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Abstract

Background

Accurate evaluation of immunostained histological images is required for reproducible

research in many different areas and forms the basis of many clinical decisions. The quality

and efficiency of histopathological evaluation is limited by the information content of a histo-

logical image, which is primarily encoded as perceivable contrast differences between

objects in the image. However, the colors of chromogen and counterstain used for histologi-

cal samples are not always optimally distinguishable, even under optimal conditions.

Methods and Results

In this study, we present a method to extract the bivariate color map inherent in a given his-

tological image and to retrospectively optimize this color map. We use a novel, unsuper-

vised approach based on color deconvolution and principal component analysis to show

that the commonly used blue and brown color hues in Hematoxylin—3,3’-Diaminobenzidine

(DAB) images are poorly suited for human observers. We then demonstrate that it is possi-

ble to construct improved color maps according to objective criteria and that these color

maps can be used to digitally re-stain histological images.

Validation

To validate whether this procedure improves distinguishability of objects and background in

histological images, we re-stain phantom images and N = 596 large histological images of

immunostained samples of human solid tumors. We show that perceptual contrast is

improved by a factor of 2.56 in phantom images and up to a factor of 2.17 in sets of histologi-

cal tumor images.
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Context

Thus, we provide an objective and reliable approach to measure object distinguishability in

a given histological image and to maximize visual information available to a human

observer. This method could easily be incorporated in digital pathology image viewing sys-

tems to improve accuracy and efficiency in research and diagnostics.

Introduction

Visual perception of histological images
The diagnosis of many, especially of malignant, diseases, relies on the evaluation of histological
sections by a pathologist. Also, in basic and translational research, interpretation of histological
sections is the basis for scientific conclusions. Accuracy and efficiency of this visual diagnostic
process is determined by a number of factors. Four of these factors are commonly considered:
first, the original tissue sample must comply with certain standards, then, the fixation and
staining procedures should be standardized and optimized [1–4]. Third, the optical properties
of the diagnostic microscope or digital scanner, the characteristics of the image acquisition (e.g.
CCD-chip) and data storage should be calibrated to achieve capture a maximum amount of
information present in the sample [5, 6]. Lastly, for digital pathology, display calibration can
have an effect on diagnostic efficacy [7]. However, there is an additional information bottle-
neck in the diagnostic cascade of tissue samples: in order to be interpreted, the histological
image information has to be processed by the visual system of the evaluating pathologist [8, 9].
Even if all sample preparation steps are fully optimized, it is conceivable that the resulting
image is not optimally suited for the visual system of an observer and that therefore, a propor-
tion of the available information is lost.

Information transfer through the human visual system
The actual information that has to pass the visual system of the human observer is encoded as
distinct—i.e. visually distinguishable—objects in the images perceived against a background.
More generally, both inter-class-difference (i.e. contrast of objects against background) and
intra-class-difference (i.e. contrast between different objects or even within a given object) are the
actual basic entities of the encoded information. In a very simple view, these perceivable differ-
ences between objects are intensity differences and dark objects on a bright background are opti-
mally distinguishable. However, the human visual system can differentiate approximately 10
million colors [10], as opposed to 720 gray scale intensity steps [11]. It follows that color differ-
ences are a much more powerful carrier of visual information than mere intensity differences.

Image optimization in medical imaging
Some diagnostic imaging modalities such as computed tomography (CT) or magnetic reso-
nance (MR) imaging produce data that is commonly encoded as intensity differences [11]. Just
in the last few years, there have been structured approaches of digitally coloring radiological
images to enhance diagnostic accuracy [12–15]. In contrast, histopathology has always offered
a wider channel for transmission of visual information because images are colored due to the
stain dyes. Yet, in most histopathological settings, the effectiveness of visual information trans-
mission by different color hues is not actively measured or optimized. For example, the blue–
brown colors in Hematoxylin—DAB (H–DAB) double-staining (a commonly used
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immunohistochemical (IHC) method) are not derived from considerations about the human
visual system. Instead, these colors result from the chemical composition of the used dyes that
are optimized for their binding properties. Based on our experience with histopathological
images, we hypothesized that perceptual contrast in H–DAB images are not optimal for
human visual perception, i.e. that the stain dye colors do not optimally fit the properties of the
human visual system. Therefore, in the present study, we cast a closer look on the colors histo-
logical images are composed of and strived to find a way to retrospectively optimize these col-
ors without chemical modifications of the stain dyes.

