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Abstract

Thoracic aortopathy–aneurysm, dissection, and rupture–is increasingly responsible for sig-

nificant morbidity and mortality. Advances in medical genetics and imaging have improved

diagnosis and thus enabled earlier prophylactic surgical intervention in many cases. There

remains a pressing need, however, to understand better the underlying molecular and cellu-

lar mechanisms with the hope of finding robust pharmacotherapies. Diverse studies in

patients and mouse models of aortopathy have revealed critical changes in multiple smooth

muscle cell signaling pathways that associate with disease, yet integrating information

across studies and models has remained challenging. We present a new quantitative net-

work model that includes many of the key smooth muscle cell signaling pathways and vali-

date the model using a detailed data set that focuses on hyperactivation of the mechanistic

target of rapamycin (mTOR) pathway and its inhibition using rapamycin. We show that the

model can be parameterized to capture the primary experimental findings both qualitatively

and quantitatively. We further show that simulating a population of cells by varying receptor

reaction weights leads to distinct proteomic clusters within the population, and that these

clusters emerge due to a bistable switch driven by positive feedback in the PI3K/AKT/

mTOR signaling pathway.

Author summary

Cell signaling drives changes across scales, from altered transcription at the single-cell

level to tissue-level growth and remodeling. Studying complex interactions within cell sig-

naling pathways can lead to a better understanding of the progression of disease. In partic-

ular, we are interested in how vascular cells can change their phenotype in a way that

exacerbates aortopathy, namely, the development of aneurysms, dissections, and rupture.

In this study we built a novel cell signaling network model of a vascular smooth muscle

cell using archival data and used it to capture the effects of a genetic knock-out and
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subsequent pharmacologic rescue. We then used the model to simulate populations of

smooth muscle cells and found that small perturbations to the strength of signaling can

lead to distinct clusters of cells. With further analysis of the network substructures, we

found that a positive feedback loop within the network was responsible for the distinct

phenotypes we saw in our clusters of simulated cells. We believe that this work not only

helps us to understand changes in smooth muscle cell phenotype but also opens the possi-

bility to study other signaling perturbations associated with aortopathy.

Introduction

Smooth muscle cells (SMCs) of the arterial media serve as central nodes in vascular develop-

ment, homeostasis, adaptation, and disease [1,2], acting in concert with endothelial cells of the

intima and fibroblasts of the adventitia. Although all three cell types are involved in thoracic

aortopathy–aneurysm, dissection, and rupture–it is widely held that SMC dysfunction plays a

particularly critical role since early evidence of disease often presents as medial degeneration

[3–5]. Under normal conditions in the healthy adult, aortic SMCs constantly assess their local

micromechanical environment and either maintain or remodel the composition and structure

of the extracellular matrix (ECM) so as to preserve both the geometry and key biomechanical

properties [6], including the resilience and compliance that optimize the primary function of

this conduit vessel. Dysfunctional SMCs are characterized by myriad changes in intracellular

signaling, resulting in and from differentially expressed genes and associated altered gene

products. Affected intracellular pathways in thoracic aortopathies include the mitogen acti-

vated protein kinases (MAPK), Smads, Rho/Rho kinase, and mechanistic target of rapamycin

(mTOR), which together are responsible for the diverse changes in SMC processes that affect

growth/proliferation, ECM deposition/degradation, actomyosin-based contractility, and cell

survival [7–10].

Mouse models continue to provide important insight into underlying causes of both geneti-

cally triggered and induced thoracic aortopathies [11,12], yet in most cases attention has

focused on alterations in one or two signaling pathways to render data interpretation tractable.

Given the complex interactions across many pathways, there is a pressing need to synthesize

findings and to understand disease progression from transcript to tissue. We suggest that such

synthesis is now possible conceptually, namely, by melding information available from detailed

biomechanical phenotyping of the vascular wall [13], in vivo imaging that enables detailed cal-

culations of hemodynamics as a function of local wall properties [14], information on effects

of matrix turnover on evolving vascular geometry and properties [15], and details on changes

in cell signaling [16]. Fundamental to such a multiscale understanding is a detailed interpreta-

tion of interactions across the many relevant intracellular signaling pathways. Herein, we pres-

ent a new SMC signaling model that is constructed based on findings in over 100 archival

reports, then parameterized and validated using detailed data from a recent study that revealed

a broader SMC phenotypic spectrum than previously appreciated [10]. Specifically, we include

the multiple pathways noted above while focusing on mTOR.

The Tor genes were discovered in the early 1990s as targets of rapamycin, an antifungal

metabolite produced by bacteria that was discovered in the 1970s on Easter Island (“Rapa Nui”

in the native language) [17]. Briefly, the mTOR signaling pathway has long been appreciated as

a central regulator of cell metabolism, growth/proliferation, and survival [17–19], though its

biological impacts continue to expand, including SMC-mediated regulation of ECM within

the medial layer of arteries [20,21]. Although mTOR signaling is complex, it is often
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conceptualized primarily in terms of the phospho-inositide-3-kinase (PI3K)/protein kinase B

(AKT)/mechanistic target of rapamycin (mTOR) axis (S1 Fig), noting that mTOR presents as

two protein complexes, raptor-associated mTOR complex 1 (mTORC1) and rictor-associated

mTOR complex 2 (mTORC2). The tuberous sclerosis complex TSC1/2, consisting of hamar-

tin, or TSC1, and tuberin, or TSC2, is a strong inhibitor of mTOR signaling. Hence, inactiva-

tion of TSC1/2 can hyperactivate mTOR signaling, especially evident via increased

phosphorylation of S6 kinase (S6K) and eukaryote initiation factor 4E binding protein 1

(4EBP1), key downstream targets of mTORC1. Mouse models have revealed that mutations to

Tsc2 [22] and Tsc1 [10] can lead to thoracic aortopathies, implicating a key role of mTOR sig-

naling in promoting or preventing aortic wall integrity.

Of particular importance herein, Li and colleagues sought to understand better the role of

vascular SMC proliferation on the development and progression of thoracic aortopathies by

using a conditional knock-out (KO) of Tsc1 in SMCs in male mice on a C57BL/6J background

[10]. They induced the KO using tamoxifen, typically beginning at 1.5 weeks of age, and they

measured resulting blood pressures as well as aortic morphology, composition, and cell signal-

ing, among other metrics. As expected, KO of Tsc1 hyperactivated mTORC1 in the aortic

SMCs, demonstrated by increased levels of the downstream species p-S6K, p-S6, and p-4EBP1.

