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There has been a growing interest in the potential of stem cell transplantation as therapy

for pediatric brain injuries. Studies in pre-clinical models of pediatric brain injury such as

Traumatic Brain Injury (TBI) and neonatal hypoxia-ischemia (HI) have contributed to our

understanding of the roles of endogenous stem cells in repair processes and functional

recovery following brain injury, and the effects of exogenous stem cell transplantation

on recovery from brain injury. Although only a handful of studies have evaluated these

effects in models of pediatric TBI, many studies have evaluated stem cell transplantation

therapy in models of neonatal HI which has a considerable overlap of injury pathology

with pediatric TBI. In this review, we have summarized data on the effects of stem cell

treatments on histopathological and functional outcomes in models of pediatric brain

injury. Importantly, we have outlined evidence supporting the potential for stem cell

transplantation to mitigate pathology of pediatric TBI including neuroinflammation and

white matter injury, and challenges that will need to be addressed to incorporate these

therapies to improve functional outcomes following pediatric TBI.
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INTRODUCTION

Traumatic brain injury (TBI) is the leading cause of death and disability among the pediatric
population. In the United States, TBI affects half a million children under the age of 14 years old
each year (1–4). Advancement in acute neurosurgical interventions and neurocritical care have
led to a decrease in mortality rates over the past decade (5). However, there are a lack of targeted
therapies to limit the life-long cognitive, psychosocial, and emotional deficits seen in pediatric TBI
patients (5–7). Preclinical studies utilizing stem cell transplantation therapies have shown efficacy
in mitigating brain injury pathology in various models of adult TBI and more recently, pediatric
brain injuries. This review summarizes what has been learned about the effects of endogenously
expressed and exogenously administered stem cells on recovery from pediatric brain injury, and
remaining obstacles that need to be resolved in order to improve the safety and efficacy of stem cell
therapy in survivors of pediatric TBI.

Behavioral Deficits Following Pediatric TBI
Traumatic brain injury sustained during childhood can result in long-term visuomotor, cognitive,
and behavioral symptoms that cause lifelong disability and impaired quality of life for survivors of
childhood TBI. Pediatric TBI patients commonly exhibit impairments in visual perception, gross,
and finemotor function (8–11), which can persist for several years following injury (9, 11). Pediatric
TBI patients also exhibit reduced global intellectual functioning, attention, and processing speed
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which can lead to deficits in learning and acquiring new
information (12–15). Up to fifty- percent of children who
sustained a TBI were found to have reduced intellectual ability,
memory problems, and lower academic achievement relative to
healthy peers (12, 16). Impairments in executive functions such
as processing speed and inhibitory control and reduced adaptive
functioning can persist up to 7–10 years post-injury (12, 14, 17,
18). Brain-injured children and adolescents are at heightened risk
of impairments in socialization and communication (9, 15) and
are more likely to exhibit new-onset psychological disorders such
as anxiety and mood disorders, post-traumatic stress disorder,
and antisocial behavior relative to typically developed school-age
children (19–25).

Pediatric TBI has been studied using a variety of preclinical
models, including controlled cortical impact (CCI), fluid-
percussion injury (FPI), closed-head injury (CHI), weight-drop
injury, and rotational injury in rodents of ages ranging from
postnatal day 7–28 (26–33). Experimental TBI often results in
sensorimotor impairments, typically characterized by decreased
duration in a rotarod test (28, 29, 33) and/or decreased
locomotor activity in an open field test (29), resembling the
visuomotor impairments observed in pediatric TBI patients.
Hippocampal-based learning and memory deficits are also
common following brain injury in immature animals (28–32,
34). These cognitive deficits are often present at chronic time-
points post-injury (31, 32) validating the concept that brain
injury in infancy results in the children “growing into the
learning and memory deficits.” Although the emotional and
psychosocial consequences of pediatric TBI have historically
received less attention in animal studies relative to cognitive
outcomes, a few recent studies have investigated these outcomes
after pediatric brain injury. Increased anxiety-like behavior
in the elevated plus maze was reported 3 weeks following
contusive head trauma in 7-day-old rats (35), and 4 weeks
after rotational TBI in 12-day-old mice (33). Deficits in
social behavior were reported in adulthood following TBI
in 21-day-old mice (36). Preclinical studies of pediatric
TBI have begun to place more emphasis on developing
a variety of cognitive and psychological tests to measure
deficits in brain-injured animals as they age into adolescence
and adulthood.

