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Scramblase activity of proteorhodopsin confers
physiological advantages to Escherichia coli
in the absence of light

Jiayu Fang,1,2 Yanping Zhang,1 Taicheng Zhu,1,* and Yin Li1,3,*

SUMMARY

Microbial rhodopsins arewidely distributed in the aqua-ecosystem due to their simple structure andmulti-
faceted functions. Conventionally, microbial rhodopsins are considered to be exclusively light active.
Here, we report the discovery of light-independent function of a proteorhodopsin from a psychrophile
Psychroflexus torquis (ptqPR). ptqPR could improve the growth and viability of Escherichia coli cells under
stressful conditions in the absence of light, and this was achieved by improving the energy maintenance,
membrane potential, membrane fluidity, and membrane integrity. We further show that this non-canon-
ical function of PR is related to its scramblase activity. PRmutantswhich lost scramblase activities also lost
their ability to confer physiological advantages in E. coli. These findings shed light on why microbial rho-
dopsins are widely distributed in ecological systems where light is inaccessible.

INTRODUCTION

Microbial rhodopsins (type I rhodopsins) are light-harvesting proteins that are widely distributed in bacteria, archaea, and even giant vi-

ruses.1,2 The majority (>79%) of type I rhodopsins is from proteobacteria, designated as proteorhodopsin (PR).3–5 Conventionally, rhodopsins

are considered exclusively light active due to its functions of light-driven ion pumping, light sensing, and light-gated ion channeling.6–10 A

rhodopsin becomes light active through binding with retinal chromophore at the lysine residue which is located in its seventh transmembrane

helix and conserved among most rhodopsins.5 Rhodopsins lacking the conserved lysine residue (designated as Rh-noKs) are not light active

unless introducing the lysine residue, demonstrating the importance of a complete structure of rhodopsins in maintaining its light-associated

activity.11

Rhodopsin genes with retinal chromophore-binding site are usually discovered in the sunlight zone of the sea, which is approximately

200 m beneath the sea surface.12 Interestingly, putative rhodopsin genes with retinal chromophore-binding site have also been identified

in the organisms residing at 500–1000 m deep beneath the sea surface, where the sunlight can barely penetrate.12 Conceivably, the rhodop-

sins in deep seamicrobes would not exert light-associated activity as no light is available. This poses questions why rhodopsins are frequently

found in deep sea microbes, whether rhodopsins play a light-independent function, and if so, what the function is.12–15 Recently, Song et al.

reported that a PR-expressing E. coli strain showed a marginally but significantly higher viability than that of the control strain under darkness

in a 9-month survival experiment.15 Using single-cell Raman spectroscopy, the authors further found that PR-expressing E. coli cells might

have a higher lipid content, which is an indication of a more intact membrane. These observations provide experimental evidence supporting

the hypothesis that PR might play a function in the absence of light. However, the exact function of PR under darkness remains unclear. Here,

we show that overexpression of a PR from a psychrophile can enhance the viability of E. coli cells under stressful conditions. Moreover, we

show PR can improve the energy maintenance and membrane biophysical properties of E. coli, including membrane potential, membrane

fluidity, and membrane integrity. We further demonstrate that PR possesses scramblase activity and propose that the non-canonical function

of microbial rhodopsin is related to this scramblase activity.

RESULTS

ptqPR showed light-driven proton-pumping activity when expressed in E. coli

Since PR represents themost abundantmicrobial rhodopsins compared to other types, a PR from a sea-ice psychrophile Psychroflexus torquis

ATCC 700755,16 designated as ptqPR, was chosen to study. The ptqPR was reported to function as a light proton pump and assumed to be

responsible for the light-stimulated growth of P. torquis.16 We expressed ptqPR in E. coli and confirmed its expression by western blot (Fig-

ure S1A). The membranes of the ptqPR-expressing E. coli strain exhibited a typical red color in the presence of retinal as reported in previous
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studies17–20 (Figure S1B). The absorption spectrumof themembrane fraction of the ptqPR-expressing E. coli strain showed a clear absorbance

at around 540 nm (Figure S1C). GFP-fusion expression of ptqPR showed that ptqPR proteins were mainly located on the cell membrane with

no inclusion bodies formed (Figure S1D). In addition, the light-driven proton-pumping activity of ptqPR was confirmed by pH decrease upon

illumination (Figure S1E).