Color optimization methods in digital pathology
Some authors have presented methods to retrospectively optimize the colors of histological,
Hematoxylin & Eosin (H&E)—stained images. For example, Khan et al. combined a variant of
color deconvolution with mapping to a new color space to achieve a standardized aspect of differ-
ent histological images [16]. Similarly, Bautista et al. recently presented a method to optimize
H&E—stained images to achieve a comparable color scheme in different images [17]. Another
image optimization approach has been presented by Reyes-Aldasoro, who suggested an approach
to correct unequal shading in a given image [18]. However, while in these studies, the authors
optimized the red—blue color scheme of H&E—stained images, they still restricted the resulting
colors to the original color hues, e.g. red and blue. Also, in digital pathology systems, overall
image contrast, brightness and gamma of the resulting images is optimized, but the color hues
themselves are not [7]. One study tested whether changing the hues of H&E—stained images
could make these images more aesthetically pleasing for observers with impaired color vision
[19]. However, in this study, the authors did not systematically investigate whether a new color
scheme changes perceptual contrast or which color choices are optimal.

To the best of our knowledge, it has never been investigated whether by optimizing the col-
ors of a given image, this image could yield more visually perceivable information to a human
observer. Furthermore, little is known about color optimization in Hematoxylin (H)—3,3’-Dia-
minobenzidine (DAB) IHC images, although these images are important for qualitative and
quantitative evaluation of tissue samples in a number of diseases, especially solid tumors [4].

Aim of this study
In the present study, we strived to close a conceptual gap in color optimization of histological
images. We investigated whether perceptual contrast of different objects in H–DAB immunos-
tained images could be enhanced by optimally transforming the color scheme of a given image.
In particular, we investigated which combination of hues are optimally suited for this task, and
how the perceptual contrast could be optimized for these hues.

To answer these questions, we applied and validated self-developed methods for optimized
stain unmixing, for measuring the bivariate color map inherent in a given histological image and
replacing it with a better color map. Our aim was to examine properties of native color maps by a
fully objective and reproducible approach and likewise examine the properties of perceptually
improved color maps. In particular, we strived to find an optimal solution for color selection in
immunostained histological images by using optimization methods for digital re-staining.

Materials and Methods

Ethics Statement
In this study, we used anonymized images of tissue samples of patients. One sample image is
derived from our previous publication [20]. One image is a Creative Commons image (see List
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B in S1 File). Three H&E sample images derived from our local pathology archive and were
already fully anonymized at the time of the experiments. All other images are published in the
ProteinAtlas database (see http://www.proteinatlas.org/about/datausage).

Digital re-staining of histological images
IHC images can be thought of as bivariate datasets: In each image pixel, the affinity of the anti-
body and the counterstain dye is measured (both are non-linear processes). Then, both mea-
surements are combined to a color information at this given pixel. All possibly achievable
colors in a given image are part of the set of available colors, which can be thought of as a bivar-
iate color map. In native images, this bivariate color map is determined by the light absorption
properties of the color pigment. Normally, an observer can only see the resulting image but
does not know the exact bivariate color map the image is based on. In the present study, we
developed a novel method to extract the color map that is inherent in a given image and replace
them with an optimized set of colors (i.e. a new color map). To this end, we developed,
employed and validated a novel method of several successive steps:

1. Retrieve an immunostained image as an RGB file (no further knowledge about the image is
needed).

2. Extract the intensity information for the two stain channels by using an optimized variant
of color deconvolution.

3. Use intensity information from both channels to extract the original color map. Missing
parts are linearly interpolated.

4. Create an optimized color map of identical size as the original color map. Unlike the original
color map, the new color map is perceptually linear.

5. For each item in the old color map, extract the image pixels that use this color value and
replace their color with the corresponding item from the new color map.

The exact methods used in these steps will be explained in the following paragraphs.

Optimized unsupervised color deconvolution
To extract the intensity information for each stain color separately, we developed and validated
an optimized variant of Ruifrok’s color deconvolution [21]. In their original publication, Rui-
frok et al. propose a standard matrixMRui for Hematoxylin—DAB—Eosin stainings. This stan-
dard matrix is widely used, e.g. for H–DAB staining and yields reasonable results for stain
separation of three-channel and two-channel images.MRui is a 3 by 3 matrix and its row vec-
tors are the basis vectors for three color channels (or two channels and a residual). In two-

channel IHC images, the row vectors ofMRui are ~HRui (for Hematoxylin), ~DRui (for DAB) and
~�Rui (for the residual). The widely used ImageJ/Fiji software includes a scaled version of Rui-
frok’s standard values.

