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Abstract: The rhodanine core is a well-known privileged heterocycle in medicinal chemistry. The
rhodanines, as subtypes of thiazolidin-4-ones, show a broad spectrum of biological activity, including
anticancer properties. This review aims to analyze the anticancer features of the rhodanines described
over the last decade in the scientific literature. The structure–activity relationship of rhodanine
derivatives, as well as some of the molecular targets, were discussed. The information contained
in this review could be of benefit to the design of new, effective small molecules with anticancer
potential among rhodanine derivatives or their related heterocycles.
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1. Introduction

Malignant tumors are still one of the leading causes of human death worldwide. As
reported by the WHO, trachea, bronchus, and lung cancers were the sixth main cause of
death globally in 2019 [1]. One of the main tools that is still used to combat this common
disease is the small-molecule structure with the highest anticancer activity. Therefore,
scientists worldwide are still trying to develop new compounds that could selectively
target cancer cells [2,3]. This is confirmed by the fact that in 2021 alone the U.S. Food and
Drug Administration approved 17 new drugs to be used as anti-tumor agents, out of a total
of 50 that were newly registered. That amounts to 34% of all drugs introduced to medical
treatment last year [4].

The rhodanine derivatives are small compounds with a broad spectrum of biolog-
ical activities; they are used as antimicrobial [5], antiviral [6], antitubercular [7], anti-
inflammatory [8], antidiabetic [9], and antitumor agents [10–13].

In the pharmaceutical market, epalrestat (rhodanine-3-acetic acid) has been marketed
in Japan since 1992 for treatment of diabetic complications (peripheral neuropathy). Epalre-
stat is an inhibitor of aldose reductase, the key enzyme in the polyol pathway of glucose
metabolism under hyperglycemic conditions. The good clinical safety profile of epalrestat
justified the interest of the researchers in rhodanines as potential drug candidates.

Rhodanines were found to induce apoptosis through the modulation of the Bcl-2
family proteins [14,15] or through the modulation of other key signaling proteins [16,17].
Moreover, rhodanines were also reported to reveal their anticancer activity through the
inhibition of the phosphatase of regenerating liver (PRL-3) [18].

Furthermore, 5-benzylidene-3-ethyl-rhodanine, also known as BRT-1, is an active
anticancer agent which causes S-phase arrest and affects DNA replication in leukemic
cells. BTR-1 activates apoptosis and induces cell death [19]. Some of these molecules could
become effective and quite selective anticancer drugs in the future.

Among the reviews that have described the biological activity of rhodanines in the
last decade, the anticancer activity was described in subsections of the whole review pa-
pers [20–23]. There is only one review that strictly describes the anticancer activity of

Molecules 2022, 27, 3750. https://doi.org/10.3390/molecules27123750 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27123750
https://doi.org/10.3390/molecules27123750
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0003-0383-4855
https://orcid.org/0000-0002-8817-7470
https://doi.org/10.3390/molecules27123750
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27123750?type=check_update&version=2


Molecules 2022, 27, 3750 2 of 29

rhodanines [24]. The literature for our studies was selected from the period of 2011-January
2022, from the following scientific databases: Scopus (Elsevier), SciFinder (Chemical Ab-
stracts), and PubMed. Research articles, short communications, letters, and reports were
considered in our studies. Patents were excluded from this review.

There were certain keywords used for the search: “rhodanine”, “2-thioxothiazolidin-4-
one”, and “anticancer activity”. The chemical structures considered in this review were
limited only to rhodanine. Other structural analogues or isomers of rhodamine, such as
thiazolidine-2,4-dione, 2-iminothiazolidin-4-one, thiorhodanine, isorhodanine, and thiohy-
dantoin, were excluded.

2. Rhodanines with Anticancer Properties

Positions 3 and 5 in the rhodanine ring were revealed to be chemically more re-
active; this plays a significant role in the design and development of new drug-like
molecules [21,22]. To present the information available in the scientific literature about
molecules in this group in a more efficient way, we divided them according to the method of
substitution into 3-substituted, 5-substituted, and 3,5-disubstituted rhodanine derivatives.
The molecules described by scientists so far, depending on the place of substitution in the
rhodanine nucleus and the nature of the substituents, tend to show a different degree of
antitumor activity. We will try to identify those trends that could help in designing new
structures with the highest selectivity and potential anticancer activity in the future.

2.1. 3-Substituted Rhodanine Derivatives

Nguyen et al. synthesized a series of new structures, N-(4-oxo-2-thioxothiazolidin-
3-yl)-2-[(4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)thio]acetamide derivatives, and eval-
uated them for their cytotoxicity potential against K562 (human chronic myelogenous
leukemia) and MCF-7 (human breast adenocarcinoma) tumor cell lines. Compound 1 with
the 2-thioxothiazolidin-4-one ring containing the active methylene group (Figure 1), as
shown below, exerted moderate cytotoxicity against MCF-7 cells with a % inhibition of cell
growth of 64.4% at the concentration of 100 µg/mL [25].
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Figure 1. The structure of N-(4-oxo-2-thioxothiazolidin-3-yl)-2-[(4-oxo-3-phenyl-3,4-dihydro-

quinazolin-2-yl)thio]acetamide. 
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CH(CH3)COOH in the N-3 position of the rhodanine ring resulted in the formation of the 
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3- or 2.3-fold less active in comparison to the reference cisplatin (IC50 = 4.78 µg/mL) [26]. 

The introduction into structure 2 of the methyl group to carboxymethyl moiety only 

Figure 1. The structure of N-(4-oxo-2-thioxothiazolidin-3-yl)-2-[(4-oxo-3-phenyl-3,4-dihydroquinazolin-
2-yl)thio]acetamide.

On the other hand, the introduction of small groups such as -CH2COOH, -CH(CH3)COOH
in the N-3 position of the rhodanine ring resulted in the formation of the N-substituted com-
pounds 2 and 3, respectively (Figure 2). These molecules showed good antiproliferative activity
in the human chronic myelogenous leukemia cell line K562, with an IC50 of 14.60, 11.10 µg/mL,
respectively, and were twice or three times more potent than the other compounds from the
study. Worth noticing is that these compounds were only 3- or 2.3-fold less active in comparison
to the reference cisplatin (IC50 = 4.78 µg/mL) [26]. The introduction into structure 2 of the
methyl group to carboxymethyl moiety only slightly increases the activity. It may have been
caused by the similarity of the surface area of the N-3 substituent. However, further enlarging
the methyl substituent to isopropyl, carboxyethyl, or benzyl substituents into position 3 of the
rhodanine ring leads to a 2- or 3-fold decrease in activity.
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Figure 2. The structures of N-substituted rhodanines.

Furthermore, a structure–activity relationship study was carried out and indicated
that, irrespective of the hydrophilic or hydrophobic nature of the groups, the activity
decreased with the increase in size [26]. This trend is probably caused by the steric effect
that increases with the increasing size of the N-substituents.

Moreover, 3-α-carboxyethyl rhodanine 3 was tested for its anticancer activity against
the HeLa (human cervical cancer) cell line, and it turned out to be potent with an IC50 value
of 200 µg/mL (Figure 2) [27].

The antiproliferative activity of the N-3-substituted rhodanines was also confirmed by
Déliko Dago et al. [28], who evaluated the biological activity of some 3-[4-(arylalkoxy)phenyl
ethyl]-2-thioxo-1,3-thiazolidin-4-one (compound 4) and 3-[2-(4-hydroxyphenyl)ethyl]-2-
thioxo-1,3-thiazolidin-4-one (compound 5) against representative tumor cell lines (Figure 3).
The results of the survival assays showed that 2-thioxo-1,3-thiazolidin-4-one derivative
4 exhibited selective antitumor activity in the colorectal adenocarcinoma HCT 116 cell
line, with an IC50 value of 10 µM, and did not inhibit the growth of normal fibroblasts
(IC50 > 25 µM). While compound 5, interestingly, probably due to the presence of the
hydroxyl group and lack of bulky substituents, caused a good increase in the antitumor
activities, but without selectivity (MDA-MB231 (breast carcinoma) and HCT 116, IC50 2 µM;
Caco 2 (colon adenocarcinoma cells), IC50 3 µM).
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Figure 3. The structures of 3-arylethyl/arylrhodanines.