ptqPR overexpression enhanced the growth and ATP levels of E. coli cells under stressful conditions in the absence of light

Growth experiments of ptqPR-expressing E. coli strain with or without retinal showed no difference when grown in glucose minimal medium

under semi-aerobic conditions with illumination, suggesting that light did not stimulate the growth of PR-expressing E. coli. This is consistent

with several previous studies,21–24 and could be ascribed to the low light energy conversion rates of PRs25 (Figure S2). Surprisingly, the ptqPR-

expressing strain (BW/ptqPR+) exhibited significantly higher OD600 value than that of the control strain harboring the empty vector (BW/

ptqPR�) upon entering the late logarithmic phase (after 12 h), and this beneficial effect was irrespective of the presence of light and retinal

(Figures 1A and 1B). Concomitantly, the intracellular ATP levels of BW/ptqPR+ cells grown to late logarithmic and stationary phasewere signif-

icantly higher than that of BW/ptqPR� cells under darkness (Figure 1D). In addition, a flow cytometry analysis using Syto9/PI staining showed

that BW/ptqPR+ cells also possess higher viability (Figure S3).

Carbonyl cyanide 3-chlorophenylhydrazone (CCCP) is a proton motive force (PMF) uncoupler which can lead to collapse of PMF.19 Addi-

tion of CCCP to the culturemedium led to a 14.7% reduction in growth of BW/ptqPR+ cells but a 35.3% reduction in the growth of BW/ptqPR�

cells at 24 h in the absence of light and retinal (Figure 1C). Consistently, the intracellular ATP level of BW/ptqPR+ cells was higher than that of

BW/ptqPR� cells in the presence of CCCP (Figure 1E). The higher ATP levels of BW/ptqPR+ cells in the presence and absence of CCCP indi-

cate that PMF can be better maintained in BW/ptqPR+ cells in the absence of light and retinal.

Moreover, since weak acids can also act as PMF uncoupler and thus affect the viability of microbial cells,26 we examined the effect of weak

acids treatment on the survival of BW/ptqPR+ and BW/ptqPR� cells in the absence of light and retinal. As expected, BW/ptqPR+ cells main-

tained considerably higher viability (Figures 2A and S4), and the intracellular ATP levels of BW/ptqPR+ cells were higher than that of BW/

ptqPR� cells during the treatment (Figure 2B). This further confirmed that PMF can be better maintained in ptqPR-expressing cells in the

absence of light. Coincidently, the physiologically beneficial effects of ptqPR in the absence of light, which include improved cell growth,

enhanced cell viability, and increased intracellular ATP levels, are exactly the same as those observed or expected from the conventional

light-driven proton-pumping function of PR.27–30

In order to rule out the possibility that the observedbeneficial effects of ptqPRwere related to its conventional light-dependent activity, we

inactivated the active sites of ptqPR responsible for proton translocation during light-dependent pumping.6,31 Sequence alignment inferred

Figure 1. E. coli BW25113 strain harboring ptqPR shows improved growth and higher intracellular ATP level in the absence of light and retinal

(A–C) Strains BW/ptqPR+ and BW/ptqPR� were cultured in M9+glucose medium. Growth profile under different conditions: (A) light, 10 mM retinal; (B) dark, no

retinal; (C) dark, 30 mM CCCP.

(D and E) Intracellular ATP content of cells collected from the growth experiments shown in B and C, respectively. The data are presented as mean values and

standard deviations of three replicates. *p < 0.05, **p < 0.01 and ***p < 0.001.

ll
OPEN ACCESS

2 iScience 26, 108551, December 15, 2023

iScience
Article



that Asp88 is the Schiff base counterion (proton acceptor) whileGlu99 is the proton donor of ptqPR (Figures 3A and S5). Two single amino acid

mutants of ptqPR, D88N and E99Q, completely abolished its light-driven proton-pumping activity (Figure 3B). Nevertheless, both mutants

retained their ability to stimulate cell growth at the same level as the wild-type ptqPR in the absence of light (Figure 3C). We thus conclude

that the physiologically beneficial effects conferred by ptqPR were not due to its conventional light-driven proton-pumping activity, but a yet

unidentified light-independent mechanism.