MRui is widely used for two-channel IHC images. However, image colors in histology
depend on the dye chemical, sample preprocessing, staining protocol and scanning device.
Considering this, it seems unlikely thatMRui is the best choice for all H–DAB images. Conse-
quently, we hypothesized that the result of color deconvolution can be improved by using the
values inMRui and adjusting them to the image of interest. The standard deconvolution vectors
~HRui and ~DRui are part of a plane PRui that is shown as the ‘standard plane’ in Fig 1A. This plane
does not optimally capture image pixel variability of a sample image, because it does not neces-
sarily contain the first two principle component vectors of the image pixel data. By using
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Fig 1. An optimized approach for color deconvolution based on principal component analysis minimizes the deconvolution residual. A) the image
pixels of a given blue—brown immunostained image are plotted in the space of optical density color channels (OD R = red, OD G = green, OD B = blue). The
commonly used standard color deconvolution vectors define a plane that roughly, but not optimally, approximates the data set (darker plane). The brighter
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principal component analysis (PCA), we constructed a plane that optimally approximates
image pixel variability (‘optimal plane’ in Fig 1A). In Fig 1A Popt is different from PRui. Popt is

spanned by the two first principal component vectors of the image pixel color data (~C1 and
~C2). For an image composed of two colors (Hematoxylin (H) and DAB (D)), it follows that

optimal color deconvolution vectors of these two colors ~Hopt and ~Dopt should be part of Popt to

minimize deconvolution error, i.e.

~Hopt 2 Popt ð1Þ

~Dopt 2 Popt ð2Þ

The third basis vector defines the residual information that cannot be expressed as linear
combinations of the two stain vectors. Therefore, we define

~�opt ? Popt ð3Þ

Consequently, an optimal color deconvolution matrixMopt for an image composed of two

colors is composed of the row vectors ~Hopt; ~Dopt;~�opt .

On the plane Popt, the orientation of ~Hopt and ~Dopt is constrained by the color they represent:

~Hopt represents a bluish hue and ~Dopt a brown hue. The actual hues for a given image depend

on many different parameters including chemical composition of the stain, incubation times of
the stains and modalities of the scanning procedure. Because these parameters cannot be esti-
mated from a given image, we use the following approach: For the data in a given image, we
take the standard Hematoxylin (blue) and DAB (brown) vectors used by Ruifrok et al.

(~HRui; ~DRui) and define ~Hopt and ~Dopt as the projection of these vectors on the plane Popt. Thus,

we ensure that the residual~�opt is minimal while the hue represented by the stain vectors stays

as close as possible to the commonly used standard values.
Other groups have presented different optimization approaches for color deconvolution

[22–25]. However, these methods rely on assumptions that are not applicable to IHC images
and/or do not consider the commonly used—and well validated—standard values and no vali-
dation in large data sets is available for these alternative approaches.

Measuring bivariate color maps in IHC images
After color deconvolution, we plotted all image pixels in the space defined by the stain contri-
butions. This is shown in Fig 2B. As can be seen, all image pixels are part of a fixed two-dimen-
sional set of colors, i.e. a bivariate color map. Only small parts of this set of colors are not
defined but they can be reconstructed by interpolation (Fig 2C).

Contrast metric defined in the CIELAB space
To quantify perceptual difference (i.e. contrast) between two colors, we made use of the CIE-
LAB color space (CIE International Commission on Illumination 1976 L�a�b�) [26, 27]. Images

plane shows the optimal plane containing the first and the second principal component vector of the actual image pixel dataset. B) Quantification of mean
square error of the residual channel after color deconvolution with different deconvolution vectors. Boxes = 25th to 75th percentile, line = median,
whiskers = most extreme data points except outliers, ‘+’ = outliers.

doi:10.1371/journal.pone.0145572.g001
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are usually digitally stored in the RGB color space but can be transformed to the CIELAB space
by a non-linear transfer function T

½L�; a�; b�� ¼ Tð½R;G;B�Þ ð4Þ

for red, green, blue color values [R, G, B]. The MATLAB documentation provides a definition
of T. The CIELAB color space is perceptually uniform, which means that euclidean distances
between colors in this space correspond to the color difference an average human observer per-
ceives. The CIELAB color space is an established concept in science of human perception and
is based on experimental data from human subjects [26, 27]. Its nonlinearity reflects the non-
linearity of the human visual system. The metric for color difference ΔC (i.e. perceived con-
trast) between an object of color C1 ¼ ½L�

1; a
�
1; b

�
1� and a reference color C2 ¼ ½L�

2; a
�
2; b

�
2� is

defined as follows

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDL�Þ2 þ ðDa�Þ2 þ ðDb�Þ2

q
ð5Þ

for

DL� ¼ k L�
1 � L�

2 k
Da� ¼ k a�1 � a�2 k
Db� ¼ k b�1 � b�2 k

When comparing the ratio R of object-to-background contrast in two images, we calculated
the contrast C1 for image 1 and C2 for image 2 and

R ¼ C1=C2 ð6Þ

Thus, if C1 > C2, then R represents the fold increase of object-to-background contrast. In
the figures in the present paper, ‘L’, ‘a’, ‘b’ refer to the color space dimensions L�, a�, b�.