In the literature, we can also find references to some structures, such as 6 [12], 7, or
8 [29], that we could classify into this group of N-3-substituted rhodanines exhibiting po-
tential antitumor and anticancer activities. Compound 6 (Figure 3) showed some moderate
cytotoxicity towards the non-small cell lung cancer line A549, with IC50 = 43.6 µM, while
compounds 7 and 8 (Figure 4) significantly inhibited the cell growth of certain leukemia and
breast cancer cell lines, respectively, with 56.34% and 42.83% line growth at a concentration
of 10 µM.
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2.2. 5-Substituted Rhodanine Derivatives

Compound 9, which is 5-{4-[3-(4-methoxy-phenyl)-3-oxo-propenyl]-benzylidene}-2-
thioxothiazolidin-4-one (Figure 5), exhibited promising inhibitory activity against the
HeLa, HT29 (colorectal adenocarcinomma), A549, and MCF-7 cell lines with the inhibitory
concentration (IC50) values of 28.3, 24.5, 26.6, and 28.6 µM, respectively [11]. Moreover,
5-((2-chloro-6,7-dimethoxyquinolin-3-yl)methylene) rhodanine derivative 10 (Figure 5)
turned out to be potent against the gastric (HGC), prostate (DU-145), and breast cancer
(MCF-7) lines [30]. With some further modifications on pharmacophore, compound 10
could serve as a potential anticancer agent, especially towards the DU-145 and HGC cancer
cell lines. By comparing the excellent cytotoxic activity of structures 9 and 10 to some
previously described 3-substituted derivatives, it can be concluded that the molecules
possessing a free -NH-group in the rhodanine moiety seem to be more potent over the
N-CH2-COOH or N-Ph substituted ones. As suggested in the docking studies, this may
be connected with the influence of the hydrogen donor group on the active site of the
molecular target, such as, for example, the epidermal growth factor receptor (EGFR) [11].

El-Sayed et al. [31] synthesized some novel quinazolinone-based rhodanines that were
then biologically evaluated for in vitro cytotoxic activity against the human fibrosarcoma
cell line HT-1080 and two human leukemia cell lines, namely HL-60 and K562. Amongst
them, structure 11, bearing a bulky, hydrophobic substituent at the para position of the
quinazolinone 3-phenyl ring, was the most active, showing cytotoxic activity in the low
micromolar range (IC50 = 1.2–8.7 µM) towards all the tested cell lines (Figure 5). Its meta-
substituted counter partners shown in the study were far less active. Interestingly, normal
human skin fibroblasts (AG01523) were not affected by this molecule, which indicates that
some rhodanines may be selectively toxic against cancer cells. Another great example of
a structure that exhibits selective antitumor activity against selected leukemia and non-
small cell lung cancer cell lines is 12. The concentrations of this compound 12 for 50%
of the maximal inhibition of the cell proliferation (GI50) were tested, and it turned out to
be very potent, especially towards the HOP-92 (non-small cell lung cancer), CCRF-CEM
(leukemia), and RPMI-8226 (leukemia) cell lines with GI50 values of 0.62, 2.50, and 2.52 µM,
respectively. The described molecule 12 (Figure 5), as a pyrazole-rhodanine derivative with
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the LC50 > 100 µM indicates the low toxicity of such compounds for normal human cell
lines, as required for potential anti-tumor agents [32].
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There are also premises in the scientific literature regarding some small molecules that
might be fairly useful as a starting point to develop novel anticancer agents. As an example,
we can mention structure 13, which was quite toxic against HeLa and Hep cells, with EC50
values of 7.9 and 6.1 µM, respectively (Figure 5) [33].

In comparison, El-Mawgoud [34] synthesized some novel 5-[4-(arylmethylideneamino)-
1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-ylidene]-2-thioxo-1,3-thiazolidin-4-ones. Compounds
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14 and 15 and their cytotoxicity against human breast carcinoma cell line were evaluated
(Figure 6). Both of these 5-substituted rhodanines showed high antitumor activity against the
cell line MCF-7; however, molecule 14 was more potent than 15 with IC50 values of 7.67 µg/mL
and 11.7 µg/mL, respectively. This indicates that increasing the mass of the aryl substituent
resulted in a decrease in the cytotoxic activity of the tested compound 15.
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dimethyl-2-phenyl-1H-pyrazol-3(2H)-ylidene]-2-thioxo-1,3-thiazolidin-4-one (15).

Some new benzimidazole–rhodanine conjugates, 16 and 17, were designed, synthe-
sized, and investigated for their cytotoxic activities against human cancer cell lines, in-
cluding the human acute leukemia cell line (HL-60), the adenocarcinomic human alveolar
basal epithelial cancer cell line (A549), the human lymphoma cancer cell line (Raji), and
the human breast cancer cell line (MDA-MB-201) [35]. Compound 16, namely 5-[1-(4-
methylbenzyl)-1H-benzo[d]imidazol-2-yl]methylene-2-thioxothiazolidin-4-one, showed
excellent inhibitory activity against tested cell lines, with IC50 values of 2.66, 5.31, 4.48, and
6.42 µM, respectively, while the change of the 4-methyl substituent (compound 16) on the
phenyl ring to 2-fluoro for compound 17 resulted in a loss of cytotoxic activity towards all
cancer cell lines (Figure 7). This may be related to the fact that compounds with electron
donating groups showed better Topo II inhibition than those with electron-withdrawing
groups [35].
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2.3. 3,5-Disubstituted Rhodanine Derivatives

A new rhodanine analogue bearing 2-piperidine-quinoline scaffold [30], which is
compound 18 (Figure 8), was tested on two cancer cell lines, namely the HGC and the
MNK 74 (gastric cancer cell line). As with compound 10, the molecule seems to be effective
and hopefully, it will be considered as a potential anticancer agent, especially towards
gastric cancer, in the future. In turn, structure 19, as a 3,5-disubstituted derivative with
a cinnamoyl moiety at the fifth position of the rhodanine nucleus, was screened against
MCF-7 breast cancer cells [36] and showed some significant anticancer activity, inhibiting
the growth of the cancer cell line by 81% at a concentration 10 µg/mL (Figure 8). According
to the analogs of the tested compound 19, shown in the study in [36], the change of the N-3
substitution of the rhodanine ring from 2-chlorophenyl for molecule 19 to 3-cyclohexyl (20)
and 3-benzyl (21) (Figure 8) resulted in the inhibitory decline (inhibitory values of 77% and
71%, respectively). This example indicates a trend, showing that increasing the substituent
mass in the third position of the rhodanine moiety improves anticancer activity, as it also
does amongst the 3,5-disubstituted rhodanine analogues.
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Prashantha Kumar et al. synthesized a novel rhodanine of biological interest, in-
corporated with L-tyrosine (compound 22), and an in vitro cytotoxicity assay against the
human lung cancer cell line A549 was carried out [37]. The desired compound 22 turned
out to be very effective, with a concentration that inhibited 50% of the growth of A549
cells, with a CTC50 (50% of cytotoxicity inhibition) value of 3.6 µg/mL (Figure 9). These
results may encourage further investigation of the stereospecific synthesis of other amino
acid-incorporated rhodanine derivatives for their anticancer properties.
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New 5-arylidene-2-thioxo-1,3-thiazolidine carbamate, namely compound 23, was
synthesized (Figure 10) [13]. The structure was found to be most active and selective
towards the Huh7 D12 (the hepatocellular carcinoma cell line) and Caco2 cancer cell lines,
with IC50 values of 8 µM, without significant toxicity on normal fibroblasts (IC50 > 25 µM).
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Figure 10. The structure of tert-butyl [2-(4-{2-[(2H-1,3-benzodioxol-5-yl)methylidene-4-oxo-2-thioxo-
1,3-thiazolidin-3-yl]ethyl}piperazin-1-yl)ethyl] carbamate.