These KO mice presented with aortic dissection, with incidence increasing with advancing age

from approximately 25% at 12 weeks to 75% at 36 weeks of age. The age- and sex-matched

control mice did not develop any aortopathy. In addition, the aortas of the KO mice showed

significant dilation and reduced contractile capacity, the latter revealed by diminished levels of

contractile proteins and reduced responses to vasoconstrictors. Even by 3 weeks of age, the KO

mice had significantly lower expression of transcripts associated with matrix synthesis, specifi-

cally Eln and Col3a1. There was also significantly greater elastin fragmentation, perhaps exac-

erbated by the significantly higher expression of matrix metalloproteinase 2 (MMP2), and

significantly more SMC proliferation and apoptosis. The degradative function of the KO

SMCs was particularly striking. These cells expressed high levels of lysosome-related proteins,

such as LAMP2 and MITF, had larger numbers of degradative organelles, and showed greater

digestion of ECM components and erythrocytes. These behaviors indicate that this SMC-spe-

cific KO of Tsc1 resulted in a phenotypic change distinct from traditional contractile-to-syn-

thetic switching, resulting instead in an acquired degradative phenotype. Remarkably, the

mTORC1-specific inhibitor rapamycin abolished many of these effects. We sought to capture

the experimental changes seen in the KO SMCs using a new SMC signaling network model

and then to explore the model parametrically to gain increased insight into this phenotype.

Results

The tuned network model qualitatively captures experimental changes seen

in Tsc1 KO aortas

Fig 1 shows the cell signaling model developed and used in this paper; associated model equa-

tions and parameters are in Methods, including Table 1. In addition to the PI3K/AKT/mTOR

axis of primary interest (S1 Fig), other relevant signaling pathways (e.g., MAPK, Smad, Rho/

Rho kinase) are included to gain a better understanding of overall effectors and effects of

altered SMC signaling due to either genetic mutation or pharmacologic intervention. This ren-

dering of the network was based on findings reported in over 100 archival papers covering

diverse aspects of smooth muscle cell function (Table A in S1 Text) and visualized using Net-

flux (https://github.com/saucermanlab/Netflux) and the open-source software Cytoscape

(v.3.8.2, cytoscape.org, [23]).
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As expected and desired, the model predicted that conditional SMC-specific KO of Tsc1
(i.e., setting ymax = 0 for TSC1/2 in the network; Table 2) results in a hyperactivation of

mTORC1 signaling, leading to upregulation and downregulation of multiple intracellular

Fig 1. Schematic rendering of the smooth muscle cell network model featuring 81 nodes (species) and 138 edges (reactions), including model inputs (light red),

extracellular signaling molecules (blue), cell-surface receptors (cyan), and intracellular signaling species (yellow). The activation level (bound from zero to one) of

specific species was used to estimate the level of cellular processes (light green) and degree of phenotypic modulation (light purple) of the cell. See Table A in S1 Text for

details on the reactions and the associated 105 references upon which this model was built.

https://doi.org/10.1371/journal.pcbi.1009683.g001

Table 1. Network model parameters.

Parameter Value

Half-maximal activation EC50 = 0.52

Hill exponential n = 1.4

Intramural Stress, Shear Stress W = 0.24054

Exogenous Angiotensin II, IFN-γ W = 0.0

Oxygen, Cellular Energy W = 0.5

Glucose, Leucine, Fibrillin W = 0.25

Cell Receptor reactions W = 0.85

Downstream reactions W = 1.0

https://doi.org/10.1371/journal.pcbi.1009683.t001
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signaling molecules. Fig 2A qualitatively compares predicted results with those that were

observed experimentally [10], focusing on increased or decreased activity of key species in the

medial SMCs between Baseline and KO conditions. Species downstream of mTORC1, namely

p-S6K, p-S6, and p-4EBP1, increased substantially in the KO, while upstream species such as

p-AKT experienced only a moderate decrease. β-catenin and lysosome-related species, namely

microphthalmia-associated transcription factor (MITF) and lysosome-associated membrane

protein 2 (LAMP2), increased moderately due to the KO, as did the proteolytic matrix metallo-

proteinase-2 (MMP2) species. The contractile proteins smooth muscle myosin heavy chain

(SMMHC), smooth muscle alpha actin (SMA), and smooth muscle SM22 decreased in the

KO. Levels of ECM, here including the alpha 1 chain of type III collagen (Col3a1) and elastin

(Eln) genes decreased moderately in expression in the KO and similarly the elastin protein

decreased in the KO. The model thus matched qualitatively the changes in all 14 of the species

reported experimentally.

Simulated rapamycin treatment qualitatively captures all observed changes

in Tsc1 KO aortas

Simulated treatment with the mTORC1 inhibitor rapamycin (Rapa) was modeled via a com-

plete inhibition of the mTORC1 node (i.e., setting ymax = 0 for mTORC1 in the network;

Table 2). Fig 2B shows changes in activation of key species between the KO and KO + Rapa

with a qualitative comparison to experimental observations [10]. Again consistent with the

experiments, the predicted activation of p-S6K, p-S6, and p-4EBP1 due to the KO decreased

substantially with rapamycin treatment. The predicted activation of β-catenin decreased only

slightly despite a significant decrease seen experimentally, while MITF and LAMP2 were pre-

dicted to decrease moderately, as seen experimentally. The contractile proteins SMMHC,

SMA, and SM22 experienced substantial predicted increases in activation due to rapamycin,

consistent with experimental findings. Overall, the model reproduced qualitatively the experi-

mental changes in these 9 reported species. See, too, S2 Fig for a comparison of KO + Rapa to

Baseline.

Model of mTOR signaling qualitatively captures increased SMC

proliferation, apoptosis, and degradative activity in Tsc1 KO aortas

We used the activation levels of specific model species to estimate the level of proliferation,

apoptosis, and degradative activity in Tsc1 KO SMCs. Specifically, we let the mean of the acti-

vation levels of S6, β-catenin, and p38 reflect proliferation while the activation level of FOXO

reflected apoptosis. Degradative activity was estimated based on the level of degraded elastin

and activation of lysosomal LAMP1/2 proteins. Experimentally, Tsc1 KO led to significantly

increased proliferation but also apoptosis among SMCs in the aorta, as well as increased degra-

dation of ECM components and degradative organelle activity in these KO cells. Our model

qualitatively captured the increases seen in these cellular activities in the KO, as shown in Fig

2. Simulated rapamycin inhibition led to a subsequent decrease in these cellular activities.

Table 2. Summary of the three primary simulated conditions.