Fig 2. Measuring the bivariate color map in a given image. A) Original image detail (CD31 staining of tumor tissue), B) image pixels plotted in the space of
the basis vectors of the two stain colors (H—DAB intensity space). C) Original bivariate color map interpolated from B. This color map contains all colors that
are part of the original image. They are arranged in the H—DAB intensity space.

doi:10.1371/journal.pone.0145572.g002
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Design and validation of perceptually improved color maps
To design a perceptually optimal bivariate color map, we extended established concepts on the
optimal design of univariate color maps [28–31].

First, we examined the standard blue—brown color map in CIELAB space as shown in Fig
3A. It can be seen that compared to the full RGB gamut, this color map is small, i.e. contains
only a small subset of colors. We strived to create an improved color map. We created alterna-
tive color maps as contiguous 2D planes in the 3D CIELAB space (Fig 3B). Our aim was to cre-
ate a color map that was larger than the original color map, i.e. contained more visually distinct
colors. Apart from the color map size, we defined the following criteria for an optimized color
map:

1. A color map was defined by four corner points and a linearly interpolated plane in between.
This restricted the shape of the color map and ensured that the resulting color map was per-
ceptually linear.

2. Two diagonally opposing corners of the color map were set to black (#000000) and white
(#FFFFFF), the two remaining corners were varied.

3. The color map should not contain more than two basic hues. This effectively limited the
curvature of the color map because a highly curved plane tended to cross several distinct
hues in CIELAB space (some of these highly curved color maps are included in S1 Fig).

4. Green and red hues should not be present in the same color map because of the high preva-
lence of red–green color vision deficiency (deuteranomaly).

We followed these rules and, in an iterative process, found that the criteria were only ful-
filled by color maps containing a red—orange and a blue color. The result of this procedure
can be seen in Fig 3B: the new color maps occupy a much larger proportion of the RGB gamut.

Phantom images
Next, we measured the achievable contrast with all possible combination of the five red/
orange–blue color maps. Also, we included the standard blue and brown colors commonly
used in H—DAB images and black, gray and white as controls. We created a phantom image
of 6 � 6 circles of different colors on a homogeneous background and applied the bivariate
color maps to this image (Fig 4A–4E). We then evaluated perceptual contrast for each of these
bivariate color maps in a phantom image (Fig 4G).

Image source
For initial development of the method, we used a Hematoxylin (H)—3,3’-Diaminobenzidine
(DAB) IHC image of CD31-positive blood vessels in a detail of an anonymized tumor image
from our recent publication [20]. This image is included in the data we provide along with this
paper. For validation of the method, we used a large dataset of publicly accessible, H—DAB
IHC images from ProteinAtlas [32, 33]. To validate the proposed method, we chose eight com-
monly used cancer entities and commonly used IHC biomarkers: alpha-fetoprotein (AFP) in
liver cancer, B-Raf proto-oncogene (BRAF) in melanoma, erb-b2 receptor tyrosine kinase 2
(ERBB2, HER2/neu) in breast cancer, estrogen receptor (ESR1) and progesterone receptor
(PGR) in breast cancer, antigen KI-67 (MKI67, Ki67) in colorectal cancer and urothelial cancer
and S100 calcium binding protein A1 (S100A1) in ovarial cancer. We then automatically
retrieved all corresponding images URLs by a script via regular expressions and downloaded
the images using a MATLAB script. In the code files associated with this study, we provide
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image URLs that were used. In total, we retrieved and analyzed N = 596 images without further
preselection. In order to cut the margin around the actual tissue, the images were cropped
before analysis. The license of the images allows use for non-profit research as long as the origi-
nal citations are provided [32, 33].

For automatic measurement of foreground-to-background contrast in these images, we
applied color deconvolution and thresholded the resulting DAB channel using Otsu’s auto-
matic thresholding method [34]. Representative results of this procedure are shown in S2 Fig.

Lastly, we demonstrated that our proposed method can also be used to re-stain H&E or
Giemsa stained images. For this purpose, we used fully anonymized images from our institu-
tion’s pathology archive (see ethics statement above).

Color representation and figure preparation
Colors throughout this manuscript are represented by their hexadecimal codes, starting with
“#”. For simulation of deuteranopia and tritanopia, we used the built-in plugin in Fiji / ImageJ
[35]. All images in this paper were printed without any further modification of contrast, bright-
ness, gamma value or colors.