Pathologic Alterations Following Pediatric

TBI
The major pathologic hallmarks of TBI in infants and children
include cerebral edema, extra-axial and intraparenchymal
hemorrhage, ventriculomegaly, and diffuse axonal injury
(DAI) (37). Reductions in cortical, hippocampal and
thalamic tissue volume is often observed in neuroimaging
studies following TBI in children and correlated with
deficits in cognitive function (38–40). Post-traumatic
inflammation is thought to be a significant contributor
to histopathology following pediatric brain injury (41).
Pediatric TBI patients also exhibit elevated levels of pro-
inflammatory cytokines in the cerebrospinal fluid (CSF) in the
first 3 days after brain injury, particularly in cases of severe

TBI (42, 43). Together, these observations underscore the
complicated nature of the cellular and tissue pathology in
brain-injured children.

Preclinical TBI studies have demonstrated diffuse damage
in white matter tracts (27, 31, 44), brain edema (27),
ventriculomegaly (31), subarachnoid hemorrhage (27),
inflammation (27, 30, 33), and regional reductions in tissue
volume (30, 31), resembling the pathology typically observed
in patients. Evidence of axonal injury is commonly observed
following brain trauma (27, 31), in addition to reductions in
myelination volume in the corpus callosum (45), resulting
in functional white matter deficits. Deficits in compound
action potential (CAP) of myelinated fibers in the corpus
callosum at 24 h persisting to at least 2 weeks following closed
head injury in the 17-day-old rat have been reported (46).
Moreover, contusive injury in 16–18-day old rats resulted in
an impairment in the ability to induce long term potentiation
in the contralateral somatosensory cortex by stimulating the
corpus callosum 2–3 weeks post-injury (44). Observations
from both clinical and preclinical studies suggest that the
hippocampus is particularly vulnerable to injury-induced
pathological changes. Preclinical studies have demonstrated
decreased tissue volume (26) in addition to apoptotic cell death
(32), neurodegeneration (34, 47), and reactive astrocytosis
(27, 30) within the hippocampal formation. Contusive trauma
in 17-day-old rats resulted in decreased dendritic length
and branching in the CA1 area of the hippocampus in the
injured hemisphere (48). Although less extensively studied
in pediatric relative to adult TBI, deficits in hippocampal
long-term potentiation (LTP) were reported in both the
dentate gyrus and CA1 area of the hippocampus between 1
and 4 weeks after weight-drop injury in juvenile rats (49).
Impairment in LTP induction in the dentate gyrus was
sustained over a longer period following injury in female rats
compared with their male counterparts, whereas impairment
in LTP induction in the CA1 area was observed only in male
rats (49).

Activation of inflammatory sequelae in both the acute and
chronic post-injury phases occur following TBI in immature
animals. Concentrations of pro-inflammatory cytokines,
including interleukin-1β, interleukin-6, and tumor necrosis
factor-alpha (TNF-α) are acutely and rapidly elevated in the
injured brain (30) and can remain elevated for several days
post-injury (33). Brain regions which are particularly vulnerable
to post-traumatic inflammation and microglial activation
include the peri-injury region of the cortex, corpus callosum,
thalamus, and hippocampus (27, 34), which are thought to
contribute to sustained cognitive deficits observed following
pediatric TBI. Although activation of neuroinflammation
can be detrimental following injury to the developing brain,
post-injury inflammatory response in the acute post-traumatic
period has been suggested to be beneficial for the clearance of

cellular debris (50). Collectively, these data provide evidence

of the multiple cellular processes that can be targeted for

treatment strategies for pediatric TBI particularly in the chronic
post-traumatic period.
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EFFECTS OF PEDIATRIC TBI ON

ENDOGENOUS STEM CELL POPULATIONS

Preclinical evidence suggests that injury to the immature brain
has robust effects on the proliferation of endogenous stem cell
populations [reviewed in Niimi and Levison (51)]. Multiple
studies have sought to identify and characterize the distinct stem
cell populations that are affected following brain injury which
may be a critical factor in developing therapeutic strategies to
replenish cells that are lost following brain injury and to enhance
the inherent proliferative capabilities of stem cells following
pediatric TBI. The location, type, and population density of
neural stem cells (NSCs) are developmentally regulated and
characterizing the responses of NSCs and neural progenitors
(NPs) in the immature brain to injury can aid in the
understanding of brain injury pathology and the development of
therapeutic targets for pediatric TBI (51, 52).