Conditions

Baseline KO Rapa

TSC1/2 node ymax 1.0 0.0 0.0

mTORC1 node ymax 1.0 1.0 0.0

https://doi.org/10.1371/journal.pcbi.1009683.t002
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Network model predictions agree quantitatively with experimental findings

Whereas logic-based models are well known to capture qualitative changes, we also sought to

achieve quantitative agreements, where possible. Toward this end, we first reanalyzed the prior

experimental findings [10], herein representing the data as ratios of median expressions with

95% credible intervals (see Methods and S3 Fig). Fig 3 compares results quantitatively both for

Fig 2. Qualitative comparison between network model simulations and experimental data reported by Li et al. [10]. a) Conditional Tsc1
knock-out (KO) in aortic smooth muscle cells led to significant experimentally measured changes in various species at gene and protein

(intracellular and extracellular matrix) levels, as well as increases in cell proliferation, apoptosis, and degradative activity. The signaling

network model qualitatively captured all of these experimental changes between the KO and baseline cells. b) Addition of the mTORC1

inhibitor rapamycin to the KO cells led to decreases in mTORC1-associated species and lysosome-related species, as well as an increase in

contractile protein expression. The signaling network model also qualitatively captured these experimental observations for rapamycin

administration in the KO mice. See also S2 Fig.

https://doi.org/10.1371/journal.pcbi.1009683.g002
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the KO relative to baseline and for rapamycin treatment of the KO relative to untreated KO,

with modeling predictions shown by the colored filled bars based on tuned parameters (S4 and

S5 Figs) and the experimental data shown by the filled black circles and associated credible

intervals. As it can be seen, the model predictions captured all quantitative changes well for the

KO and many for rapamycin, though not well for β-catenin or LAMP1/2.

Specifically, note the hyperactivation of mTORC1 in the absence of TSC1/2 as evidenced by

the activation of p-S6K, p-S6, and p-4EBP1 in both the KO model and the experiments relative

to the baseline case. Our model predicted relative increases in activations of 29.31, 75.91, and

29.31 (Fig 3A), respectively, which fall within a 95% credible interval of the ratio of the medi-

ans in the experimental data (25.57 [5.44, 120.68], 79.57 [38.72, 163.80], and 23.06 [7.57,

72.04], respectively). These changes resulted directly from removal of the inhibition of

mTORC1 by TSC1/2. The experimental data also showed a significant decrease in SMC con-

tractile proteins in the KO mouse aortas relative to wild-type controls. We compared the rela-

tive activation of the key species SMMHC, SMA, and SM22 in the simulated KO model

Fig 3. Quantitative comparison between network model results (bars) and experimental data (shown as point estimates (filled black circles) and 95% credible

intervals (error bars) for the ratio of median expressions in KO versus baseline) reported by Li et al. [10]. a) The signaling network model quantitatively

captured increases in expression of mTORC1-associated species (p-S6K, p-S6, and p-4EBP1) caused by Tsc1 knock-out. b) The network model quantitatively

captured the decrease in p-AKT and contractile proteins (SMMHC, SMA, and SM22) caused by Tsc1 KO. c) Simulated inhibition of mTORC1 with rapamycin

quantitatively captured the decrease in p-S6K and p-S6 activation and the decrease in contractile proteins observed experimentally. d) The network model

quantitatively captured the increase in MMP2 expression and decrease in extracellular matrix transcripts Col3a1 and Eln seen experimentally after Tsc1 KO. e) The

network model quantitatively captured the experimentally measured increases in lysosome-related proteins (β-catenin, LAMP1/2, and MITF) due to Tsc1 KO. f)

Inhibition of mTORC1 with rapamycin caused a decrease in lysosome-related species, which the network model captured qualitatively but not quantitatively. See

Methods for details on the re-analysis of the experimental data from the literature.

https://doi.org/10.1371/journal.pcbi.1009683.g003
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relative to the baseline model (Fig 3B), and found decreased activation ratios of 0.8313, 0.7780,

0.7780, respectively, all of which are within a 95% credible interval for the experimental data

(0.6474 [0.3056, 1.3622], 0.7462 [0.6376, 0.8733], and 0.7440 [0.6242, 0.8918], respectively).

The decrease in p-AKT, an upstream effector of mTOR signaling, was predicted to be 0.4300,

which also compared well with experimental data (0.4022 [0.3395, 0.4770]). This change

occurs because p-S6K inhibits activation of PI3K by IGFR and IRS-1 in a negative feedback

loop (S1 Fig). Hyperactivation of p-S6K can thus lead to a substantial decrease in PI3K/AKT

signaling and subsequent decreases in mTORC2 and RhoA. Both p-AKT and RhoA are

involved in the activation of contractile proteins, thus accounting for their decreased levels.

Simulating the early effects of rapamycin, in which we inhibited mTORC1, abolished the acti-

vation of p-S6K and p-S6, consistent with the experiments. The subsequent removal of the

inhibitory effects of p-S6K (Fig 3C) led to increases in activation of the contractile proteins

SMMHC, SMA, and SM22 (1.9391, 2.3204, and 2.3204, respectively). These increases fell

within the 95% credible interval of the experimental data (1.9114 [1.3746, 2.6245], 1.9259

[1.3038, 2.8642], and 2.3107 [1.4538, 3.6662], respectively).

The SMCs in the Tsc1 KO mice expressed decreased levels of synthetic markers, specifically

transcripts associated with ECM production, relative to the control mice at 3 weeks following

Tsc1 KO. Our model predicted reduced activation levels of Col3a1 and Eln in the KO, with

ratios of 0.7814 and 0.2988, respectively, relative to baseline (Fig 3D). The reduction in both

species fell within a 95% credible interval of the ratio of experimental data medians (0.6195,

[0.4065, 0.9443] and 0.4584 [0.2623, 0.8053], respectively). The predicted reduced expression

in our model was due to disruption of TGFβR-TSC1-Smad2/3 signaling through TSC1/2 KO.

Our model also captured changes in the proteolytic and lysosomal capabilities seen in degrada-

tive SMCs after Tsc1 disruption (Fig 3D). The activation level of MMP2 increased in the KO

relative to the baseline condition by a ratio of 1.9028, quantitatively similar to the behavior

seen experimentally (1.6707, [1.0885, 2.5543]. Despite the decrease in activation of p-AKT, an

effector of MMP2, we saw enhanced inhibition of GSK3 by p-S6K. GSK3 is a downstream pro-

tein in the Wnt-Frizzled signaling cascade and is responsible for inhibition of both β-catenin

and MITF as well as activation of TSC1/2. Reduction in GSK3 activity was thus responsible for

the predicted increases in the activation levels of β-catenin (1.7952) and the lysosomal-related

proteins LAMP1, LAMP2, and MITF (2.3424, 2.3424, and 45.1490, respectively), as seen in Fig

3E, which all fell within a 95% credible interval of the experimental data (1.7620 [1.4623,

2.1244], 2.7029 [1.5385, 4.7815], 3.6597 [0.8488, 15.7193], and 25.7681 [12.8522, 51.6854],

respectively). In the Rapa + KO simulation, we saw predicted decreases in activation levels of

these lysosomal species (β-catenin: 0.9138, LAMP1: 0.7820, LAMP2: 0.7820, and MITF: 0).