Computational implementation and licensing
We implemented all novel methods described in this paper in MATLAB (Mathworks, Natick,
MA, USA). All source codes, image meta information and the sample image are publicly avail-
able on GitHub (DOI: 10.5281/zenodo.35083) under the MIT license (http://opensource.org/
licenses/MIT). This repository contains an easily usable source code and example images and
raw data used in our study. All other images are publicly available on ProteinAtlas (http://
www.proteinatlas.org). All statistical analyses were performed using MATLAB and we used
student’s t-test for evaluation of statistical significance.

Furthermore, we created a prototype of a digital pathology environment to view digitally re-
stained sample images. For this implementation, we used VIPS [36] and OpenSeadragon 2.0.0
(http://openseadragon.github.io). This platform can be accessed on our project website
(https://jnkather.github.com/HistoColor2D, source code DOI: 10.5281/zenodo.35091).

More information on the computational procedures is available in List A in S1 File. Raw
data are available in S2 File.

Results

The proposed optimized stain unmixing method minimizes
deconvolution error
The first step of the method we developed for this study was to optimally unmix stain channels
of blue—brown IHC images by a novel approach (Fig 1A). We validated this method in
N = 596 histological images and found that the quality of stain unmixing significantly
increased, as evident by a decrease in mean square error (MSE) of the residual channel. As
shown in Fig 1B, MSE for the ‘Fiji’ standard values was 0.0022, MSE for Ruifrok’s standard

Fig 3. New color maps contain more colors than the original color map. In this figure, bivariate color
maps are compared to the full sRGB gamut in CIELAB color space. A) Original color map extracted from the
sample image. B) Set of 5 optimized color maps in the same view (color maps from Fig 4A–4E). It can be
seen that the improved color maps occupy a larger part of the perceivable color space, maximizing visually
transmittable information.

doi:10.1371/journal.pone.0145572.g003
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values was 0.0023 and MSE for the optimized method was 0.0007 (arbitrary units, t-test p-
value<0.001 for optimal vs. either of both standard values).

The standard color map in blue—brown images are poorly suited for
human visual perception
To find an optimal color map, we created 225 color maps and measured perceptual contrast in
a phantom image as shown in Fig 4A and 4B. We found that among all combinations of differ-
ent hues, the standard brown (#B58C70) on blue (#5C5FA1) color map offered low perceptual
contrast (only 39% ± 7% perceptual contrast of the best color map). The best hue combinations
in terms of perceptual contrast was blue (#FFAD00) on orange (#006EFF) (set as 100%
[±18%], see Fig 4G). Consequently, the new color map improved perceptual contrast by a fac-
tor of 2.56 (1/0.39). To visualize in which way the new hue combinations were superior to the
standard hue combinations, we analyzed these maps in the CIELAB color space. In Fig 3, a
blue—brown color map of a sample image (Fig 3A) is compared to five improved color maps
(Fig 3B). It can be seen that the surface of the new color maps is larger than the surface of the
original map, i.e. occupies more space in the CIELAB color space. This means that the new
color maps can be used to encode more perceptionally distinct colors than the original one.

Images can be digitally re-stained with arbitrary color maps
After determining the optimal combination of colors for bivariate color maps, we applied these
color maps to a sample image of a blood vessel in human colorectal cancer (Fig 5). In Fig 5A,
we show a sample histological image which is re-stained in 5B and 5C. The corresponding
color maps are shown in Fig 5A.1–C.1.

Furthermore, we quantified the perceptual contrast in each color map. This contrast can be
measured as the perceptual distance of each color contained in the color map to a neutral ele-
ment. We set the center point of the color map as neutral and computed perceptual contrast as
described in the ‘Materials and Methods’ section. For example, for the blue (#006EFF) on
orange (#FFAD00) color map, the result can be seen Fig 5C.2 as a gray scale coded plot. For the
original brown (#B58C70) on blue (#5C5FA1) color map, the contrast of most colors was low
(CIELAB maximum distance: 51.7, mean 22.9 ± 10.1). For the new color map blue (#006EFF)
on orange (#FFAD00), the contrast was much higher in almost all regions, especially in the
high-intensity regions of one of the two colors (CIELAB maximum distance: 82.6, mean
37.4 ± 16). For the other color combinations from Fig 4A–4E, maximum contrast and mean
contrast are also higher than for the original blue—brown color map (see Table A in S1 File).

Finally, we used the described method to re-stain 8 sets of histological images of different
human solid tumors stained for clinically relevant markers. In Fig 6, two examples from the set
‘MKI67-uro’ (Ki67 in urothelial cancer) are shown.