Neural Stem Cells
The response of neural stem cells (NSCs) to neonatal HI
is complex. In the early post-injury phase, increased mitotic
activity in the subventricular zone (SVZ) is observed (53–55).
However, not all cells within this proliferative zone respond to HI
similarly as the oligodendrocyte progenitors undergo apoptotic
cell death (56); resulting in extensive cell death within the SVZ
during the first 24–48 h (56). Although NSCs and glial-restricted
progenitor cells survive the injury, PSA-NCAM+ cells (stem
cells) as well as late-stage oligodendrocyte progenitors (OPCs)
were vulnerable (57–60).

Contusive TBI to the immature brain also found evidence
of robust proliferation in response to injury (52, 61). In the
immature rat, contusive trauma resulted in an increase in the
number of neurospheres, an increase in frequency of NSCs and
an accelerated growth rate (52). More recently, Zhang et al.
(61) reported decreased survival rates of adult-born neurons
along with an increase in ectopic migration of adult neurons
in the hippocampus following neonatal brain trauma in rabbits.
Additional efforts must be directed to better characterizing the
effects of TBI on regional responses of the NSCs and NPs.

Despite the robust proliferative response of NSCs and NPs
to pediatric brain injury, evidence suggests that most of the
newly generated cells do not survive past 1–2 months (52), or
predominantly become interneurons or astrocytes rather than
mature neurons (62). A significant increase in proliferating
glial fibrillary acidic protein (GFAP)-positive cells occurs after
both neonatal HI and pediatric TBI, indicating increased
astrocytic proliferation and astrogliosis (62). A few studies have
also reported an increase in the number of newly generated
oligodendrocytes that presumably originated within the SVZ
following HI (63–65). Despite evidence for increased production
of oligodenderocytes, impaired myelin production, and axonal
loss in the subcortical white matter persist following pediatric
brain injury, suggesting that there may be a deficit in the
maturation of these newly generated oligodendrocytes (51).
In part, this deficit may be driven by increased astrocyte
proliferation and associated production of toxic substances that
are known to inhibit oligodendrocyte differentiation and the

maturation of oligodendrocyte progenitors such as chondroitin
sulfate proteoglycans (66). Thus, finding new mechanisms to
enhance the long-term survival of newly generated neurons and
oliogodendrocyte will be critical for advancing stem-cell based
therapies to treat pediatric TBI.

Peripheral Stem Cells
The bone marrow niche is home to hematopoietic stem
cells (HSCs) which are responsive to pediatric brain injuries
and play a role in stem cell proliferation, mobilization, and
migration. Several studies have found that neonatal HI mobilizes
mesenchymal stromal cells (MSCs) in the peripheral blood which
migrate to the location of the injured tissue where they can
potentially aid in tissue repair and regeneration (67–69). In
part, this mobilization and recruitment may be mediated by
the actions of stromal cell-derived factor 1 (SDF1) (70) or stem
cell factor (SCF) both of which increase in expression within
the hippocampus, corpus callosum, and periventricular areas
between 3 and 7 days following neonatal HI (69, 71–73).

STEM CELL TRANSPLANTATION IN

PEDIATRIC TBI

A growing body of literature has accumulated supporting the
potential of NSCs (either embryonic or adult) and/or MSCs
(from either the bone marrow or umbilical cord) to treat the
pathophysiology of TBI [reviewed by Mashkouri et al. (68)].
The self-renewal ability of NSCs and inherent potential to
differentiate into neurons and glial cells provides the potential
to promote regeneration and neurogenesis in the injured brain
(74), while MSCs are advantageous due to their ability to cross
the blood brain barrier (BBB), migrate to the site of injury,
and secrete anti-inflammatory and trophic factors that protect
against cell death (67). These approaches have demonstrated that
stem cell therapy is effective in mitigating neuronal cell death
and inflammatory cascades following TBI, resulting in improved
recovery of cognitive and motor functions (67, 68, 74). Although
these strategies have been employed in models of adult TBI,
there is a growing body of literature supporting similar beneficial
effects of stem cell treatments using models of pediatric brain
injury. For example, stem cells derived from umbilical cord blood
were found to mitigate neurovascular injury following neonatal
brain injury (75). Evaluating the effects of stem cell therapies
in these neonatal brain injury models will provide important
guidance for directing future research on developing targeted and
effective stem cell treatments for pediatric TBI.