The model thus quantitatively captured the experimental behavior for LAMP2 and MITF

(0.0312 [0.0012, 0.8134] and 0 [0, 0], respectively), but not for β-catenin or LAMP1 (0.6194

[0.4687, 0.8109] and 0.1931 [0.1432, 0.2613, respectively], as seen in Fig 3F.

Classification of model species reveals distinct functional phenotypes in

wild-type and Tsc1 KO aortas

While SMCs have been traditionally described as having either a contractile or a synthetic phe-

notype, our prior study [10] revealed a third distinct (degradative) phenotype. We used our

network model to understand better where within this expanded phenotypic space baseline

and KO cells reside. For this purpose, each phenotype (contractile, synthetic, degradative) was

described using a normalized activation, ranging from 0 to 1, which we calculated as the aver-

age activation of a set of key species (S6 Fig). The contractile phenotype was defined by

SMMHC, SMA, and SM22; the synthetic phenotype was defined by Col3a1, Eln, and tissue
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inhibitors of metalloproteinases (TIMP); and the degradative phenotype was defined by

LAMP2, MMP2, S6, MITF, and β-catenin. The baseline condition showed a balance between

the contractile (0.5716) and synthetic (0.6848) phenotypes with little evidence of the degrada-

tive phenotype (0.1555), as seen in S6A Fig. The KO condition shifted this balance towards a

degradative (0.5523) phenotype, with a decrease in the influence of both the contractile

(0.4557) and synthetic (0.4620) phenotypes (S6B Fig).

Distinct proteomic clusters arise in simulated wild-type and Tsc1 KO SMC

populations

We created a heterogenous population of aortic SMC network models by randomly specifying

individual receptor reaction weights for each cell using a beta distribution of mean = 0.85 and

variance = 0.001; this distribution was characterized by parameters α = 107.525 and β = 18.975

(Fig 4A). We again defined a subset of species relevant to the contractile, synthetic, and degra-

dative SMC phenotypes, namely {SMA, SM22, SMMHC}, {collagen, elastin, MMP2}, and

{MITF, β-catenin, and LAMP2}, and used the activation level of these species to identify dis-

tinct proteomic clusters within the simulated cell populations. Running a DBSCAN algorithm

on the combined baseline and KO cells revealed 4 clusters, two corresponding to the wild-type

cells (WT– 1, WT– 2) and two to the KO cells (KO– 1, KO– 2). Fig 4B visualizes the clusters

using a t-distributed stochastic neighbor embedding (tSNE) algorithm, including the

DBSCAN classification. In Fig 4C, we show a heatmap of the activation level of each relevant

species for every model, divided into their corresponding clusters. The heatmap shows that

clusters WT– 2 and KO– 2 are characterized by saturated levels of the contractile proteins

SMA, SM22, and SMMHC. Cluster WT– 1 has moderate levels of the contractile proteins,

while cluster KO– 1 shows a decrease in these species compared to WT– 1. When we consider

the average phenotype for cells within each cluster, shown in Fig 4D, we see that clusters WT–

2 and KO– 2 are both highly contractile, regardless of the effect of TSC1/2 and mTORC1 sig-

naling. Both clusters KO– 1 and KO– 2 show a higher degradative phenotype than either of

the wild-type clusters. Because the PI3K/AKT/mTOR signaling pathway influences contractile

protein expression, we looked further into the activation level of key species within this path-

way for the cell population. Fig 4E shows peak activation levels of PI3K, PDK1, AKT, and

mTORC2 for each cell in the baseline condition. Both PI3K and PDK1 increase smoothly,

while AKT and mTORC2 saturate for all models in cluster WT– 2, revealing a threshold for

PI3K activation (0.2716) that triggers AKT saturation in these cells.

Sub-network analysis reveals bistable behavior in the PI3K/AKT/mTOR

signaling pathway

Finding two distinct clusters in each condition in the population studies, even though receptor

reaction weights varied smoothly within a unimodal distribution, led us to investigate further

the role of feedback loops in PI3K/AKT/mTOR signaling. A known possible consequence of

positive feedback loops is bistability (the co-existence of two stable states) and the presence of

so-called bistable switches, which describe sudden transitions between these states at threshold

values [24,25]. Bistability thus became a candidate mechanism for the behavior we observed.

We isolated a simplified sub-network with five species (PI3K, PDK1, AKT, mTOR, mTORC2),

including the positive feedback loop (Fig 5A), using PI3K as the input. To understand the

dynamics of this sub-network, we ran a MatCont bifurcation analysis to generate one-parame-

ter bifurcation diagrams for the four downstream species (Fig 5B), where stable steady states

are shown by solid lines as a function of PI3K value. While PDK1 did not exhibit any bifurca-

tions, the species in the positive feedback loop exhibited limit point bifurcations (also known
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Fig 4. Cell population simulations. a) A beta distribution, with μ = 0.85 and σ2 = 0.001, was used to randomly sample receptor reaction weights for 1000 different

signaling network models for wild-type and KO cells. Each of the 7 receptor reactions in a distinct cell was assigned a different weight. b) Visualization of wild-type

(circles) and KO (triangles) clusters using a t-distributed stochastic neighbor embedding (tSNE) algorithm. Two primary clusters for each condition were found

using a density-based spatial clustering of applications with noise (DBSCAN) algorithm for the steady-state activation levels of network species. c) Heatmap showing

the activation level of species relevant to contractile, synthetic, and degradative phenotypes for each of the 1000 models in each population (WT and KO). Clusters

WT– 1 and KO– 1 are characterized by moderate-to-low activation of contractile proteins (SMA, SM22, SMMHC), while clusters WT– 2 and KO– 2 both have

saturated levels of these species. d) The phenotypic characteristics of the average cell in each cluster was visualized in the contractile-synthetic-degradative

phenotypic space. Both KO clusters are more degradative than the WT clusters, but clusters WT– 2 and KO– 2 retain their contractile capacity. e) The peak

activation of species in the PI3K/AKT/mTORC2 positive feedback loop of WT models show that beyond a threshold (0.2716) of PI3K activation, the level of AKT

and mTORC2 saturates, causing a bistable division into distinct clusters.

https://doi.org/10.1371/journal.pcbi.1009683.g004
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as saddle-node or fold bifurcations) at a PI3K level of 0.27083 and featured bistable behavior

below this threshold. In the bistable region, the stable steady-state solution will settle at either a

low or a saturated level even at low PI3K steady-state values, depending on the initial level of

each species relative to the dashed unstable branch. If beginning on the lower stable branch, an

increase in PI3K activity through the limit point bifurcation will lead to a switch to the satu-

rated state, which is self-sustaining and irreversible assuming there are no changes to the net-

work structure or Hill parameters. This threshold of ~0.27 for the sub-network is consistent