Fig 4. Foreground-background contrast in phantom images can be markedly increased by applying a
new color map. A-F) A phantom image was colored in one of six bivariate color maps, the panel title indicate
the hexadecimal codes of the foreground and background color (F represents a typical blue—brown standard
color map while A-E represent new color combinations). G) 225 combinations of 15 distinct colors were
pairwisely compared. The grayscale intensity and overlayed number indicate the perceptual contrast of
phantom images that were digitally stained with the respective color map (numbers: mean ± standard
deviation). All measurements were normalized to the maximum contrast. Reading example: The standard
brown (#B58C70) on blue (#5C5FA1) color map resulted in a perceptual contrast that was 39% ± 7% of the
maximally achieved contrast.

doi:10.1371/journal.pone.0145572.g004
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Digital re-staining increases perceptual contrast in real histological
images
To clarify how digital re-staining of N = 596 actual histological images affects perceptual con-
trast, we measured object-to-background contrast in each of these images before and after the
procedure. A representative result of this procedure is shown in S2 Fig. We found that contrast
was increased in all datasets (Fig 7). Perceptual contrast of the new images was increased by

Fig 5. New color maps offer higher perceptual contrast than original color map in all relevant color map regions. A) Original image. B) Image re-
stained with the optimized red (#FF0000)—blue (#0093FF) color map. C) Image re-stained with the optimized blue (#006EFF)—orange (#FFAD00) color
map. A.1, B.1, C.1) Corresponding bivariate color maps. A.2, B.2, C.2) Intensity represents perceptual contrast (CIELAB distance) of A.1, B.2, C.1 relative to
the center point. It can be seen that perceptual contrast of the original color map is low in almost all regions while the perceptual contrast of the new color
maps is much higher.

doi:10.1371/journal.pone.0145572.g005
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116.99% (AFP-liver), 78.7% (BRAF-mela), 82.22% (ERBB2-brst), 30.66% (ESR1-brst), 60.69%
(MKI67-crc), 63.3% (MKI67-uro), 62% (PGR-brst) and 92.71% (S100A1-ova). The increases
were highly significant (all t-test p-values<0.001, see Table B in S1 File for detailed
measurements).

Digital re-staining increases perceptual contrast for observers with
impaired color vision
In a last step, we created simulations of the color map appearance to dichromatic observers.
Dichromacy is the complete lack of one type of retinal cones, i.e. red, green or blue. Most

Fig 6. Digitally re-stained images of Ki67 stained samples. Two representative images from set ‘MKI67-uro’ (Ki67 in urothelial cancer). (A, C): original
images, (B, D): re-stained images in red (#FF0000)—blue (#0093FF). It can be seen that the contrast of foreground (i.e. Ki67 positive cells) to background is
improved after re-staining.

doi:10.1371/journal.pone.0145572.g006
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persons with impaired color vision do not have a complete lack of one cone type, but rather a
partial impairment. However, it is difficult to simulate partial color-vision deficiencies due to
the wide variety, therefore we decided to use a well-established simulation of the most extreme
case of complete dichromacy. We found that some of the proposed color maps were by far
superior to the original blue—brown color map in this setting (e.g. see S3 Fig). Especially the
most contrasted blue (#006EFF) on orange (#FFAD00) color map preserved perceptual con-
trast after dichromacy simulation.

Generalization of the method and application to other types of staining
The focus of our work was to enhance perceptual foreground-to-background contrast in
H-DAB IHC images. However, the method we present can also be applied to other types of
staining. As a proof of principle, we have arbitrarily chosen four sample H&E images and re-
stained them using a orange—blue color map (Fig 8). Unlike in H-DAB IHC images, fore-
ground and background are not clearly defined in these H&E images. Yet, it can be appreciated
that some structures in the image are more clearly visible after re-staining (e.g. aspergillus in
Fig 8I and 8J) and that virtual re-staining corrects discontinuities in the original color maps

Fig 7. Digital re-staining markedly increases perceptual contrast in N = 596 actual histological images. Perceptual contrast before (gray boxes) and
after (black boxes) color map improvement was measured in eight sets of histological images of human solid tumors (see ‘Materials and Methods’, total
N = 596 samples). For all datasets, a pronounced increase of perceptual contrast can be seen. Boxes = 25th to 75th percentile, line = median,
whiskers = most extreme data points except outliers, ‘+’ = outliers. The color map used for re-staining was blue (#006EFF)—orange (#FFAD00).

doi:10.1371/journal.pone.0145572.g007
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(e.g. Fig 8C, 8K and 8O). Also, virtual re-staining inherently corrects for illumination: While
the original images in Fig 8A, 8E, 8I and 8M are not equally bright, these differences are
removed after virtual re-staining (Fig 8B, 8F, 8J and 8N). Furthermore, we found that virtual
re-staining can be successfully applied to Giemsa-stained images of bone marrow biopsies. In
Fig 9, it can be seen that contrast between cytoplasm and cell nucleus is markedly increased by
re-staining Giemsa stained images of human bone marrow.