Survival of Cells
Evidence from adult animals suggests that cells grafted in the
hostile environment of the injured brain often exhibit poor
survival (76, 77). In the interest of improving the translational
value of using stem/progenitor cells, systemic routes have
been tested for efficacy of cell therapy although intravenously
administered stem cells can become localized in peripheral
organs (such as the lungs or the spleen) rather than migrating
to the brain (78). Limited evidence from pediatric animal studies
suggests that NSCs can survive and differentiate into neurons,
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astrocytes, and oligodendrocytes in the injured brain. Long-term
survival and differentiation of implanted NSCs was observed
4–5 weeks after intraventricular (79) or intranasal (80) following
HI in neonatal mice. Differentiated NSCs were observed up
to 2 months after transplantation into the CA3 area of the
hippocampus 2 weeks following global ischemia in adolescent
rats (81). Intravenously administered MSCs were only observed
in the contralesional hemisphere following HI in 1-week-old
rats, while beneficial effects of MSC treatment on recovery of
motor function, brain volume, cortical thickness, and neuronal
density were observed (82). Intranasal administration of stem
cells has become an attractive and minimally invasive method
to deliver cells into the injured brain that has shown efficacy in
preclinical studies of neonatal HI (80, 83, 84) and will likely be
more commonly utilized in future research.

Histopathology and Inflammation
Although enhancing the long-term survival and integration
remains an important goal of stem cell therapy, accumulating
evidence has highlighted the importance of trophic support
and/or anti-inflammatory effects in facilitating the beneficial
actions of stem cells in treating the injured brain. NSCs
can secrete neurotrophic factors such as nerve growth factor
(NGF) and brain-derived neurotrophic factor (BDNF) (85)
which promote repair processes and plasticity. MSCs are also
known to exert beneficial trophic factors (86–88) as well as
anti-inflammatory and antioxidant effects (57, 89, 90) which
can attenuate systemic inflammation, a key aspect of pediatric
brain injuries. Based on in vitro studies using co-cultures
of glial-restricted precursor cells (GRPs) with neonatal brain
slices exposed to oxygen-glucose depravation, GRPs decreased
tissue injury and cortical cell death without direct cell-cell
contact suggesting that these effects were likely attributable to
trophic support provided by the cells (91). Following HI in
neonatal rats, administration of NSCs between 1 and 3 days
after injury reduced infarct volume (79, 80) and decreased the
number of apoptotic cells in the hippocampus and cortex (79).
The administration of MSCs 24–48 h following brain injury in
neonatal rats significantly reduced cortical neuronal pathology
(92, 93), and the extent of tissue loss (84). Moreover, MSC-
administered groups exhibited an increase in the thickness of the
cortex (82) and corpus callosum (82, 94) as well as increased
neuronal density within the hippocampus (84) compared with
vehicle-treated brain-injured animals. MSC administration has
also resulted in robust anti-inflammatory effects in models of
neonatal HIE. MSC treatment decreased the number of activated
microglia in the hippocampus and cortex (83, 84, 94) and
inhibited pro-inflammatory cytokine expression (92, 94, 95) in
addition to increasing anti-inflammatory cytokine expression
(92) in the injured brain.

Functional Outcomes
Efficacy of cell therapy needs to be documented via their effects
on behavioral outcomes. Compared with vehicle-treated animals,
MSC-administered animals exhibited improved motor function
in the rotarod and beam walking tests between 2 and 4 weeks
following brain injury (82, 84, 92, 94). Intranasal administration

of MSCs 3 days after HI in neonatal mice also reversed
cognitive deficits in the novel object recognition test 5 weeks
following injury (83), and MSCs administered into the injured
hemisphere 24 h following HI in neonatal rats improved spatial
learning at 4 weeks following injury (93). Treatment with NSCs
similarly improved spatial learning and memory in addition
to motor function 2–6 months following brain injury (79–81).
MSC administration reversed risk-taking behavior observed in
vehicle-treated injured animals in the elevated plus maze 5
weeks following HI in 9-day-old mice (83). One study found
that transplantation of hypoxia-preconditioned NPs increased
social interaction, sociability, and social recognition following
contusive TBI, which was associated with increased expression
of oxytocin and oxytocin receptor compared with vehicle-treated
animals (96) suggesting that stem cell treatments may also
improve psychosocial outcomes after pediatric brain injury.