Fig 5. Focus on the PI3K/AKT/mTOR signaling sub-network structure. a) Simplified network diagram showing the positive feedback loop for AKT

activation with PI3K serving as an input. b) MatCont bifurcation analysis showing the stable (solid lines) and unstable (dashed lines) steady-state solutions for

each downstream species in the model shown in (a) for different levels of PI3K input. While there is no bifurcation for PDK1, the other three species in the

network (AKT, mTOR, and mTORC2) exhibit a limit point bifurcation (LP), indicated by a star, detected at a level of PI3K = 0.27083. c) Simplified network

diagram showing an activator and inhibitor pair interacting via an AND gate to activate PI3K. d) Surface plot showing the steady-state activation level of PI3K

for different levels of an upstream activator and inhibitor pair. The threshold for saturation of the downstream species in the positive feedback loop is shown as

a grid. Increasing the level of inhibitor prevents PI3K from crossing this threshold.

https://doi.org/10.1371/journal.pcbi.1009683.g005
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with that detected in the aforementioned analysis of the full network (Fig 4E), suggesting that

sub-networks can be used to study underlying dynamics. Moreover, the isolated positive feed-

back loop is sufficient to create the observed behavior, suggesting that it is the key mechanism.

Because PI3K is attenuated by S6K signaling in the full network (S1 Fig), we also sought to

understand the influence of both activation and inhibition on the bistable system (Fig 5C).

The steady-state activation of PI3K and its ability to cross the threshold depends on a balance

of activation and inhibition, as shown in Fig 5D. Increasing the level of inhibition prevents

PI3K from crossing the threshold and triggering saturation of AKT signaling.

Discussion

Whereas we built an aortic SMC signaling model that incorporates many of the key signaling

pathways, we necessarily focused on the mTOR pathway given the availability of detailed data

[10] and the continuing demonstration that rapamycin has proven remarkably effective in res-

cuing the in vivo aortic phenotype in many murine models of aortopathy. In particular, rapa-

mycin has proven effective in attenuating medial degeneration and associated aneurysmal

enlargement or dissection in elastase models [26–28], angiotensin II infusion models [29,30],

β-aminopropionitrile (BAPN) induced models [31,32], and genetically triggered models,

including those affecting transforming growth factor-β signaling [8], fibrillin-1 [33], and

mTOR hyperactivation [10], among others. Indeed, a comprehensive proteomics study of the

Fbn1C1039G/+ mouse model of Marfan syndrome revealed mTORC2 associated rictor as a key

signaling target [34]. Reported mechanisms by which rapamycin is protective are many,

including reduced inflammatory cell infiltration (neutrophils and macrophages), reduced

cytokine activity (interleukin-1β and interferon-γ), reduced matrix metalloproteinase activity

(MMP2, 9), and increased SMC contractile proteins (SMA and SMMHC). Maintenance of

actomyosin activity is critical both for facilitating appropriate SMC mechanosensing [6] and

reducing wall stress on a structurally vulnerable aortic wall [35].

Whereas it has long been known that rapamycin inhibits SMC proliferation/migration

[36,37] while promoting a contractile SMC phenotype [38,39], less is known about its direct

effects on ECM turnover. Nevertheless, data suggest that rapamycin can reduce accumulation

of hyaluronan [20] and collagen [21,40], both key constituents of aortic remodeling, particu-

larly in cases of compromised elastic fiber integrity, a common characteristic of thoracic aorto-

pathy. Indeed, studies in tendons suggest that signaling via β1 integrin subunits through

integrin linked kinase (ILK) drives collagen synthesis via AKT/mTOR signaling [41]. Mouse

models of Ilk deletion present with thoracic aneurysms [42,43], perhaps suggesting yet another

role of compromised mechanosensing and inappropriate maintenance or remodeling of ECM.

Such changes in matrix turnover must be considered carefully, however, for structural func-

tionality results not just from secretion, but also post-translational modifications and organiza-

tion of matrix that affect fiber size, undulation, orientation, and cross-linking [44,45]. The

present model cannot predict post-translational changes that include fibrillogenesis or cross-

linking, hence highlighting one area of future need.

Notwithstanding the complexity of intracellular signaling networks (Fig 1), it is remarkable

that logic-based models can often capture qualitative findings well with uniform values of the

key parameters (n, EC50, and multiple weightsW –see Methods; Table 1), as noted previously

by others [46]. We found that uniform parameter values not only provided good qualitative

agreements with data (Fig 2), they also yielded surprisingly good quantitative agreement in

many cases (Fig 3). This is remarkable but engenders confidence in exploring predictions asso-

ciated with different values of parameters. Such simulations appear to be particularly useful

given that single-cell RNA sequencing reveals considerable variability across otherwise similar
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SMCs in both health and disease, including Marfan syndrome [47] and mTOR hyperactivation

[10].

We found that simple perturbations in specific parameters, such as the weight of receptor

reactions, can cause distinct cell proteomic clusters to emerge. Our findings suggested further

that the balance of positive and negative feedback loops in the PI3K/AKT/mTOR pathway was

particularly critical to the emergence of these simulated clusters. Unexpectedly, we found that

the positive feedback loop between AKT and mTORC2 led to a bistable switch in the network,

with either high or low levels of AKT and contractility dependent on the peak activation level

of PI3K. The negative feedback loop between mTORC1-S6K and PI3K reduced the peak PI3K

activation level, providing some self-regulation against the switch to a highly contractile state.

Of note, the balance between positive and negative feedback can be controlled pharmacologi-

cally; for example, mTORC1 inhibition by rapamycin disrupts the negative feedback. Other

computational studies have discussed the possibility and importance of bistability in mTOR

signaling [48–50]. In the setting of aortic mechanobiology, the presence of a bistable switch in

PI3K/AKT/mTOR signaling could be particularly important given the downstream impact on

contractile protein expression, and further experimental studies investigating potential bist-

ability could be important to better understand and treat thoracic aortopathies. In their 2020

study, Li et al. [10] found many distinct transcriptomic clusters, including some with upregu-

lated or downregulated contractile protein transcripts, using single-cell RNA sequencing. It

was beyond the present scope, however, to clarify the differences between clusters using our

model, as we instead focused on the in vivo phenotypes.