N-(5-Arylidene-4-oxo-2-thioxothiazolidin-3-yl)-2-((4-oxo-3-phenyl-3,4-dihydroquinazo
line-2-yl)thio)acetamide, compound 24 [21], is another good example of the molecule that
confirms the relationship trend between structure and its anticancer activity, where 3,5-
disubstituted rhodanine derivatives are more suitable for the higher and more selective cyto-
toxicity against particular cancer cell lines and seem to be more potent towards these cell lines,
rather than their N-3-substituted counterparts. Compound 24, with the 4-methoxybenzylidene
group introduced at the C-5 position of the rhodanine nucleus, inhibited MCF-7 cancer cell
line growth by 82.5% at a concentration of 100 µg/mL (Figure 11), whereas its N-3-substituted
analogue, 1, only inhibited it by 64.4% (Figure 1). This may suggest that 3,5-disubstituted
derivatives represent a better overall profile of a structure with the expected anticancer activity.
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Novel rhodanine-containing sorafenib analogs were synthesized, namely compounds
25 and 26, which were then evaluated for their in vitro antiproliferative activity against
three cancer cell lines (A549, H460, and HT29) [12]. The results indicate that these struc-
tures, especially with 25, possess antitumor activity superior to the reference drug so-
rafenib (Figure 12). The most active compound, 25, with the remarkable IC50 values of
0.8, 1.3, and 2.8 µM against A549, H460, and HT29 cell lines, respectively, being C-5-(2-
fluorobenzylidene) substituted, was much more potent in comparison to the analogue
structure 6 (Figure 3). This confirms the conclusion that the level of antitumor activity
strongly depends on the substitution pattern of the rhodanine core at the C-5 position.
While compound 26, also being much more effective against tested cell lines than 6, proba-
bly due to the more bulky C-5 substituent, exhibited lesser antiproliferative activity towards
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the A549 cancer cell line when compared to 25 (IC50 = 3.1 and 0.8 µM, respectively), whereas
a similar tendency of the tested compounds 25 and 26 on the H460 and HT29 cancer cell
lines is difficult to define. These findings may be a very valuable source of information for
designing new rhodanine-based anticancer agents in the future.
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Figure 12. The structures of rhodanine-containing sorafenib analogues.

A good example of the superiority of rhodanines over thiazolidinediones is compound
27, which is a phenyl-substituted triazolothiazolyl-rhodanine derivative [38]. This com-
pound reveals better anticancer properties. This seems to prove that this particular moiety
should still be widely researched and used in the development of promising new anticancer
agents. The discussed structure showed remarkable cytotoxic activity against two cancer
types, namely the hepatocellular carcinoma (HCC) Huh7 and breast cancer MCF-7 cell
lines, with IC50 values of 4.67 and 2.30 µM, respectively (Figure 13). At the same time, its
analogue, 28, in which the rhodanine moiety was replaced with thiazolidine-2,4-dione,
turned out to be non-responsive to the tested cells. It is noteworthy that, according to the
results of this study, the lipophilic groups, such as -CH2COOC2H5, introduced on the N-3
position of the rhodanine nucleus, may improve the anticancer activity of the compounds
and may increase the permeability of the compound to cells. Lipophilic groups may also
have a positive impact when implemented into novel rhodanine derivatives as potential
antitumor agents, for the same reasons.
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The next promising rhodanine compound, with a furochromone scaffold in its struc-
ture, is structure 29, which was synthesized and tested for its anticancer properties
(Figure 14) [39]. This khellin derivative turned out to be potent on breast cancer cells
that originated from different types of tissues, displaying very low EC50 values, especially
against the MCF-7 and MDA-MB-231 cell lines (EC50 = 1.732 and 2.912 µM, respectively).
In addition, a superior inhibitory effect of growth on Huh7 cells was observed. Based on
this form of furochromone, khellin with a lipophilic rhodanine structure, the discovery
of even more active molecules slowing down the progression of the tumor cells could be
carried out, mainly for novel anti-breast cancer agents.
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Figure 14. The structure of furochromone derivative.

New 5-(3,5-diaryl-4,5-dihydropyrazol-1-ylmethylene)-2-thioxothiazolidin-4-ones with
a diclofenac moiety, namely compound 30 and 31 (Figure 15), have been synthesized and
evaluated for their antitumor activities [10]. 2-[2-(2,6-Dichlorophenylamino)-phenyl]-N-{5-
[5-(4-methoxyphenyl)-3-naphthalen-2-yl-4,5-dihydropyrazol-1-ylmethylene]-4-oxo-2-thioxo
thiazolidin-3-yl}-acetamide, 30, was found to be the most active structure possessing sub-
stantial activity against all tested human tumor cell lines, with average cell growth indices
(GPmean) of 22.40%, whereas molecule 31, being an analogue of 30, with just a 3-phenyl
substitution of the pyrazole moiety instead of 3-naphthalene, was a diametrically weaker
agent, with average cell growth indices (GPmean) of 99.30%. These rhodanine-pyrazoline
hybrid molecules, with a diclofenac moiety after some further modifications on pharma-
cophore, could potentially serve as a base for designing novel anticancer drugs.
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Figure 15. The structures of new rhodanine-pyrazoline hybrid molecules with a diclofenac fragment.

Benzimidazole–rhodanine conjugates 32 and 33 (Figure 16) were synthesized as ana-
logues to the compounds 16 and 17 (Figure 7), being additionally N-3-substituted with
acetic moiety [32]. The most potent structure of the discussed compounds was 32, exhibit-
ing excellent cytotoxic activity against the HL-60, MDA-MB-201, Raji, and A549 cancer cell
lines, with IC50 values of 0.21, 0.33, 1.23, and 2.67 µM, respectively. The compound was
added to the wells at increasing concentrations (0–50 µM). After 48 h, each well was treated
with a 20 µL MTT (2.5 mg/mL) solution, and the cells were further incubated at 37 ◦C for
4 h. In comparison to 17, it seems that acetic moiety is crucial for the cytotoxic effect, at least
for the tested cancer cell lines. It is noteworthy that both of the 3,5-disubstituted rhodanines,
32 and 33, displayed significantly better activity than their 5-substituted counterparts from
the study. The results show that the introducing of acidic moiety, especially acetic one, at
the third position of the rhodanine ring may have a significant impact on the potential
anticancer activity of the desired compounds.
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Figure 16. The structures of benzimidazole–rhodanine conjugates.

Another indisputable piece of evidence confirming the superiority of 3,5-disubstituted
structures over their 3-substituted rhodanine counterparts, with regard to their anticancer
properties, is compound 34. This 3-α-carboxy ethyl-5-benzylidene rhodanine derivative
caused inhibition of HeLa cancer cell growth by 52% (Figure 17), while 3 (Figure 2) was
less effective against the tested HeLa cells, with an inhibitory percentage of 14.28% [27].
When comparing these two structures, it is clear that the introduction of 4-methoxy benzyli-
dene moiety for 34 increased its cytotoxicity levels significantly towards the tested HeLa
cancer cells.
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Figure 17. The structure of 5-{[(4-methoxyphenyl)methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-
yl}propanoic acid.