White Matter Injury
Bone-marrow derivedMSCs (BM-MSCs) administered following
adult TBI or neonatal HI demonstrate beneficial effects on
white matter repair and regeneration (95, 97–99). Intravenously
administered BM-MSCs following contusive TBI in adult
rats promoted structural recovery of white matter indicated
by increased fractional anisotropy and axonal water fraction
analyzed with diffusional kurtosis imaging (98). MSCs may also
be beneficial in mitigating white matter injury following HI
presumably by playing a supportive role in oligodendrocyte
development (100). Administration of MSCs following neonatal
HI increased myelination and expression of myelin basic protein
(MBP) (95, 97, 99), reduced microglia and astrocyte activity (99),
and decreased pro-inflammatory cytokine expression (95). Thus,
stem cell treatments utilizing MSCs would likely be similarly
beneficial for mitigating neuroinflammation and diffuse axonal
injury following pediatric TBI.

Neurovascular Injury
Stem cells derived from umbilical cord blood demonstrate great
therapeutic potential due to their ability to mitigate damage
to the neurovascular unit following brain injury (75, 101).
Treatment with umbilical cord-derived endothelial progenitor
cells (EPCs) following HI in 7-day-old rats decreased blood-
brain barrier damage, brain tissue loss, and deficits in motor
function (101). Injured animals infused with umbilical-vein
derived EPCs exhibited less apoptosis in the cortex 24 h following
injury, which was associated with increased expression of stromal
cell-derived factor 1 (102). Transplantation of umbilical cord
blood CD34+ cells 1 week following HI in 7-day-old rats
improved motor function and decreased the expression of
GFAP and apoptotic genes in the injured brain (103). Although
EPCs are potentially neuroprotective by facilitating angiogenesis
and neovascularization, they may increase BBB permeability—
presumably via increasing the local concentration of vascular
endothelial growth factor, further exposing the brain to systemic
toxins and inflammatory mediators (75, 104).
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Combinatorial Treatments Utilizing Stem

Cells
The effectiveness of stem cell treatment combined with other
pharmacotherapies in preclinical models of TBI is currently being
established. These combination therapies may exhibit synergistic
effects and result in greater neuroprotection relative to stem
cell or pharmacological monotherapy (79, 105). Moreover, some
combination therapies may enhance the viability and survival of
implanted stem cells in the injured brain (76, 79).

Anti-inflammatory Agents
Anti-inflammatory therapies such as minocycline show promise
in adult TBI studies (68), although excessive doses have
resulted in worse outcomes, highlighting the importance of
the acute inflammatory response to brain injury. Nonetheless,
combined treatment with BM-MSCs and minocycline 24 h
following cerebral ischemic injury in adult rats resulted in the
most histological and functional improvement compared to
treatment with MSCs or minocycline alone, including reduction
in cell degeneration and increased neuronal density within the
hippocampus (106). However, we have previously demonstrated
that acute minocycline treatment following closed-head-injury in
the neonate rat may exacerbate neurodegeneration and cognitive
deficits (47, 107), suggesting that age-at-injury is an important
consideration for developing combination stem cell treatments
in pediatric TBI.

Granulocyte-Colony Stimulating Factor (G-CSF)
Another promising candidate for treatment of TBI is
granulocyte-colony stimulating factor (G-CSF), which has
an inherent capability to reduce brain edema and promote
functional recovery following TBI. G-CSF also promotes
neuroprotection of implanted stem cells (108) and recruitment
of endogenous stem cells within the bone marrow into the
blood stream where they can migrate to the injured brain (68).
Combined treatment with umbilical cord blood cells and G-CSF
exhibited synergistic effects on inflammation, neurogenesis, and
hippocampal cell loss, in addition to more robust and long-term
functional recovery following CCI in adult rats (105). Following
HI in neonatal rats, treatment with G-CSF decreased apoptotic
cell death (109), enhanced neurogenesis and improved cognitive
function (110). Although the effects of G-CSF in combination
with stem cell treatment have not been evaluated in pediatric
studies, combined treatment with G-CSF and stem cell factor
following HIE in 7-day-old rats exhibited similar synergistic
effects, resulting in decreased brain tissue atrophy and improved
motor function (111). Thus, combined treatment with G-CSF
and stem cells would likely have beneficial effects in pediatric
HIE and TBI and should be explored further.

