact of high quality [33, 56].
This also justifies observations made by Guzzi et al. [52]
concerning the use of all types of GO evidence codes when
assessing a given GO-based semantic similarity approach.
Finally, as expected among term-based approaches, SimUIC

and SimGIC approaches perform better than the SimUI
approach.

3.3. Comparison of the GO-Universal Metric with State-of-the-
Art Measures. We assess the effectiveness of the new metric
compared to other topology-based approaches, namely, the
Wang and Zhang approaches, the Resnik-related functional
similarity measures, and SimGIC. We used a dataset of
proteins with known relationships downloaded from the
Collaborative Evaluation of Semantic Similarity Measures
(CESSMs) online tool [57] at http://xldb.di.fc.ul.pt/tools/
cessm/. The set of interacting proteins was extracted from
UniProt [58, 59] with GO annotations being obtained
from GOA-UniProtKB [13]. CESSM is an online tool for
evaluating protein GO-based semantic similarity measures
or functional similarity metrics, integrating several func-
tional similarity approaches. The CESSM tool has made the
comparison of new semantic measures against previously
developed annotation-based metrics possible using Pearson’s
correlation measures with sequence, Pfam domain and
Enzyme Commission (EC) similarity, as well as measuring
resolution. Correlation measures how effective the new ap-
proach is in capturing sequence, Pfam, and EC similar-
ity. Resolution, which is defined as the relative intensity
with which variations in the sequence similarity scale are
translated into the semantic similarity scale, provides an
indication of how sensitive the approach is to differences in
the annotations [36]. This implies that a metric with a higher
correlation and resolution performs better, since it captures
sequence, Pfam, and EC similarity well and it is likely to be
an unbiased metric.

To evaluate the new metric, we ran the CESSM online
tool and results are shown in Table 4 for BP and MF.
These results indicate that our approach effectively captures
sequence, Pfam, and EC similarity in terms of Pearson’s
correlation, especially for the BP ontology. According to the
Pesquita et al. performance classification [36], the SimGIC
measure provides the best overall performance among all
annotation-based approaches, followed by the Resnik under
BMA approach. For the BP ontology, overall our approach
outperforms the existing annotation-based approaches, by
appearing in the top two measures for all four parameters
tested, unlike any of the other measures. It consistently
shows one of the highest correlation with sequence, Pfam

http://xldb.di.fc.ul.pt/tools/cessm/
http://xldb.di.fc.ul.pt/tools/cessm/
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Table 4: Comparison of performance of our approach with Wang et al., Zhang et al. and annotation-based ones using Pearson’s correlation
with enzyme Commission (eC), Pfam and sequence similarity, and resolution. Results are obtained from the CESSM online tool. For each
ontology, the top two best scores among 12 approaches are in bold.

Ontology Approaches Similarity measure correlation Resolution

EC PFAM Seq Sim

BP

GO-Universal
(BMA)

0.44287 0.53919 0.76797 0.90067

Wang et al. 0.43266 0.46692 0.63356 0.90966

Zhang et al. 0.21944 0.26495 0.20270 0.30148

Resnik
Avg 0.30218 0.32324 0.40685 0.33673

Max 0.30756 0.26268 0.30273 0.64522

BMA 0.44441 0.45878 0.73973 0.90041

Term-based
SimUIC 0.38458 0.43693 0.74410 0.84503

SimGIC 0.39811 0.45470 0.77326 0.83730

MF

GO-Universal
(BMA)

0.73886 0.60285 0.55163 0.52905

Wang et al. 0.65910 0.49101 0.37101 0.33109

Zhang et al. 0.49753 0.41147 0.32235 0.39865

Resnik
Avg 0.39635 0.44038 0.50143 0.41490

Max 0.45393 0.18152 0.12458 0.38056

BMA 0.60271 0.57183 0.66832 0.95771

Term-based
SimUIC 0.65826 0.62510 0.60512 0.96928

SimGIC 0.62196 0.63806 0.71716 0.95590

and EC similarity and also provides one of the two best
resolutions, thus achieving overall best performance. For the
MF ontology, our approach generally performs well pro-
ducing good Pearson’s correlation compared to the existing
annotation-based approaches, and specifically outperform-
ing existing annotation-based approaches in terms of EC and
Pfam similarity. It is among the top measures for three out
of four parameters, specifically providing high resolution
under SimUIC. The new approach consistently outperforms
the Wang and Zhang approaches, except for resolution,
where the Wang et al. approach performs marginally better
for BP. Overall, this shows the improved consistency and
relevance of the new metric compared to the existing ones,
and our approach has the advantage of being independent of
annotation data.