Fig 8. Examples of digitally re-stained H&E images. (A-D) Normal lymph node tissue, (E-H) colorectal carcinoma tissue, (I-L) aspergillus, (M-P) breast
cancer tissue surrounded by lymph node tissue. For each sample, the original image, the re-stained image and the original and resulting color map are
shown. The color map used for re-staining was orange (#FFAD00)—blue (#006EFF). Sizes are: (A) 742 � 742μm, (E) 742 � 742μm, (N) 594 � 594μm. (I) had
no specified size (image source see List B in S1 File).

doi:10.1371/journal.pone.0145572.g008
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Discussion

Digital re-staining improves perceptual contrast in IHC images
By using the method we describe in this study, pathologists can be enabled to visually perceive
more information about the microscopic structures in an image. The main reason is that the
bivariate color maps presented in this study are optimized for human visual perception so that
a human observer is enabled to extract more information from looking at a processed image.
Using our method, the object-to-background contrast can be markedly increased by a factor of
2.56 in phantom images and up to a factor of 2.17 (equals an improvement of approx. 117%) in
eight sets of real images.

Fig 9. Examples of digitally re-stained Giemsa stained images. (A, E, I, M) Single cells that were extracted from a Giemsa-stained bonemarrow biopsy
image. (B, F, J, N) Digitally re-stained image using red (#FF0000)—blue (#0093FF). (C, G, K, O) Original color maps. It can be seen that these color maps are
not continuous. (D, H, L, P) Discontinuities are inherently corrected by the re-staining procedure and perceptual contrast is improved in the new color maps.

doi:10.1371/journal.pone.0145572.g009
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It is important to note that this method does not alter objective information content of
images: The information content of a histological image is determined by sample processing,
staining methods and optical properties of the digitization system. However, as shown above,
the way of displaying histological images to human observers is not well suited for transmitting
a maximal amount of the available information. The reason for this shortcoming is that of all
colors distinguishable by the human visual system, histological images use only a very small
subset. Using the method we present in this study, the numbers of distinct colors in a given
image can be retrospectively optimized so that a higher percentage of the available contrast
information can be perceived by an observer.

Compliance with digital image ethics and comparison to other medical
imaging methods
Scientific data in general, and digital images in particular, should not be arbitrarily ‘beautified’.
Strict standards are necessary to ensure that images are not changed in any way that changes
the underlying data. Cromey et al. have proposed a widely accepted set of rules for handling
digital images [37]. One of the guidelines they give is that the use of software filters to improve
image quality is usually not recommended. Yet, digital image enhancement according to objec-
tive protocols is widely used in medical imaging. Diagnostic imaging technologies such as CT
and MR imaging produce data that is heavily edited by smoothing kernels and windowing to
make most of the information visible to human observers. Furthermore, CT and MR imaging
data are routinely digitally colored using a determined color map [13–15]. This has been
shown to increase diagnostic accuracy in some settings [12].

Also, as explained above, immunostained histological images are in fact bivariate data sets
where two stain intensities are displayed as a color that derives from a determined mixture of
the two stain contributions. Normally, this bivariate color map cannot be explicitly viewed by
an observer but is implicitly represented in the image. We employ a novel technique to extract
the inherent bivariate color map from a given image. Having taken this abstraction step, the
image can be treated as any two-dimensional dataset displayed with a bivariate color map. For
this general case, there is a lot of experience in the literature [38, 39]. Several authors have
shown how to optimally display bivariate color sets and there are a number of practical instruc-
tions on how to design bivariate color maps for scientific data [40, 41]. We employ this knowl-
edge on datasets from histological images to re-create a digitally re-stained image.

Furthermore, we encourage users of our technique to keep the original data as pointed out
by Cromey et al. [37]. If users are in doubt whether structures in the enhanced image are of
diagnostic relevance, an enhanced and an original image could be viewed side by side to arrive
at an accurate diagnostic decision.

In summary, we offer a strictly deterministic and reproducible way of automatically extract-
ing the implicit color map and applying a new bivariate color map to a given data set, i.e. an
image. Our method does not arbitrarily ‘beautify’ a given image but is a way of making a larger
percentage of the existing information available to the visual system of a human observer.
These procedures are already standard approaches in other medical imaging entities but have
never been applied and validated in the context of histopathological imaging.