Mild Hypothermia
Mild hypothermia (HT) is currently the only therapy approved
for the treatment of neonatal HI. Mild HT usually involves
cooling the body to 32–35 degrees Celsius for 12–72 h within the
first 6 h after HI (112). In clinical settings, mild HT has been
shown to decrease morbidity and mortality in infants exposed
to HI, although many infants still suffer from brain damage

and disability even with HT treatment (112). In preclinical
studies, HT reduced apoptotic cell death, infarct volume, and
improved functional outcomes following HI (79, 83). Preclinical
studies have begun to evaluate the effects of combined treatment
with hypothermia and stem cells in neonatal HI. Mild HT
combined with NSC transplantation 24 h followingHI in 1-week-
old mice resulted in a greater reduction in apoptotic cells in the
hippocampus and cortex, smaller infarct volume, and improved
neurological function compared to either treatment alone (79).
Moreover, HT-NSC treated mice exhibited greater survival and
differentiation of NSCs into mature neurons (79), suggesting
that hypothermia treatment may increase the survival and long-
term integration of NSCs in the injured brain. Compared with
rats treated with HT or MSCs alone, HT combined with MSC
treatment following HI in 7-day-old rats exhibited the greatest
improvement in cell death, gliosis, inflammation, and motor
function (113). However, a more recent study reported worse
outcomes when HT (delivered at 4 h after injury) was combined
with delayed treatment with MSCs, delivered intranasally 3
days following HI injury in neonatal mice (83). While both
HT and MSC treatment alone prevented reductions in myelin
basic protein (MBP) expression and neuronal density within
the hippocampus and striatum, these effects were attenuated
when the treatments were combined (83). Injured mice exhibited
cognitive deficits in the novel object recognition test that
were reversed by MSC treatment alone, but not by HT or
combined treatment (83). Thus, further evaluation of the effects
of stem cell treatment and HT will be required in order to
develop an effective combination therapy to treat pediatric
brain injury.

Hypoxic Preconditioning of Implanted Stem Cells
Interestingly, there is recent evidence to suggest that hypoxic
preconditioning could increase the therapeutic potential of stem
cells (96, 114, 115) and may enhance the regenerative capacity
of endogenous NSCs in the SVZ (116). Hypoxic preconditioning
followed 24 h later by HI in 1-day-old piglets resulted in
a significant increase in neurogenesis in the SVZ compared
with normoxic controls, which was observed up to 1 week
following preconditioning (116). In a murine model of ischemia,
hypoxic preconditioning increased the survival and proliferation
of transplanted MSCs which was mediated by suppression of
apoptotic signaling and facilitation of the secretion of angiogenic
factors (114). Thus, hypoxic preconditioning may be one strategy
to enhance the survival and proliferative capabilities of implanted
cells within the injured host environment.

Modification of Stem Cells to Express Neurotrophic

Factors
Modifying stem cells to overexpress neurotrophic factors such
as BDNF could maximize the inherent neurotrophic benefits
of stem cell treatments in pediatric brain injuries (117,
118). BDNF promotes neurogenesis and synaptic plasticity,
and reductions in BDNF in the injured brain are observed
following both TBI and neonatal HIE (84). Recent evidence
indicates that BDNF may enhance myelin regeneration after
injury through the TrkB receptor (119, 120). In a rodent
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model of CNS demyelination, the TrkB agonist LM22A-4
increased myelin thickness and the density of oligodendrocytes
1 week following injury (120). The effects of treatment with
stem cells overexpressing BDNF has been evaluated following
neonatal stroke. Intranasal delivery of MSCs alone or MSCs
overexpressing BDNF (MSC-BDNF) following neonatal stroke
were equally effective in reducing infarct size and white
matter injury, and both treatments induced cell proliferation
in the injured hemisphere (117). However, injured rats
treated with MSC-BDNF exhibited additional improvements in
motor function at 2 weeks following injury compared with
rats treated with MSCs, although these differences were no
longer observed at 4 weeks following injury (117). Similarly,
intranasal administration of NSCs or NSCs overexpressing
basic fibroblast growth factor (NSC-bFGF) following neonatal
HI were similarly effective in reducing infarct volume and
improving motor function 3–5 weeks following injury (80).
Notably, NSC-bFGF had the added benefit of increasing the
number of NSCs that differentiated into neurons within the
hippocampus and cortex at 35 days after injury relative to the
NSC only treatment group (80), suggesting that neurotrophic
factors may help promote that survival and integration of
implanted NSCs.