3.4. Assessing Functional Similarity between Protein Ortho-
logues Using the GO-Universal Metric. Orthologous proteins
in different species are thought to maintain similar func-
tions. Therefore, we used protein sequence data together
with protein GO annotations to determine the extent to
which sequence similarities between protein orthologues are
translated into similarities between their GO annotations
through the GO-universal metric using protein orthologues
between human (Homo sapiens) and mouse (Mus muscu-
lus strain C57BL/6) as a case study. Protein orthologue
pairs were retrieved from the Ensembl website [60, 61]
at http://www.ensembl.org/index.html, GO-association data
were downloaded from the GOA site, and the protein
sequence files were retrieved from UniProtKB [58, 59, 62].

In order to produce sequence similarity data, an all-
against-all BLASTP [63, 64] was performed under the BLO-
SUM62 amino acid substitution matrix [65]. We obtained

Table 5: Proportion in percentage of Human-Mouse orthologue
pairs sharing high functional similarity.

Using all GO evidence codes Leaving out IEA and ISS

Approach BP MF BP MF

GO-
Universal

76 82 12 49

Resnik 76 80 13 38

BLAST bit scores of these pairwise orthologues in order to
compute their sequence similarity scores using the approach
suggested in [66]. After removing protein pairs with at least
one nonannotated protein, 10691 protein pairs annotated
with molecular function terms and 10675 pairs with bio-
logical process terms remained. We investigated the power
of the GO-universal metric to assess functional similarity
between orthologues. We found that 82% of orthologue
pairs shared high functional similarity (score ≥ 0.7) in MF
annotation and 76% in BP annotation. These results are
shown in Table 5, together with proportions achieved by the
Resnik approach when using all GO evidence codes, as well
as results for both approaches when leaving out IEA and ISS
(inferred from sequence or structural similarity) evidence
codes. The number of ortholog pairs with GO annotations
when IEA and ISS annotations are removed drops to less
than 4000 pairs, and the percentage of these pairs sharing
high functional similarity drops significantly, particularly for
BP. The negative impact of removing IEA annotations has
been reported previously [52] and may be due to the fact that
IEA and ISS annotations tend to be to higher level GO terms
compared to manual mappings.

The high proportion of functionally similar protein or-
thologues observed in the full dataset was expected, since

http://www.ensembl.org/index.html
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Table 6: Some human-mouse protein orthologue pairs without GO-based functional similarity.

Protein ID Organism
Annotation information

GO ID GO name Code Source

BP

A1Z1Q3 Homo sapiens GO:0042278 Purine nucleoside metabolic process IDA UniProtKB

Q3UYG8 Mus musculus GO:0007420 Brain development IEP UniProtKB

Q96EQ8
Homo sapiens

GO:0032480
Negative regulation of type I interferon
production

TAS Reactome

GO:0045087 Innate immune response TAS Reactome

Q9D9R0 Mus musculus GO:0016567 Protein ubiquitination EXP GOC

O00451
Homo sapiens

GO:0007169
Transmembrane receptor protein
tyrosine kinase signaling pathway

TAS PINC

GO:0035860
Glial cell-derived neurotrophic factor
receptor signaling pathway

TAS GOC

O08842 Mus musculus GO:0007399 Nervous system development IMP MGI

Q9BS16

Homo sapiens

GO:0000087 M phase of mitotic cell cycle TAS Reactome

GO:0000236 Mitotic prometaphase TAS Reactome

GO:0000278 Mitotic cell cycle TAS Reactome

GO:0006334 Nucleosome assembly TAS Reactome

GO:0034080
Cenh3-containing nucleosome assembly
at centromere

TAS Reactome

Q9ESN5 Mus musculus GO:0045944
Positive regulation of transcription from
RNA polymerase II promoter

IDA MGI

O15347
Homo sapiens

GO:0006310 DNA recombination ISS UniProtKB

GO:0007275 Multicellular organismal development TAS PINC

O54879
Mus musculus

GO:0045578
Negative regulation of B cell
differentiation

IDA MGI

GO:0045638
Negative regulation of myeloid cell
differentiation

IDA MGI

Q9NP31

Homo sapiens

GO:0001525 Angiogenesis IEA UniProtKB

GO:0007165 Signal transduction TAS PINC

GO:0007275 Multicellular organismal development IEA UniProtKB

GO:0030154 Cell differentiation IEA UniProtKB

Q9QXK9 Mus musculus GO:0008283 Cell proliferation IMP
occurs in
(CL:0000084)

Q9C035
Homo sapiens

GO:0009615 Response to virus IEA UniProtKB

GO:0044419
Interspecies interaction between
organisms

IEA UniProtKB

GO:0070206 Protein trimerization IDA UniProtKB:Q9C035-1

P15533
Mus musculus

GO:0006351 Transcription, DNA-dependent IEA UniProtKB

GO:0006355
Regulation of transcription,
DNA-dependent

IEA UniProtKB

MF

Q86XR7 Homo sapiens GO:0004871 Signal transducer activity IMP UniProtKB

Q8BJQ4 Mus musculus GO:0005515 Protein binding IPI BHF-UCL

Q99218 Homo sapiens GO:0030345 Structural constituent of tooth enamel IDA BHF-UCL