Future modeling must address current limitations, including the lack of cell-cell interac-

tions, ECM ligand-dependent signaling, and coupling across scales from cell-to-tissue. That is,

there is a need to couple the present cell signaling model with a tissue level model of the evolv-

ing aortic geometry, composition, properties, and function, as achieved previously for angio-

tensin II induced hypertension [16]. Such cell-tissue level coupling provides another

important level of feedback. Additionally, future studies can include uncertainty quantification

to understand better the impact of parameter variability within the network. Novel methods to

account for both data and parameter uncertainty in network models are continuing to emerge

[51], as are computational tools to facilitate their practical application [52]. Moreover, we have

recently developed an uncertainty quantification pipeline for estimating local mechanical

properties of the vessel wall [53], thus paving the way to addressing both tissue-level and (sub)

cellular uncertainties in mechanobiological metrics within a future multiscale modeling frame-

work. Nevertheless, the present cell signaling network represents the first SMC-specific model

having both qualitative and quantitative utility in describing and predicting emergent charac-

teristics seen in the thoracic aorta, here for the Tsc1 KO mouse. We found that, even when

using uniform values for the logic-based model parameters (EC50, n,W), a single network cap-

tured salient aspects of the effect of both mTOR hyperactivation and pharmacologic rescue

with rapamycin, with perturbations that impact PI3K/AKT/mTOR signaling leading to differ-

ent cell phenotypes due to a bistable switch caused by positive feedback within this signaling

pathway.

Methods

Logic-based modeling

Cell signaling networks can be modeled using either reaction kinetics or logic-based

approaches. We employed the latter, motivated in large part by demonstrated successes in

modeling cardiac cell signaling [46]. Briefly, the continuous logic-based approach that we

employ [54] results in a system of ordinary differential equations (ODEs) in time that describe
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interactions (edges) amongst the different molecular species (nodes). The ODEs are based on

normalized Hill-type functions [55] that represent activation (act) or inhibition (inhib) of each

species in the network [46,54,56,57], illustrated in the equations below:

fact Xð Þ ¼
bXn

Kn þ Xn

finhib Xð Þ ¼ 1 �
bXn

Kn þ Xn

with,

b ¼
ECn

50
� 1

2ECn
50
� 1

and Kn ¼ ðb � 1Þ
1
n:

These functions depend on the half-maximal activation (EC50) and Hill exponent (n),

which can be tuned to obtain proper model behavior. In particular, each species in the cell sig-

naling network is represented by a node with a normalized activation level ranging from 0 to

1, with reactions between species defined using AND and OR logic-gates. Activation using an

AND gate requires the interaction of two or more upstream species. For example, let the acti-

vation of species C (yC) depend on the combined activation of species A (yA) and E (yE),

namely

dyC
dt
¼

1

tC
AND yA; yEð ÞyC;max � yC
� �

with,

AND ¼WAEC factðyAÞfactðyEÞ:

Meanwhile, OR gates allow activation by multiple upstream species independently, as

shown in below for the activation of species D (yD) by either species B (yB) or E (yE).

dyD
dt
¼

1

tD
OR yB; yEð ÞyD;max � yD
� �

with,

OR ¼WBDfactðyBÞ þWEDfactðyEÞ � WBDfactðyBÞWEDfactðyEÞ:

The degree to which a reaction can activate or inhibit a species depends on its specified

weight (W), which also can range from 0 to 1. The maximum activation (ymax) of and time

constant (τ) for each species are set to a default value of 1 for all species in this model, although

the former can be altered to simulate a knock-down (value less than 1) or knock-out (value 0).

Model parameterization and Tsc1 KO simulations

The primary parameters within the model are thus the two Hill parameters (n and EC50) and

individual reaction weights (W). External inputs also have weight-like parameters that repre-

sent their normalized magnitude. Given the exquisite mechano-sensitivity of vascular cells, we

allow pressure-induced intramural stress (W = 0.24054), flow-induced wall shear stress

(W = 0.24054), exogenous angiotensin II and IFN-γ (though absent here, thusW = 0), oxygen/

cellular energy (W = 0.5), and other inputs (W = 0.25) as external stimuli (see Fig 1). Extensive

initialization studies revealed the following preferred values: n = 1.4, EC50 = 0.52,W = 0.85 for

receptor reactions, andW = 1 for “downstream” reactions. That is, we tuned the Hill
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parameters, input weights, and receptor reaction weights such that model-predicted ratios for

the mTORC1-associated species and contractile proteins between conditions, as described

below, would fall within a 95% credible interval of the experimental data here taken from [10].

One advantage of logic-based models is that uniform parameter values often yield good predic-

tions, hence for simplicity and without a loss of generality, these parameters were applied uni-

formly for the 81 overall species and 138 overall reactions that are seen in Fig 1. Table 1

summarizes the model parameters used. We ran all simulations using MATLAB (R2020a,

Mathworks).

Once parameterized, the model was used to simulate three conditions (Table 2): normal sig-

naling in wild-type control C57BL/6 SMCs (Baseline), postnatal SMC-specific knock-out of

Tsc1 (KO), and postnatal SMC-specific knock-out of Tsc1 with rapamycin treatment (Rapa).

We simulated the Tsc1 KO by setting the ymax value of the TSC1/2 node to 0 while keeping all

other parameters constant. For the Rapa simulation, we additionally set the ymax value of

mTORC1 to 0, corresponding to full inhibition by rapamycin within the early period following

the initiation of treatment. We then used the ratios of steady-state activation levels of relevant

model species to compare our model behavior with the experimental data [10].

Reanalysis of experimental data

Central to assessing our signaling network model was a meaningful comparison of predictions

with experimental data. To this end, our objective was to evaluate the extent to which the tuned

model was able to quantitatively capture altered expressions of species of interest following both

Tsc1KO and mTORC1 inhibition by rapamycin (Fig 3). Although the relevant data had been

analyzed previously to identify significant differences in relative expression between experimental

groups [10], we reanalyzed the experimental data to quantify the ratio of KO and baseline as well

as treated (rapamycin) and untreated KO group expression levels for each species of interest. To

be most representative of the observed data, the tuned model should predict values close to the

central tendency of this ratio of group-wise expressions. We therefore chose to compare the

model predictions to the ratio of median expression levels between groups—for example, the ratio

of a species’ median expression in the KO condition and its median expression in the baseline

condition. Because the true (i.e., population) distributions of expression levels are unknown, the

median expression levels must be estimated for each group using the experimental data; thus, the

ratio of these median values is itself an estimated quantity with an associated uncertainty. In Fig 3,

for each ratio shown, we report a point estimate (filled black circle) as well as a 95% credible inter-

val (bars) for this quantity, computed using the following methodology.