Novel 3-(4-Arylmethylamino)butyl-5-arylidene-rhodanine, 35, was synthesized [40],
and its antitumor activity was tested. This structure exhibited promising antitumor effects
in the HuH7 D12, HaCat, and MDA-MBD 231 cell lines, with IC50 values below 10 µM
(Figure 18). It is worth emphasizing that compound 35, while being potent against cancer
cell lines, did not inhibit the growth of normal fibroblasts (IC50 > 25 µM).
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Figure 18. The structure of 3-(4-arylmethylamino)butyl-5-arylidenerhodanine.

Kryshchyshyn et al. introduced some new pyrrolidinedione-thiazolidinone hybrids,
36 and 37 (Figure 19), and then tested these 5-ylidene-3-(1-aryl-pyrrolidine-2,5-dione)-
rhodanines towards selected cell lines for their antileukemic properties [41]. Both com-
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pounds inhibited Dami cell line growth by more than 50%, and 36 was the more potent of
the two (Dami cell line growth = 35.10%). In turn, structure 37 turned out to be more active
against HL-60 cells, with an inhibitory value of almost 60%. Based on the presented data,
one could say that compounds 36 and 37 possess satisfactory toxicity levels on leukemia
cell lines and might be used for the drug-like molecules.
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Figure 19. The structures of pyrrolidinedione-thiazolidinone hybrids.

Selected rhodanine-3-carboxylic acid derivative, 38, was synthesized and its cytotoxic-
ity against human ovarian carcinoma A2780 and A2780cisR-cells has been determined [42].
Structure 38, namely 4-[5-(4′-N,N-dimethylaminobenzylidene)-rhodanine]-butyric acid,
displayed excellent anticancer activity, with IC50 = 4.4 and 3.3 µM towards both tested
cell lines, A2780 and A2780cisR, respectively (Figure 20). Interestingly, the selected com-
pound 38 was much more cytotoxic than cisplatin in both cancer cell lines. Phenothiazine,
chalcone, and rhodanine moieties that are pharmacologically active were presented in the
hybrid molecule 39 and seem to act synergetically when evaluated for their antiproliferative
activity against K562 cancer cell lines (Figure 20) [43].
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Buzun et al. [44] designed and synthesized a series of new 5-[(Z,2Z)-2-chloro-3-(4-
nitrophenyl)-2-propenylidene]-thiazolidinones, which are a combination of a thiazolidinone
core and a structural fragment of the ciminalum, namely(2Z)-2-chloro-3-(4-nitrophenyl)
prop-2-enal. Ciminalum is an active Gram-positive and Gram-negative antimicrobial
factor [45]. Amongst these hybrid compounds, 3-{5-[(Z,2Z)-2-chloro-3-(4-nitrophenyl)-2-
propenylidene]-4-oxo-2-thioxothiazolidin-3-yl}propanoic acid, 40 (Figure 21), displayed the
best antimitotic activity, with mean GI50 values of 1.57 µM and a certain sensitivity range to-
wards the leukemia (MOLT-4, SR), colon cancer (SW-620), CNS cancer (SF-539), melanoma
(SK-MEL-5), gastric cancer (AGS), human colon cancer (DLD-1), and breast cancers (MCF-7,
MDA-MB-231) cell lines. Structure 41, being a p-hydroxyphenyl derivative was also very
effective, while the absence of a substituent in the C-3 position of the rhodanine moiety
(42), or an additional ciminalum fragment (43), led to decrease in anticancer cytotoxicity
(Figure 21). Both compound 40 and compound 41 had low toxicity levels towards normal
human blood lymphocytes and a broad range of therapeutic effects. These data suggest that
the presence of a ciminalum moiety in the C-5 position of the 2-thioxo-4-thiazolidinone ring
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is a very interesting possibility for designing novel and potentially active agents, as high
cytotoxicity of the tested 5-[(Z,2Z)-2-chloro-3-(4-nitrophenyl)-2-propenylidene]-2-thioxo-4-
thiazolidinone-3-carboxylic acids against several cancer cell lines have been established.
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Figure 21. The structures of new ciminalum–thiazolidinone hybrid molecules.

Zhou et al. [46] combined the cores of a 2-thioxo-4-thiazolidinone moiety, a, b-unsaturated
ketones, and acrylamide derivatives to design new microtubule-interacting agents as potentially
active antiproliferative compounds against different cancer cells. (Z)-2-(5-(4-(dimethylamino)
benzylidene)-4-oxo-2-thioxothiazolidin-3-yl)-N-phenylacetamide, 44 (Figure 22), displayed
the best antiproliferative activity towards A549 (IC50 = 7 µM) cancer cells, comparable to
that achieved with gefitinib (IC50 = 5.89 µM). Moreover, molecule 44 turned out to be only
weakly cytotoxic against NRK-52E cells, with IC50 = 14.7 µM, while promoting microtubule
protofilament assembly, leading to a reduction in microtubule density and disordered networks.
It seems that a bulky steric-hindering moiety at the para position favors the good bioactivity of
modified (Z)-2–(5-benzylidene-4-oxo-2-thioxothiazolidin-3-yl)-N-phenylacetamide derivatives,
according to compound 44. These results might help with developing novel microtubule-
stabilizing structures, which are potent in the treatment of cancer.
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Figure 22. The structure of (Z)-2-(5-benzylidene-4-oxo-2-thioxothiazolidin-3-yl)-N-phenylacetamide.

Last, but not least, rhodanine-oleanolic acid derivatives, 45 and 46 [29], had a signifi-
cant inhibitory effect on some breast cancer (45) and ovarian cancer (46) cell lines (Figure 23).
However, any tendency between the cytotoxic effects for different substituents of these
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oleanolic derivatives, including 7 and 8 (Figure 4) compounds and cancer cell lines, is
difficult to determine.
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Figure 23. The structures of 3-O-acyloleanolic acid derivatives with rhodanine core.

Summarizing the structure–activity relationship analysis, the following trend can be
observed. The introduction of small substituents in position 3 of the (2-thioxothiazolidin-3-
yl)acetic acid derivatives (compounds 2 and 3) improves the activity against the leukemia
cell line K562. However, the enlarging of the substituents in this position (ex. isopropyl, car-
boxyethyl, or benzyl) was unfavorable for antiproliferative activity against K562 (Figure 24).
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Figure 24. The structure–activity relationship for some 3-substituted rhodanines with anticancer
properties against leukemia, colorectal, prostate, breast, hepatocellular, and lung carcinoma cells.

A similar trend was observed for compounds 5 and 4. Expanding the substituent
by the 4-methoxyphenylalkyl groups of compound 5 decreased the anticancer activity
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against some leukemia, colorectal, prostate, breast, hepatocellular, and lung cancer cell
lines (Figure 24).

It is notable that the presence of heteryl moiety was more preferable for good anticancer
activity than aryl substituent in 5-substituted rhodanines (Figure 25).
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It is worth noticing that the introduction of simultaneous substituents at positions 3
and 5 of the rhodanine system generally increases the anticancer activity in comparison
with the 3- or 5-monosubstituted rhodanine derivatives (Figure 26).

The information about the activity of the most potent 3-, 5-substituted, and 3,5-
disubstituted rhodanine derivatives is summarized and presented in Table S1 (see
Supplementary Materials).
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Figure 26. The structure–activity relationship for some 3,5-disubstituted rhodanines with anti-
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3. Targets

Protein kinases are an important class of enzymes that regulate various biological
processes. These enzymes can catalyze protein-phosphorylation on serine, tyrosine, and
threonine residues, which are often deregulated in human diseases. So far, a total of
518 human kinases have been investigated as potential therapeutic targets [47]. That is why
the constant search for protein-kinase inhibitors for novel anticancer agents is still a very
interesting target, especially in the pharmaceutical industry (Figure 27).