Stem Cell-Derived Exosomes
A novel therapeutic approach to treat brain injuries has
been the use of exosomes derived from stem cells. Exosomes
are extracellular vesicles that are produced from the plasma
membrane and released into the extracellular space, where
they can participate in intracellular signaling through several
mechanisms (121). Secreted exosomes can be taken up by
other cells via membrane fusion, endocytosis, or ligand-receptor
interactions, where their contents can then be released within
the target cells (121). In a swine model of TBI, MSC-
derived exosomes given during the first 2 weeks post-injury
decreased the neurological severity score, and brain-injured
animals given exosomes exhibited a significantly shorter time
to complete neurologic recovery (122). Moreover, MSC-derived
exosomes attenuated post-injury inflammation and improved
motor function following CCI (123, 124). The effects of MSC-
derived exosomes have also been evaluated in neonatal HI.
A combination of HI and neuroinflammation was induced
in 2–3-day old rat pups through lipopolysaccharide injection,
followed 2 h later by HI. Exosomes derived from umbilical
cord-derived MSCs were delivered intranasally in between
the inflammatory and HI insults. They observed that the
exosome-treated injured group exhibited less expression of
inflammatory cytokines and neuronal cell death 24 h following
injury, and improved spatial learning in the Morris water
maze 4 weeks following injury (125, 126). In a different
study, MSC-derived exosomes were delivered via in utero
intravenous administration following global HI in ovine
fetuses. In contrast to the previous study, they did not
observe an effect of the exosome treatment on post-injury
inflammation (127), although exosome treatment reduced
seizure activity and hypomyelination in the injured brain 1-week
post H-I (127).

SUMMARY

TBI remains a leading cause of death and disability in
infants and children which lacks treatment options to mitigate
the debilitating life-long symptoms experienced by survivors.
Stem-cell based therapies can take advantage of the robust
proliferative capacity and plasticity in the immature brain, and
thus have potential to become an effective treatment for pediatric
TBI. Although the beneficial effects of exogenous stem cell
transplantation have been established in adult TBI and stroke
models, additional research is necessary to determine whether
these benefits of stem cell therapy translate to pediatric TBI.
Treatments for pediatric TBI require unique considerations
that may differ from adult TBI due to differences in the
spatial and temporal dynamic of the brain injury. Thus, certain
challenges and limitations still need to be overcome in order to
translate stem cell treatment methods from adult to pediatric
TBI. For example, exogenous stem cells are often transplanted
directly into the cavity resulting from TBI in the adult brain.
However, this approach is less ideal in the pediatric brain
where there is less likely to be an overt cavity or lesion.
Therefore, systemic administration of cells through intravenous
or intranasal methods has been more commonly utilized in
models of pediatric brain injury. Intravenous administration is
also desirable because it can be easily translated to the clinical
setting as a non-invasive method to deliver stem cells.

Developmental differences between the immature and
adult brain also complicate the translation of stem cell
treatments to pediatric TBI models. For instance, although
the neuroinflammatory response is a key aspect of TBI, the
localization and function of microglia during early development
differs from the adult brain. Previous evidence suggests that the
white matter of the human fetus/infant is densely populated with
activated (CD-68+) microglia (128). During very early postnatal
development, microglia play important roles in white matter
development as well as neuronal differentiation and survival,
as they are a crucial source of neurotrophins such as NGF and
BDNF (129). Thus, while anti-microglial treatments such as
minocycline in combination with stem cell therapy have shown
beneficial effects in adult TBI (68), depletion of microglia during
postnatal development increases the number of apoptotic in the
cerebral cortex (129) and exacerbates neurodegeneration after
neonate TBI (50).