P63277

Mus musculus

GO:0005515 Protein binding IPI MGI, BHF-UCL

GO:0008083 Growth factor activity IMP BHF-UCL

GO:0042802 Identical protein binding IPI BHF-UCL

GO:0043498 Cell surface binding IMP BHF-UCL

GO:0046848 Hydroxyapatite binding IDA BHF-UCL

P45379

Homo sapiens

GO:0003779 Actin binding IDA UniProtKB

GO:0005523 Tropomyosin binding IDA UniProtKB

GO:0030172 Troponin C binding IPI UniProtKB

GO:003113 Troponin I binding IPI UniProtKB
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Table 6: Continued.

Protein ID Organism
Annotation information

GO ID GO name Code Source

MF

GO:0016887 Atpase activity IDA
UniProtKB:P45379-1-
6-7-8

P50752 Mus musculus GO:0005200 Structural constituent of cytoskeleton IDA
occurs in
(CL:0000193)

Q9H0E3
Homo sapiens

GO:0003713 Transcription coactivator activity IDA UniProtKB

GO:0004402 Histone acetyltransferase activity IDA UniProtKB

Q8BIH0 Mus musculus GO:0005515 Protein binding IPI UniProtKB

Q5T9L3 Homo sapiens GO:0004871 Signal transducer activity ISS UniProtKB

Q6DID7
Mus musculus

GO:0005515 Protein binding IPI UniProtKB

GO:0017147 Wnt-protein binding IDA UniProtKB

A8CG34 Homo sapiens GO:0005515 Protein binding IPI UniProtKB

Q8K3Z9 Mus musculus GO:0017056 Structural constituent of nuclear pore IEA ENSEMBL

O15446 Homo sapiens GO:0003899 DNA-directed RNA polymerase activity IEA UniProtKB

Q76KJ5 Mus musculus GO:0005515 Protein binding IPI MGI

many of the GO annotations probably arose from homology-
based annotation transfer [67, 68]. We were also interested
in finding orthologues with very low protein functional
similarity scores based on their GO annotations. The new
metric was able to detect such cases, which are contrary to the
belief in function conservation between orthologues. Some
examples are shown in Table 6 together with their GO anno-
tations, GO evidence codes, and sources. There are several
possible reasons for this, including protein misannotations,
the use of more general GO terms for one and more specific
terms for the other protein, or simply the lack of relevant
biological knowledge about these proteins. For biological
process, in particular, in the examples in Table 6, the differing
terms are not conflicting processes, so it may be that the
other terms are correct but have just not yet been added,
or they may be organism specific. This example provides
an illustration of a biological application of the metric and
how it can be used to identify possible incorrect or missing
annotations.

4. Conclusions

In this work, we have set up a new approach to measure
the closeness of terms in the gene ontology (GO), thus
translating the difference between the biological contents
of terms into numeric values using topological information
shared by these terms in the GO-DAG. Like other measures,
this enables us to measure functional similarities of proteins
on the basis of their GO annotations derived from heteroge-
neous data sources using semantic similarities of their GO
terms. We compare our method to two similar measures
and show its advantages. The similarity measure which we
defined shows consistent behaviour in that going down the
DAG (away from the root) increases specificity, thus pro-
viding an effective semantic value for GO terms that reflects
functional relationships between GO annotated proteins.

The relevance of this measure is evident when consider-
ing the GO hierarchy, as it makes explicit use of the two main
relationships between different terms in the DAG, which
makes it possible to provide a more precise view of the
similarities between terms. This measure yields a simple and
reliable semantic similarity between GO terms and func-
tional similarity measure for sets of GO terms or proteins. We
have validated this new metric using ROC analysis on human
PPI datasets and a selected protein dataset from UniProt
with their GO annotations obtained from GOA-UniProt and
analysis by the Collaborative Evaluation of Semantic Simi-
larity Measures (CESSM) online tool. Results show that this
new GO-semantic value measure that we have introduced
constitutes an effective solution to the GO metric problem
for the next generation of functional similarity metrics.

As a biological use case, we have applied the GO-
universal metric to determine functional similarity between
orthologues based on their GO annotations. In most cases
functional conservation was shown, but we did identify some
orthologues annotated with different functions. This sug-
gests that the new metric can be used to track protein annota-
tion errors or missing annotations. We are currently applying
it to assess the closeness of InterPro entries using their
mappings to GO. This measure will also be used to design
a retrieval tool for genes and gene products based on their
GO annotations, providing a new tool for gene clustering and
knowledge discovery on the basis of GO annotations. Given
a source protein or a set of GO terms, this engine will be
able to retrieve functionally related proteins from a specific
proteome based on their functional closeness, or identify
genes and gene products matched by these functions or very
similar functions.
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