The phosphatases of the regenerating liver (PRLs) family, also described as protein
tyrosine phosphatase 4A (PTP4A), are dual-specificity phosphatases possessing multiple
cellular functions that are still largely unknown. However, the latest results indicate that
PRLs are oncogenic across many different types of human cancers. PRLs are overexpressed
in advanced-stage tumors and metastases compared to initial/preliminary stage cancers,
and the high expression of the PRLs is usually matched with poor patient prognosis. PRL-3
is the most well-known of the PRLs that have been considered as potential therapeutic
targets in cancer [48]. Rhodanine benzylidene derivative 47 and rhodanine naphthylidene
derivative 48 were synthesized (Figure 28), and their inhibitory effect against PRL-3 was
measured [18]. Compound 47 turned out to be the most active with an IC50 value of 0.9
µM as 48 displayed a weaker inhibitory effect towards PRL-3 (IC50 = 1.7 µM). The results
indicate that the introduction of a benzylidene moiety at C5 of the rhodanine nucleus favors
a higher inhibitory potency of PRL-3 over 5-naphthylidene substitution. According to the
structural information from the study [49], PRL reveals a strong hydrophobic character,
bearing a large entrance; so, it is noteworthy that the introduction of substituents with a
hydrophobic nature enhanced the inhibitory effects of rhodanine molecules against PRL-3.
The 5-cinnamilidenerhodanine derivative 49 showed a slightly better inhibition activity of
PRL-3 than its benzylidene analogue 47 (IC50 = 0.8 µM vs. 1.1 µM, respectively) [50]. The
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5-[5-chloro-2-(trifluoromethyl)benzylidene]-2-thioxothiazolidin-4-one (50) could effectively
inhibit PRL-3 with IC50 = 15.22 µM. Additionally, compound 50 inhibited expression of
PRL-3 and increased the phosphorylation of PRL-3 substrates, as well as decreasing the
survival of SW-480 cells (IC50 = 6.64 µM), and induced apoptosis. Compound 50 is a
promising anticancer PRL-3 targeting drug candidate [51].
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The pentose phosphate pathway is a metabolic pathway parallel to glycolysis [52], in
which activation of (PPP) enzymes, namely glucose-6-phosphate dehydrogenase (G6PD)
and 6-phosphogluconate dehydrogenase (6PGD), significantly affects tumor metabolism
by contributing to malignant transformation, enlarging tumor progression, preventing
cell apoptosis, and promoting tumor metastasis and angiogenesis [53]. High expression
of the PPP, in particular the 6PGD enzyme, has previously been reported mainly in the
regulation of multiple human solid cancers, such as leukemia cancer, liver cancer, colon
cancer, breast cancer, ovarian cancer, and thyroid cancer. However, the promoting can-
cer progression mechanism by PPP enzymes is still being studied [54,55]. The inhibitory
activities of selected rhodanine derivatives containing different benzene moieties 51 and
52 (Figure 29) on the PPP enzymes G6PD and 6PGD were tested [56]. Structure 51 was
found to be most potent against G6PD with IC50= 6.54 µM, while 52 displayed a stronger
inhibitory effect towards 6PGD, with an IC50 value of 10.04 µM. When comparing both
structures, it is clear that introducing a nitro group into the para-position of a benzene
moiety favors the better inhibitory activities of N-3-substituted rhodanines towards the
6PGD (PPP) enzyme, whereas the G6PD enzyme seems to be more prone to the inhibitory
effects of N-3-substituted rhodanine derivatives bearing the 4-methylbenzylidene group.
The molecular docking studies results showed that the 4-methylbenzylidene moiety (com-
pound 51) interacted with hydrophobic residues in the catalytic active site of the G6PD
enzyme. Compound 51 interacted with Phe171 (key residue of catalytic activity) residues
by a closer location into the catalytic active site [57]. Interaction between the compound
and Phe171 may lead to inhibition of the enzyme by interfering with the interaction be-
tween the residue and the substrate. Several G6PDs have demonstrated similar modes of
interaction [58,59]. On the other hand, the binding modes showed that compound 52 with
the 4-nitrobenzylidene group may inhibit the enzyme by closely interacting with Glu151
residue. In general, electron-donating groups decrease G6PD enzyme activity and, con-
versely, electron-withdrawing groups decrease 6PGD enzyme activity. These rhodanines
might become some future drug candidates for potent inhibitors of PPP enzymes.
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NF-kB is a multipurpose transcription factor that plays the main regulatory role of
the genes related to inflammation, proliferation, and anti-apoptosis. The phosphorylation
process of IkB is catalyzed by the IkB kinase complex protein (IKK), which consists of two
central catalytic subunits, IKKα (IKK1), IKKβ (IKK2), and one regulatory IKKγ (NEMO).
Both IKKα and IKKβ are serine-threonine kinases, but IKKα is believed to regulate the
time of the NF-kB response with an extended expression of the proinflammatory cytokines
spotted in IKKα-deficient cells. That is why the development of IKKβ selective inhibitors
over IKKα is beneficial to autoimmune diseases such as cancer [60]. Structure 53 (Figure 30)
was found to possess the highest inhibitory activity, with an IC50 value of 0.35 µM as well
as excellent selectivity against IKKβ over other kinases such as IKKα, JNK1, JNK2, or
JNK3. Both the NF-kB activation and the TNFα production were successfully blocked by
compound 53 [60]. The results of the cell-based assay indicated that the IKKβ inhibitory
activities were influenced mostly by amino groups in the western part of the rhodanine ring
and the location of carboxamido substituent in the eastern part of the derivatives. These
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findings may suggest that rhodanine derivatives with aminoalkoxy substituents, such as
the molecule 53-bearing 4-methylpiperazinylpropoxyphenyl group in the western part and
the para-carboxamidophenoxyphenyl moiety in the eastern part of the rhodanine nucleus,
could become potential candidates for the treatment of the diseases linked with NF-kB
activation, such as cancer, as effective IKKβ inhibitors.
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Resistance to the conventional therapies of human cancer often results from the
evasion of apoptosis, which is characteristic of malignancies. Therefore, targeting essential
apoptosis regulators is a promising strategy for developing potent therapeutic agents to
improve their treatment. The Bcl-2 (B-cell lymphocyte/leukemia-2) family proteins are the
main factors that regulate the process of apoptosis and the composition of anti-apoptotic
proteins, such as Bcl-2, Bcl-xL, Mcl-1, Bfl-1/A1, Bcl-B, and Bcl-w, and pro-apoptotic proteins,
including BAK, BAX, BID, BIM, and BAD [61]. Studies are proving that the anti-apoptotic
Bcl-2 proteins tend to be overexpressed in various types of human cancers, including
B-cell lymphomas [62], breast carcinomas [63], and prostate cancers [64]. The available
data also indicate their contribution to cancer initiation and progression, as well as their
resistance to some of the current anticancer treatments [65]. Small-molecule inhibitors,
including 2-thioxo-4-thiazolidinone-based derivatives, have been reported as effective Bcl-2
family inhibitors. For example, BH3I-1 induced apoptosis by binding to the BH3 site of
the anti-apoptotic Bcl-2 proteins [66], and WL-276, as its preliminary biological activity
assay, indicated the possibility of tumor growth suppression [67]. Huansheng Fu et al. [68]
developed a new compound possessing a 3-aryl-rhodanine benzoic acid structure that
inhibited Bcl-2 protein by 18% at 100 µM and then designed novel rhodanine derivatives
based on this molecule. Synthesized compounds 54 and 55 displayed the best Bcl-2/Mcl-1
inhibitory activities with the binding affinities below 1 µM (Figure 31). The strong affinities
of structures 54 and 55 indicate that para-bromophenyl and ortho-, para-dimethoxyphenyl
substituents on the 3-position of the rhodanine ring benefit from the higher potency of the
compounds. Interestingly, the molecules had much better activities when compared to the
initial structure. Furthermore, both of the compounds displayed Bcl-2/Mcl-1 selectivity
over Bcl-xL. These results suggest that rhodanine-based benzoic acid derivatives could
become lead structures for designing potent and Bcl-2/Mcl-1 selective inhibitors.
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Referring to the compound BH3I-1, as a well-known inhibitor of the Bcl-2 proteins [69],
its modifications can result in different binding profiles to Bcl-xL protein, with an in-
crease in molecule efficacy [70,71]. Bernardo et al. [72] developed novel pyridylrho-
danines and, amongst them, structures 56 and 57 as potential inhibitors of Bcl-xL and
Mcl-1 (Figure 32). Compound 56 showed the best binding and selectivity towards Bcl-xL
(Ki= 3.6 µM), whereas 57 was the most selective binder with the respect to the Mcl-1 protein
(Ki= 8.5 µM). Interestingly, structure 57, despite the strong affinity to Mcl-1 had no observed
binding towards Bcl-xL.
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Figure 31. The structures of 3-aryl-rhodanine benzoic acids as anti-apoptotic protein Bcl-2 inhibitors. 
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Figure 32. The structures of rhodanine-based compounds with binding activity against Bcl-XL
and Mcl-1.