For example, let YBase and YKO be the relative expressions of a hypothetical species of inter-

est in the baseline and KO groups, respectively, measured via western blot densitometry and

normalized with respect to a loading control (S3A Fig). Under the assumption that the strictly

positive expression levels within each group are lognormally distributed, the log-transformed

expression levels ln(Yi), which are unbounded (S3B Fig), can be modeled using a normal dis-

tribution. Adopting a Bayesian approach as we have done previously [53], for an uninforma-

tive prior proportional to the reciprocal of the variance, the posterior marginal distributions of

the group-specific median log-expressions μBase and μKO are non-standardized Student’s t dis-

tributions (S3C Fig). The difference between these, δ = μKO−μBase, is distributed according to

the appropriate convolution of their individual distributions (S3D Fig). For probability density

functions fBase(μBase) and fKO(μKO),

fdðdÞ ¼
R1
� 1
fKOðmKOÞfBaseðmKO � dÞdmKO:
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Inverting the earlier log-transformation yields

exp dð Þ ¼ exp mKO � mBaseð Þ ¼
expðmKOÞ

expðmBaseÞ
;

which is the desired ratio of group-wise median expression levels. Noting that quantile order is

preserved under monotonically increasing transformations, the point estimate and equi-tailed

credible interval bounds for exp(δ) are computed directly by exponentiating the 2.5th, 50th,

and 97.5th percentiles of δ (S3E and S3F Fig).

Network parameter sensitivity

Another critical step in building our network model was tuning the parameters such that we

could obtain a quantitative match to the experimental data [10], specifically the increase in spe-

cies downstream of mTORC1 (p-S6K, p-S6, and p-4EBP1) and the decrease in p-AKT and

contractile proteins (SMMHC, SMA, SM22). To achieve this, we tuned the model using a

parameter sweep [57] of: the Hill parameters (1) EC50 and (2) n, (3) the input weight of pres-

sure-induced intramural stress and wall shear stress, (4) the input weight of oxygen and cellu-

lar energy, (5) the weight of other inputs (Glucose, Leucine, Fibrillin), (6) the weights of the

receptor reactions, and (7) the downstream reaction weights. The exogenous angiotensin II

input weight was kept at 0 because we did not simulate any experiments where angiotensin II

was administered exogenously. While the parameters were tuned in parallel, we found the sen-

sitivity of representative species of interest to different parameter ranges. S4 Fig shows the

solutions that fell within a 95% credible interval, as described above, for each of our species of

interest within a two-dimensional solution space for the following combinations of parame-

ters: EC50 and n (S4A Fig), receptor reaction weights and downstream reaction weights (S4B

Fig), and the weight of input oxygen and cellular energy and weight of the remaining model

inputs (Glucose, Leucine, Fibrillin, S4C Fig). We see in S4 Fig that p-AKT and p-S6 are the

most sensitive species, while SMMHC was not sensitive to these parameters over the ranges

explored. Finally, note the effect of the mechanics-based inputs, intramural stress and wall

shear stress, on the KO/baseline ratios of our relevant species, shown in S5 Fig. As with the

other parameters, there is a narrow range of input weights for which p-AKT and p-S6 fell

within their respective 95% credible intervals.

Population simulations

While the tuned network model represents an average aortic SMC, in an actual vessel we

would expect to find a heterogeneous population of SMCs that need not respond collectively

to particular perturbations. Thus, we used our network model to simulate distinct SMCs

within a population, not unlike that revealed by single cell RNA sequencing. One advantage of

these fast network models is the ability to run large numbers of models (i.e., cells) efficiently.

Thus, using the same network architecture and Hill parameters (EC50, n), we created a hetero-

geneous cell population by varying only the receptor activation reaction weights based on ran-

dom sampling of a beta distribution with a mean of 0.85 and a variance of 0.001, with

corresponding values α = 107.525 and β = 18.975 characterizing the distribution. Each recep-

tor reaction in the cell was assigned a distinct weight, and a total of 1000 cells were simulated.

For each cell, we ran the baseline and KO conditions, as described above. We then used a

subset of network species relevant to the three primary phenotypes (contractile, synthetic, deg-

radative) to run a density-based spatial clustering of applications with noise (DBSCAN) algo-

rithm on the population to obtain distinct proteomic clusters. For the DBSCAN algorithm, we

set the maximum radius (epsilon) = 0.25 and the minimum points threshold (MinPts) = 25,
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based on preliminary sensitivity analyses of the parameters and comparison against principal

component analysis with k-means clustering of additional test cases, with a silhouette analysis

to obtain the optimal cluster number.

Simplified PI3K/AKT/mTOR signaling network

Motivated by results from the full model, we also studied a simplified sub-network focused

only on the PI3K/AKT/mTOR signaling pathway to understand better how possible positive

and negative feedback interactions could lead to bistable behavior. We included 5 species

(PI3K, PDK1, AKT, mTOR, and mTORC2) and 5 reactions. This simplified network included

the positive feedback loop between AKT and mTORC2, and PI3K served as the input. We per-

formed numerical continuation and bifurcation analyses using the open-source software Mat-

Cont (https://sourceforge.net/projects/matcont/, [58]) through MATLAB. This analysis tracks

equilibrium points of a system of ODEs given changes in a particular bifurcation parameter,

which in our case was the input activation level of PI3K. MatCont solves both stable and unsta-

ble equilibria, allowing us to identify and classify any bifurcations that might occur for each

species in the network.

Bifurcation analysis is used to determine qualitative changes in model behavior as a func-

tion of model parameters. Most commonly, changes in the existence and stability of steady

states (equilibria) are of interest. For continuous systems of ODEs defined by _x ¼ f ðxÞ, the

steady states are solutions of f(x) = 0 and the stability of these steady states are determined by

the eigenvalues of the Jacobian matrix evaluated at this point. Briefly, this is motivated by con-

sidering a small perturbation to a given equilibrium solution and linearizing the system via a

first-order Taylor series approximation. The eigenvalues show whether the perturbation

would shrink (negative real parts) or grow (positive real parts), and can thus be used to classify

the point as stable or unstable, respectively.

To track equilibria as a function of a given model parameter α (known as the bifurcation

parameter), numerical continuation is used to follow solutions of f(x, α) = 0. We used the

numerical continuation software Matcont for this analysis, which is freely available at https://

sourceforge.net/projects/matcont [58] and runs through MATLAB. Branches of the stable and

unstable equilibrium solutions are followed using a prediction-correction continuation algo-

rithm, and eigenvalues are evaluated along solution branches to find and classify bifurcation

points. For example, limit point bifurcations (as observed in Fig 5) occur when one eigenvalue

has a zero real part. To generate bifurcation diagrams, the user inputs the model equations as

well as initial equilibrium points, from which one specifies a forward or backward evolution of

the bifurcation parameter.