The immature brain is also particularly vulnerable to
enhanced levels of pro-inflammatory cytokines and free radicals
produced by microglia after brain injury due to the reduced
antioxidant capacity of the developing brain as well as the
vulnerability of OPCs within the white matter tracts (129, 130).
Recent studies utilizing administration of exogenous stem cells
have demonstrated numerous beneficial effects on post-injury
histological, cognitive, and behavioral outcomes in models of
pediatric brain injury. In particular, BM-MSCs and umbilical-
cord derived blood cells (UCBC) have shown promising results
in preclinical models of neonatal HI through their potent anti-
inflammatory effects and trophic support. Thus, it is likely that
pediatric TBI will be amenable to these stem cell therapies
due to overlapping pathologies with neonatal HI. However,
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further investigation of these treatments will be necessary to
determine their effectiveness as well as potential risks in models
of pediatric TBI.

The effects of stem cell treatments in adolescent models of
TBI have not been investigated, although transplantation of
NSCs improved functional outcomes following global ischemia
in adolescent rats (81). TBI during adolescence has deleterious
effects on developmental processes such as synaptogenesis and
synaptic pruning that are critical during this period (131–133).
For example, TBI in juvenile rats led to increased neuronal
complexity and spine density of pyramidal neurons the prefrontal
cortex, suggestive of disruption of normal pruning processes
(133). These effects may be influenced in part by the aberrant
effects of TBI on microglial activation and function (132).
Pediatric TBI increases the number of activated microglia
in the injured brain (107, 132). Moreover, microglia can
become chronically activated after TBI, residing in a “primed”
state that can further exacerbate inflammatory responses and
negatively impact functional outcomes (132). These shifts in
microglial morphology toward an activated state can also
hinder their normal homeostatic role in CNS development,
includingmicroglial-dependent synaptic pruning observed in the
thalamus, cerebellum, and hippocampus (132). Aberrant synaptic
pruning has been strongly linked to neurological dysfunction and
is associated with numerous developmental psychiatric disorders
including Schizophrenia and Autism Spectrum Disorder (131,
132). Thus, stem cell treatment may have potential in mitigating
neurological and behavioral dysfunction in adolescent TBI due
to well-documented anti-inflammatory effects and inhibition of
microglial activation following brain injury (83, 84, 94) which
should be explored further.

A promising therapeutic approach that would be well-suited
for pediatric TBI patients is to target the survival of endogenous
stem cells, as this would take advantage the robust proliferative
capacity in the immature brain in response to TBI (52). This
approach is also desirable because it can avoid certain limitations
associated with transplantation of exogenous cells. One of the
main challenges pertaining to the responses of endogenous stem
cells is the poor long-term survival and maturation of these cells
after brain injury, particularly of NSCs and OPCs (62). Thus,
optimizing strategies to increase the retention and integration

of newly generated neurons and oligodendrocytes would be

greatly advantageous for treating pediatric TBI. TBI in immature
animals and children affects the hypothalamic pituitary adrenal-
axis leading to chronically elevated levels of stress hormones (35,
134). Elevated brain concentrations of corticosterone increase
cell death in the hippocampus (135) and thus may further
contribute to the hostile environment impeding the survival of
implanted cells following TBI. Various types of drugs, growth
factors, and other signaling molecules can improve neurogenesis
and the recovery of cognitive function after TBI (70, 72, 73).
Although the majority of these agents have been limited to adult
studies, a number of signaling molecules which regulate stem cell
mobilization have been evaluated in the context of pediatric brain
injury. Stromal Cell-Derived Factor 1, a mediator of MSC and
UCBC mobilization, is upregulated following neonatal HI injury
(71, 73). Moreover, intracranial injection of SDF1 decreased
inflammation, promoted re-myelination, and improved spatial
learning following neonatal HI (70). Similarly, SCF is upregulated
in neurons after brain injury and induces the migration of
proliferating NSCs to areas of injured tissue (72). Treatment with
SCF following HI in 7-day-old rats resulted in decreased brain
tissue atrophy and improved motor outcomes (111), suggesting
that both SDF1 and SCF would likely be similarly beneficial for
the treatment of pediatric TBI. Thus, future research should place
more emphasis on developing strategies to target the survival
and maturation of endogenous stem cells for the treatment of
pediatric TBI.
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