The Pim kinase family members consist of Pim-1, -2, and -3, which are highly homolo-
gous to each other [73]. The serine/threonine Pim kinases are overexpressed in different
types of solid carcinomas and hematological malignancies and contribute to regulating
cell-cycle progression and cell survival [74]. Moreover, Pim kinases were suggested to take
part in angiogenesis and anticancer drug resistance in chemotherapy [75]. Sawaguchi et al.
found a potent and selective Pim kinases inhibitor, compound 58, with a rhodanineben-
zoimidazole structure (Figure 33) [76]. Compound 58 inhibited Pim-1, -2, and -3, with IC50
values of 16, 13, and 6.4 nM, respectively. This molecule, with a 1H-benzo[d]imidazole
ring and methylpierazine as an aliphatic amine through the phenyl group as a linker,
suppressed the proliferation of solid and hematological cancer cell lines at submicromolar
concentrations. The given data suggest that compound 58 can serve as a lead to new
anticancer agents which are effective in the treatment of both solid carcinomas and hemato-
logical malignancies.
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DNA topoisomerases are the main cellular enzymes found in nearly all kinds of
living cells. These enzymes mediate DNA replication, repair, transcription, recombination,
and chromatin assembly [77,78]. Certain of the most effective anticancer drugs, such
as etoposide, doxorubicin, or amsacrine, have been reported as Topo II inhibitors [79].
Although these compounds tend to exhibit some serious side effects during chemotherapy,
which limit their therapeutic values, the development of novel, potent drugs such as Topo
II inhibitors is necessary for improving the quality of cancer treatment [80–82]. Some recent
structure–activity relationship studies showed that the benzimidazole ring introduced
to the structures as the fused system is important for Topo II inhibitory potency, as is
the phenyl group linked to this moiety [83]. Mechanism studies supported by molecular
docking revealed that these molecules block the ATP-binding site of the enzyme [84,85].
Penghui Li et al. synthesized benzimidazole-rhodanine conjugates 59 and 32 (Figure 34)
and evaluated them for their Topo I and II inhibitory properties [32]. The tested compounds
turned out to be non-intercalating Topo II catalytic inhibitors, showing strong inhibitory
activities at 10 µM. Both rhodanine derivatives, 59 with 2-fluorobenzyl and 32 with 4-
methylbenzyl substituted benzimidazole moieties, indicate that the rhodanine ring and the
phenyl group are particularly significant for the Topo II inhibitory potency.
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Figure 34. The structures of potent benzimidazole-rhodanine conjugates as topoisomerase
II inhibitors.

Human DNA polymerase λ (DNA Pol λ) is a key enzyme for maintaining the ge-
netic integrity of the genome. The rhodanines, which are an excellent drug scaffold, were
found to be the most potent inhibitors for DNA Pol λ. DNA Pol λ can synthesize DNA
in a template-dependent manner, de novo, and possesses terminal deoxynucleotidyl trans-
ferase (TDT) activity [86,87]. An investigation of the expression patterns of specialized
DNA polymerases in 68 different tumor samples revealed that in more than 45% of these
tumors at least one specialized DNA polymerase was 2-fold-enhanced expressed [88].
Strittmatter et al. [35], in their work, focused on the recently described human DNA poly-
merase λ (DNA Pol λ), a member of the DNA polymerase X family [89]. One goal for
targeting these DNA polymerases is the inhibition of the repair of DNA adducts caused
by DNA-damaging anticancer agents. Known inhibitors of the polymerase function of
DNA Pol λ are exclusively based on natural products [90]. Three classes of compounds
were analyzed towards inhibiting the DNA polymerase function of DNA Pol β [35]. Class
I was rhodanines, namely 5-arylidene-2,4-thiazolidinediones, class II consisted of carbo-
hydrazides, and class III contained a common 2,4-pentadione substructure element. The
rhodanines, being an excellent scaffold for the developing biologically active molecules [91],
inhibited the polymerase function of DNA Pol λ. These compounds were able to discrim-
inate between DNA Pol λ and β, where compound 60 (Figure 35) was the most potent
discriminating inhibitor. It was found that structure 60 dose-dependently inhibits the
polymerization function of DNA Pol λ, with an IC50 value of 5.9 µM, and DNA Pol β, with
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an IC50 of 64.4 µM, and hence could discriminate between the two highly similar families
of X DNA polymerases with a factor of ∼10. These data indicate that the rhodanine moiety
is very important for a highly active inhibitor. Rhodanines are nonmutagenic [92], and a
long-term study was conducted on their clinical effects on compounds such as, for example,
rhodanine-based epalrestat, which was well tolerated by patients [93], while DNA Pol λ
was discussed as a promising cellular target, especially in the case of cancer treatment [94].
The half-maximal inhibitory concentration of the cell viability was determined (EC50) for
the discovered rhodanines, including compounds 60 and 61 (Figure 35), using two human
cancer cell lines, a cervix carcinoma cell line, HeLa S3, and a hepatocellular carcinoma cell
line, Hep G2 [35]. In both of these cancer types, DNA Pol λ is overexpressed [95].
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Among the 538 human kinases, DYRKs (dual-specificity tyrosine phosphorylation
regulated kinases, consisting of 5 members) is a family of eukaryotic kinases that are
associated with a larger CMGC family of proline/arginine-directed serine/threonine ki-
nases. In this DYRK family, there are five mammalian subtypes (1A, 1B, 2, 3, and 4). The
Dyrk1A gene is located within the human chromosome 21 Down Syndrome Critical Region
(DSCR) [96]. According to recent literature, DYRK1A occurs due to its involvement in
different diseases, including Alzheimer’s disease (AD), Down syndrome (DS) [97], and
cancer [98–100]. Bourahla et al. [101] designed a series of novel compounds, including (5Z)
5-arylidene-2-thioxo-1,3-thiazolidin-4-one derivatives prepared under microwave irradia-
tion from various aromatic aldehydes and respective 2-thioxo-1,3-thiazolidin-4-ones, and
some valuable results for structures 62, 63, 64, 65, 66, and 67 were obtained (Figure 36).
Compound 62, with a hydroxyl group at the C-4 position of the exocyclic phenyl moiety,
exhibited a sub-micromolar inhibitory effect towards DYRK1A (IC50 = 0.028 µM). Interest-
ingly, compound 63, bearing a supplementary hydroxyl group at the C-3 position of the
phenyl ring, was completely inactive (IC50 > 10 µM), which indicates that the presence of
only a single hydroxyl group on the phenyl moiety seems to be essential for an optimal
inhibitory effect. In structure 64, the introduction of a small methoxy group resulted in the
DYRK1A inhibition activity decrease (IC50 = 0.064 µM). The introduction of more bulky
groups at the 5-ylidene position in 65, 66, and 67, as 1,3-benzodioxol-5-yl, 2,3-dihydro-1,4-
benzodioxin-5-yl, or 2,3-dihydro-benzofuran-5-yl, respectively, resulted in the maintenance
of sub-micromolar kinase inhibitory activity.