The governing equations for our simplified 5-species sub-network (Fig 5A) are

dPDK1

dt
¼

bPI3Kn

Kn þ PI3Kn
� PDK1;

dAKT
dt
¼

bPDK1n

Kn þ PDK1n
þ

bmTORC2n

Kn þmTORC2n
�

bPDK1n

Kn þ PDK1n
bmTORC2n

Kn þmTORC2n
� AKT;

dmTOR
dt

¼
bAKTn

Kn þ AKTn
� mTOR;

dmTORC2

dt
¼

bmTORn

Kn þmTORn
� mTORC2;
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where PI3K is the bifurcation parameter and

b ¼
ECn

50
� 1

2ECn
50
� 1

;

Kn ¼ ðb � 1Þ
1
n;

as described above. As in the full network, we use w = ymax = τ = 1 (which have thus been omit-

ted in the governing equations) and n = 1.4 and EC50 = 0.52.

Steady states, where f(x, PI3K) = 0, are given by

PDK1 ¼
bPI3Kn

Kn þ PI3Kn
;

AKT ¼
bPDK1n

Kn þ PDK1n
þ

bmTORC2n

Kn þmTORC2n
�

bPDK1n

Kn þ PDK1n
bmTORC2n

Kn þmTORC2n
;

mTOR ¼
bAKTn

Kn þ AKTn
;

mTORC2 ¼
bmTORn

Kn þmTORn
;

from which two steady state solutions are the zero state

½PI3K; PDK1;AKT;mTOR;mTORC2� ¼ ½0; 0; 0; 0; 0�

and the saturated state

½PI3K; PDK1;AKT;mTOR;mTORC2� ¼ ½1; 1; 1; 1; 1�:

These solutions were used to begin the continuation, with equilibria followed forwards

from the zero state and backwards from the saturated state. The range under investigation was

restricted to [0,1] for all species.

The PDK1 stable branch had no limit point bifurcation (Fig 5B), and the same solution was

obtained from both the forward and backward evolutions. The remaining species had distinct

upper and lower branches, with the lower stable and unstable branches obtained from the for-

ward evolution, and the upper branch from the backward evolution. The coexistence of two

stable equilibria for some values of PI3K demonstrates bistability in the system, with the final

solution depending on the initial condition.

Note finally that we held other model parameters (n and EC50) constant to enable a one-

parameter analysis, but the position of the limit point bifurcation on the lower branch depends

also on these values (S7 Fig). This dependency occurs since the Hill parameters regulate signal

transmission and the strength of the positive feedback.

Supporting information

S1 Fig. Schematic rendering of the smooth muscle cell network model (cf. Fig 1, main

text), but with an emphasis on the embedded PI3K/AKT/mTOR signaling pathway. The

solid ellipse highlights the TSC1/2 node, which we used to simulate Tsc1 knock-out by setting

its ymax = 0. The dashed ellipse highlights the mTORC1 node, which is the primary target of

the inhibitor rapamycin. We simulated full inhibition by rapamycin by setting ymax = 0 for the

mTORC1 node. See Table A in S1 Text and the associated 105 references that were used to
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build the overall network. A solid black line indicates activation; a red dashed line indicates

inhibition.

(TIF)

S2 Fig. Heatmap showing the change in activation between the simulated inhibition of

mTORC1 signaling with rapamycin and the baseline model. While the experimental data

from Li et al. (2020) did not include this comparison, we have added it for completeness. Rapa-

mycin leads to greater activation of p-AKT and contractile signaling, as well as reductions in

apoptosis, matrix transcripts, and MMP2 compared to the baseline model.

(TIF)

S3 Fig. Experimental data reanalysis pipeline. a) Relative expression data for a hypothetical

species derived from western blot densitometry normalized to a loading control, with baseline

(Base) and Tsc1 null (KO) groups each having a sample size of 4. b) Log-transformation of the

relative expression data in (a). c) Posterior distributions for the group-specific median log-

expressions μBase and μKO, assuming the log-expression data within each group are normally

distributed (i.e., assuming the untransformed data are lognormally distributed). d) Posterior

distribution for the difference in median log-expressions, μKO−μBase. e) Point estimate and

95% equi-tailed credible interval for the difference in median log-expressions. f) Point estimate

and 95% equi-tailed credible interval for the KO/Baseline ratio of median expressions. The

point estimate and interval results shown for all species in Fig 3 correspond to those shown in

(f), computed via the methodology presented in Methods.

(TIF)

S4 Fig. Two-dimensional solution space masks for combinations of two parameters. Blue

regions indicate combinations where the solution falls within a 95% credible interval of data

for the species of interest. The star corresponds to the parameters used in the network model.

Combinations of parameters: a) EC50 and n; b) receptor reaction weights and downstream

reaction weights; and c) the weight of input oxygen and cellular energy and weight of the

remaining model inputs (Glucose, Leucine, Fibrillin).

(TIF)

S5 Fig. Effect of mechanical inputs on the Tsc1 KO/baseline ratio. The pressure-induced

intramural stress and wall shear stress are kept equal in our simulations. In each panel, the

blue line corresponds to the Tsc1 KO/baseline ratio for each species, with the solid and dashed

black lines showing the point estimate and 95% credible interval for the KO/baseline ratio of

median expressions, based on the experimental data. The star indicates the stress parameters

used in the network model.

(TIF)

S6 Fig. Visualization of the baseline (WT) and Tsc1 null (KO) results within a smooth mus-

cle cell phenotypic space bounded by vertices defined as purely contractile (1.0), purely

synthetic (1.0), or purely degradative (1.0). The degree of a phenotype was calculated for

each cell using the mean activation of a subset of relevant species: contractile {SMMHC, SMA,

SM22}, synthetic {Col3a1, Eln, TIMP}, and degradative {LAMP1/2, MMP2, S6, MITF, and β-

catenin}. a) As it can be seen, the simulated Baseline cell was primarily contractile-synthetic,

with non-zero degradative, as expected of a normal cell performing a mechano-sensing and

mechano-regulating function to maintain an extracellular matrix experiencing low turnover.

b) A representative Tsc1 KO cell exhibited a shift towards a degradative phenotype with

decreases in the degree of contractile and synthetic phenotypic expression.

(TIF)
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S7 Fig. Lower branch equilibrium solutions only, for different Hill parameters, EC50 and

n, which affect the existence and position of the limit point bifurcation. Higher EC50 damp-

ens signal transmission and therefore reduces the strength of the positive feedback, leading to

a shift of the limit point bifurcation towards higher PI3K. If the signal is sufficiently damped,

the limit point bifurcation is not seen. A shift towards higher PI3K is also seen for increasing n,

although the effect is not as extreme.

(TIF)

S1 Text. Table A. Detailed list of species (nodes) and reactions (edges) for the smooth mus-

cle cell mTOR network structure, with associated references (>100) that motivated the

network structure. Inhibition (‘NOT’) is denoted by ‘!’, ‘AND’ statements are denoted by ‘&’,

and ‘OR’ statements are constructed by collating all statements with an identical right-hand

side.
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