Digital re-staining mitigates handicap of pathologists with impaired color
vision
Approximately 8% of all males and 0.4% of all females are affected by anomalous color vision
[42, 43]. Most of them suffer from red-green deficiency (deuteranomaly) that is X-chromosom-
ally linked [42, 44]. To our knowledge, it is presently unclear whether diagnoses made by
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deuteranomalous pathologists differ from those made by fully trichromatic pathologists [45].
However, it is conceivable that deuteranomalous observers might evaluate a colored image dif-
ferently than the trichromatic population. We show that while some color maps are preserved
after dichromacy simulation, other color maps lose most of their perceptual contrast. This is
especially true for the standard blue—brown color maps used in immunohistology (S3 Fig,
panel A). Other color maps, such as the proposed blue—yellow or red—blue maps are more
robust with respect to color blindness simulation (S3 Fig, panels B and C). Thus, digital re-
staining of histological images offers the possibility to apply color maps that mitigate the hand-
icap of pathologists with impaired color vision by using color coding that can be separated by
the individual cone dysfunction. One color in the blue area of the color space for the back-
ground—as in H-DAB-histological images—and the other color in the orange or red area
improves discrimination of stained cells and assists observers with color deficiency in their
image perception.

Limitations and perspectives
In the present study, we developed and evaluated a method to digitally re-stain histological
images. We showed that our improved color maps markedly increase perceptual contrast in
clinically relevant images. However, our approach does not guarantee a global optimum for a
new color map. In further studies, it would be worthwhile to combine our approach with a
sophisticated multi-parameter optimizer (such as the one described by Hutter et al., see [46]).
Also, as a perspective, it would be interesting to quantify the diagnostic accuracy for different
color maps in different common tasks in histopathology in future studies. Apart from histol-
ogy, it is conceivable to apply the described method to other imaging modalities, such as MR
imaging or MR microscopy [47].

Application in a typical diagnostic setting
We envision that the presented method can be incorporated in digital pathology image viewing
systems. For example, in a typical histopathological diagnostic setting, a pathologist might
want to view and count Ki67 positive cells in a Hematoxylin—DAB stained section of tumor
tissue. For some cells, the decision whether or not they are Ki67 positive is usually easy. How-
ever, there might be some cells for which the decision is not clear because the pathologist can-
not exactly visually discriminate the color hues. This scenario is possible even if the staining
procedure and optical properties of the microscope are optimal and even if the pathologist has
a perfectly normal color vision (trichromacy). In this case, one reason why the pathologist in
this scenario cannot exactly discriminate the Ki67 status of a cell is that his or her visual system
physiologically cannot discriminate the colors in the image.

In a digital pathology environment, the pathologist could then make use of alternative color
maps and digitally re-stain the image in real time. As common in radiology, the source image
and the modified image could be viewed side-by-side. In this situation, the pathologist could
choose a color map that maximizes his or her ability to recognize objects in the image. There-
fore, his or her diagnostic ability to discriminate Ki67 positive from Ki67 negative cells would
be increased. In the end, this would potentially reduce ambiguities in visual evaluation of histo-
pathological samples, increase diagnostic accuracy and in the end benefit the patient.

Supporting Information
S1 Fig. Alternative set of new color maps. The highly curved color maps have an even larger
surface than the ones we actually used in our study. However, they were excluded according to
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the described criteria because their high curvature led to artifacts in the resulting images.
(TIFF)

S2 Fig. Contrast improvement in an image from ‘MKI67-crc’ (Ki67 in colorectal cancer).
A) Original image, B) Digitally re-stained image, C) segmented DAB intensity channel, D-E)
Foreground-to-background contrast for the original colors and the colors of the re-stained
images. F) The cleaned foreground was created by removing small objects from the raw fore-
ground mask.
(TIFF)

S3 Fig. Color blindness simulation. A) Original image, B) and C) show digitally re-stained
images. Below, the three images are shown after deuteranopia simulation and after tritanopia
simulation (same order as top row). It can be seen that contrast in B and C is largely preserved
after simulation, while contrast in A is largely lost after simulation.
(TIFF)

S1 File. Additional experimental data and parameters. Table A: Contrast metrics for original
and new color maps. Table B: Perceptual contrast improvement of objects in histological
images. List A: Details of the computational procedures. List B: Image credit.
(PDF)

S2 File. Raw data. This ZIP file contains all raw data used for the experiments. Folder ‘data’
contains a list of colors used for the color maps, folder ‘image-URLs’ contains all image URLs
for ProteinAtlas images and folder ‘sample_images’ contains image files for all remaining
images.
(ZIP)
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