Casein kinase 1 (CK1) is a monomeric serine-threonine protein kinase with seven
isoforms: α, β, γ1, γ2, γ3, δ and ε. CK1 is involved in many cellular processes, including
DNA repair, cell division, nuclear localization, and membrane transport. Isoforms are also
integral to development [102]. For example, compound 68 (Figure 37) exhibited a promis-
ing inhibitory effect on SsCK1 (IC50 values for 68: 1.4 µM) with good selectivity. These
results may be the starting point for a new, larger group of 3-(4-Arylmethylamino)butyl-
5-arylidene-rhodanine derivatives and further investigation of the biological properties
of these novel porcine casein kinase 1, SsCK1 inhibitors with potential applications in
cancer [40].
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Figure 37. The structure of 3-(4-arylmethylamino)butyl-5-arylidene-rhodanine displaying inhibition
activity on SsCK1.

4. Conclusions

In summary, this article provides an overview of the information about the anticancer
activity of rhodanines published in the last decade. The rhodanine heterocycle is a privi-
leged core in medicinal chemistry and is highly effective in many kinds of biological activity.
This review describes the structure–activity relationship and some molecular targets for
rhodanine derivatives.

The rhodanine derivatives showed great potential as anticancer agents, and some
of them demonstrated activity in the range of micromolar concentration (0.2–0.6 µM) as
well as revealing a good safety profile. The results of the structure–activity relationship
analysis demonstrated that the presence of hydrogen donor groups, such as carboxyl
or phenol hydroxyl connected with a small linker in position 3 of rhodanine, was more
beneficial for anticancer activity than their more bulky homologues. In addition, the
presence of heteryl moiety in position 5 of the 2-thioxothiazolidin-4-one ring was also better
for anticancer activity in comparison with the aryl substituents. The structure–activity
relationship analysis also suggested that 3,5-disubstituted rhodanine derivatives generally
showed better anticancer potential than their 3- or 5-monosubstituted precursors.

Therefore, this review appears to be important for the further development of the ratio-
nal drug design of new candidates with anticancer potential among rhodanine derivatives
and their structural analogues.
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Abbreviations

6PGD—6-phosphogluconate dehydrogenase; A2780—human ovarian carcinoma cell line;
A2780cisR—cisplatin-resistant human ovarian carcinoma cell line; A549—adenocarcinomic human alveolar
basal epithelial cells; AG01523—normal human skin fibroblasts; AGS—gastric cancer cell line; BAK, BAX,
BID, BIM, and BAD—pro-apoptotic proteins; Bcl-2—B-cell lymphoma 2, protein that regulates cell death
(apoptosis); Bcl-B—anti-apoptotic protein; Bcl-w—anti-apoptotic protein; Bcl-xL—anti-apoptotic protein;
Bfl-1/A1—anti-apoptotic protein; BH3I-1—selective inhibitor of Bcl-2 family proteins; Caco-2—human
colon adenocarcinoma cell line; CCRF-CEM—lymphoblastic leukemia cell line; CK1—casein kinase
1; CMGC—kinases family, cyclin-dependent kinase (CDK), mitogen-activated protein kinase (MAPK),
glycogen synthase kinase (GSK) and CDC-like kinase (CLK); CTC50—50% of cytotoxicity inhibition;
Dami—megakaryoblastic leukemia cell line; DLD-1—human colon cancer cell line; DNA Pol β—DNA
polymerase beta; DNA Pol λ—human DNA polymerase λ; DSCR—Down syndrome critical region;
DU-145—human prostate cancer cell line; DYRK1A—dual specificity tyrosine phosphorylation regulated
kinase 1A; DYRKs—dual-specificity tyrosine phosphorylation regulated kinases; EC50—half-maximal
inhibitory concentration of the cell viability; EGFR—epidermal growth factor receptor; G6PD—glucose-6-
phosphate dehydrogenase; GI50—molar concentration of the compound that inhibits 50% net cell growth;
GPmean—mean growth percentage; H460—lung cancer cell line; HaCat—human epidermal keratinocyte
cell line; HCT 116—human colorectal carcinoma cell line; HeLa—cervical cancer cells; HeLa S3—cervix
carcinoma cell line; Hep—Hep G2 hepatocellular carcinoma cell line; HGC—human gastric cancer cell
line; HL-60—human leukemia cell line; HOP-92—non-small cell lung cancer cell line; HT-1080—human
fibrosarcoma cell line; HT29—human colorectal adenocarcinoma cell line; Huh7 D12—hepatocellular carci-
noma cell line; IC50—half-maximal inhibitory concentration; IKK—kinase complex protein; IKKα—(IKK1)
central catalytic subunit; IKKβ—(IKK2) central catalytic subunit; IKKγ—(NEMO) central regulatory
subunit; inhibitory %—inhibition of particular cancer cell line growth in percent; IκB—kinase (IKK), an
enzyme complex that is involved in propagating the cellular response to inflammation; JNK1, JNK2 or
JNK3—c-Jun N-terminal kinases; K562—chronic myelogenous leukemia cell line; Ki—dissociation constant
describing the binding affinity between the inhibitor and the enzyme; MCF-7—human breast cancer
cell line; Mcl-1—anti-apoptotic protein; MDA-MB-231—human breast cancer cell line; MNK 74—gastric
cancer cell line; MOLT-4—lymphoblastic leukemia cell line; NF-kB—multipurpose transcription factor;
NF-kB—protein complex that controls transcription of DNA, cytokine production and cell survival; NRK-
52E—normal rat kidney cell line; PI3K—phosphatidylinositol 3-kinase; Pim-1, 2, 3—Pim kinase family;
PPP—pentose phosphate pathway; PRL-3—phosphatase of regenerating liver 3; PRLs—phosphatase of
regenerating liver family; PTP4A—protein tyrosine phosphatase 4A; Raji—human lymphoma cancer
cell line; RPMI-8226—human plasmacytoma cell line; SF-539—central nervous system tumor cell line;
SK-MEL-5—melanoma cell line; SR—human lymphoma cell line; SsCK1—porcine casein kinase 1; SW-
620—colon cancer cell line; TDT—terminal deoxynucleotidyl transferase; TNFα—tumor necrosis factor;
Topo II—topoisomerase II; WL-276—small-molecule antagonist against antiapoptotic Bcl-2 family proteins.
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20. Tomašić, T.; Mašić, L.P. Rhodanine as a scaffold in drug discovery: A critical review of its biological activities and mechanisms of
target modulation. Expert Opin. Drug Discov. 2012, 7, 549–560. [CrossRef]

21. Kaminskyy, D.; Kryshchyshyn, A.; Lesyk, R. Recent developments with rhodanine as a scaffold for drug discovery. Expert Opin.
Drug Discov. 2017, 12, 1233–1252. [CrossRef]

22. Liu, J.; Wu, Y.; Piao, H.; Zhao, X.; Zhang, W.; Wang, Y.; Liu, M. A comprehensive review on the biological and pharmacological
activities of rhodanine based compounds for research and development of drugs. Mini Rev. Med. Chem. 2018, 18, 948–961.
[CrossRef]

23. Mousavi, S.M.; Zarei, M.; Hashemi, S.A.; Babapoor, A.; Amani, A.M. A conceptual review of rhodanine: Current applications of
antiviral drugs, anticancer and antimicrobial activities. Artif. Cells Nanomed. Biotechnol. 2019, 47, 1132–1148. [CrossRef] [PubMed]

24. Yin, L.J.; Bin Ahmad Kamal, A.K.D.; Fung, G.T.; Liang, C.T.; Avupati, V.R. Review of anticancer potentials and structure-activity
relationships (SAR) of rhodanine derivatives. Biomed. Pharmacother. 2022, 145, 112406. [CrossRef] [PubMed]

https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/novel-drug-approvals-2021
https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/novel-drug-approvals-2021
http://doi.org/10.1016/j.molonc.2012.02.004
http://www.ncbi.nlm.nih.gov/pubmed/22440008
http://doi.org/10.1016/S0140-6736(20)30164-1
http://doi.org/10.1139/cjc-2018-0220
http://doi.org/10.1016/j.bmcl.2016.03.045
http://doi.org/10.1016/j.bioorg.2017.03.012
http://doi.org/10.1016/j.ejmech.2009.03.035
http://doi.org/10.7124/bc.000A27
http://doi.org/10.1007/s00044-014-1087-9
http://doi.org/10.1002/ardp.201000326
http://doi.org/10.1007/s00044-014-1186-7
http://doi.org/10.1016/j.bmc.2012.05.079
http://www.ncbi.nlm.nih.gov/pubmed/22739087
http://doi.org/10.1021/jm901469p
http://www.ncbi.nlm.nih.gov/pubmed/20158203
http://doi.org/10.1016/j.bmc.2009.01.016
http://www.ncbi.nlm.nih.gov/pubmed/19243955
http://doi.org/10.1016/j.ejmech.2010.02.054
http://doi.org/10.1016/j.bmcl.2006.02.060
http://doi.org/10.1016/j.bmcl.2010.08.084
http://doi.org/10.1517/17460441.2012.688743
http://doi.org/10.1080/17460441.2017.1388370
http://doi.org/10.2174/1389557516666160928162724
http://doi.org/10.1080/21691401.2019.1573824
http://www.ncbi.nlm.nih.gov/pubmed/30942110
http://doi.org/10.1016/j.biopha.2021.112406
http://www.ncbi.nlm.nih.gov/pubmed/34785416


Molecules 2022, 27, 3750 26 of 29

25. Nguyen, C.T.; Nguyen, Q.T.; Dao, P.H.; Nguyen, T.L.; Nguyen, P.T.; Nguyen, H.H. Synthesis and cytotoxic activity against
K562 and MCF7 cell lines of some N-(5-arylidene-4-oxo-2-thioxothiazolidin-3-yl)-2-((4-oxo-3-phenyl-3,4-dihydroquinazoline-2-
yl)thio)acetamide compounds. J. Chem. 2019, 2019, 1492316. [CrossRef]

26. Ali Muhammad, S.; Ravi, S.; Thangamani, A. Synthesis and evaluation of some novel N-substituted rhodanines for their anticancer
activity. Med. Chem. Res. 2016, 25, 994–1004. [CrossRef]

27. Kaveri, S.; Ravi, S. Synthesis, antibacterial activity against MRSA, and in vitro cytotoxic activity against HeLa cell lines of novel
3-α-carboxy ethyl-5-benzylidene rhodanine derivatives. Res. Chem. Intermed. 2015, 41, 1011–1021.

28. Dago, C.D.; N’Ta Ambeu, C.; Coulibaly, W.K.; Békro, Y.-A.; Mamyrbekova-Bekro, J.A.; Le Guevel, R.; Corlu, A.; Bazureau, J.-P.
Investigation on the synthesis of new 3-[4-(arylalkoxy)phenylethyl]-2-thioxo-1,3-thiazolidin-4-ones and their biological evaluation
against cancer cells. Chem. Heterocycl. Compd. 2017, 53, 341–349. [CrossRef]

29. Kaminskyy, D.; Bednarczyk-Cwynar, B.; Vasylenko, O.; Kazakova, O.; Zimenkovsky, B.; Zaprutko, L.; Lesyk, R. Synthesis of new
potential anticancer agents based on 4-thiazolidinone and oleanane scaffolds. Med. Chem. Res. 2012, 21, 3568–3580. [CrossRef]

30. Ramesh, V.; Rao, B.A.; Sharma, P.; Swarna, B.; Thummuri, D.; Srinivas, K.; Naidu, V.G.M.; Rao, V.J. Synthesis and biological
evaluation of new rhodanine analogues bearing 2-chloroquinoline and benzo[h]quinoline scaffolds as anticancer agents. Eur. J.
Med. Chem. 2014, 83, 569–580. [CrossRef]

31. El-Sayed, S.; Metwally, K.; El-Shanawani, A.A.; Abdel-Aziz, L.; Pratsinis, H.; Kletsas, D. Synthesis and anticancer activity of novel
quinazolinone-based rhodanines. Chem. Cent. J. 2017, 11, 102. [CrossRef]

32. Insuasty, A.; Ramírez, J.; Raimondi, M.; Echeverry, C.; Quiroga, J.; Abonia, R.; Nogueras, M.; Cobo, J.; Rodríguez, M.V.;
Zacchino, S.A.; et al. Synthesis, antifungal and antitumor activity of novel (Z)-5-hetarylmethylidene-1,3-thiazol-4-ones and
(Z)-5-ethylidene-1,3-thiazol-4-ones. Molecules 2013, 18, 5482–5497. [CrossRef]

33. Strittmatter, T.; Bareth, B.; Immel, T.A.; Huhn, T.; Mayer, T.U.; Marx, A. Small molecule inhibitors of human DNA polymerase λ.
ACS Chem. Biol. 2011, 6, 314–319. [CrossRef] [PubMed]

34. El-Mawgoud, H.K.A. Synthesis, in vitro cytotoxicity and antimicrobial evaluations of some novel thiazole based heterocycles.
Chem. Pharm. Bull. 2019, 67, 1314–1323. [CrossRef] [PubMed]

35. Li, P.; Zhang, W.; Jiang, H.; Li, Y.; Dong, C.; Chen, H.; Zhang, K.; Du, Z. Design, synthesis and biological evaluation of
benzimidazole-rhodanine conjugates as potent topoisomerase II inhibitors. Med.Chem.Comm. 2018, 9, 1194–1205. [CrossRef]
[PubMed]

36. Mandal, S.P.; Mithuna; Garg, A.; Sahetya, S.S.; Nagendra, S.R.; Sripad, S.H.; Manjunath, M.M.; Sitaram; Soni, M.;
Nasir Baig, R.; et al. Novel rhodanines with anticancer activity: Design, synthesis and CoMSIA study. RSC Adv. 2016, 6,
58641–58653. [CrossRef]

37. Prashantha Kumar, B.R.; Basu, P.; Adhikary, L.; Nanjan, M.J. Efficient conversion of N-terminal of L-tyrosine, DL-phenylalanine,
and glycine to substituted 2-thioxo-thiazolidine-4-ones: A stereospecific synthesis. Synth. Commun. 2012, 42, 3089–3096.
[CrossRef]

38. Özen, C.; Ceylan-Ünlüsoy, M.; Aliary, N.; Öztürk, M.; Bozdağ-Dündar, O. Thiazolidinedione or rhodanine: A study on synthesis
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