ptqPR improved the membrane potential, membrane fluidity, and membrane integrity of E. coli

To better understand the mechanism underlying the non-canonical function of ptqPR, we compared the transcriptomes of BW/ptqPR+ and

BW/ptqPR� cells. The GO term and KEGG pathway enrichment analysis did not reveal significant differences in major metabolic pathways

(Figure S6). However, the transcription levels of several cold shock proteins and phage shock proteins in BW/ptqPR+ cells decreased signif-

icantly (Table S1). Low temperature and phage infection can cause stresses that often affect membrane structure.33–36 Moreover, it was re-

ported that phage shock proteins participate in a variety of membrane functions, including maintaining membrane integrity and PMF.33,34

As such, we hypothesized that ptqPR might play membrane-protective functions, i.e., the expression of ptqPR might replace or compensate

the role of environment-shock protein genes, leading to their reduced transcription.

To examine the hypothesis, we compared the membrane biophysical parameters of BW/ptqPR+ and BW/ptqPR� cells, including mem-

brane potential, membrane fluidity, andmembrane permeability. The anionic dye DiBAC4(3) was used to analyze the bacterial cell membrane

potential.37 For cells with low membrane potential, the negatively charged dye can penetrate more easily, thus increasing the intensity of

fluorescence, and vice versa (Note S1). The results showed that the fluorescence intensity of BW/ptqPR+ cells was 15.7% lower than that

of BW/ptqPR� cells, indicating a higher membrane potential and a higher PMF in BW/ptqPR+ cells (Figure 4A). We then assessed the mem-

brane fluidity using a fluorescent probe 1,6-diphenyl-1,3,5-hexatriene as described in literature38 (Note S2). Comparing to BW/ptqPR� cells,

BW/ptqPR+ cells showed a 36.1% lower fluorescence polarization value, indicating that they possess a more fluid membrane (Figure 4B).

Moreover, membrane permeability was assessed by measuring the leakage of intracellular electrolytes via electrical conductivity assay39

(Note S3). BW/ptqPR+ cell suspensions exhibited a 44.2% lower relative conductivity than that of BW/ptqPR� cell suspensions after 6 h, sug-

gesting that BW/ptqPR+ cells are able to maintain much higher cell integrity. Even after being treated with the detergent Triton, BW/ptqPR+

still exhibited lower relative conductivity than that of the untreated BW/ptqPR� cells (Figure 4C). Taken together, these evidences suggest

that the ptqPR is able to enhance the membrane potential, membrane fluidity, and membrane integrity of E. coli cells in the absence of light

and retinal.

Scramblase activity of ptqPR may contribute to the light-independent function of ptqPR

The positive role of ptqPR in enhancing themembrane potential andmembrane fluidity while reducingmembrane permeability suggests that

the membrane-expressed ptqPR affects the structure and function of membrane. In recent years, studies have revealed that a bacteriorho-

dopsin from the archaeon Halobacterium salinarum and bovine opsin show phospholipid scramblase activity.40–42 While the physiological

implications of scramblase are not yet known, a recent report studying the model scramblase TMEM16F suggests that it might help restore

damaged cell membrane by increasing membrane fluidity and plasticity.43 These studies prompted us to speculate about a possible link be-

tween the light-independent functions of ptqPR and scramblase activity.

To determine whether ptqPR possesses the phospholipid scramblase activity, we performed in vitro experiment using proteoliposomes.

The use of proteoliposome,44 which is consisted of purified ptqPR protein and artificial lipids, bypasses the complex interaction between

ptqPR and cells, thus providing direct insight into the basic mechanism of ptqPR-membrane interactions. A fluorescent reporter lipid

Figure 2. E. coli BW25113 cells harboring ptqPR cultured in the absence of light show higher viability and intracellular ATP levels upon weak acids

treatment

(A and B) BW/ptqPR� and BW/ptqPR+ cells were grown in the absence of light and retinal. Weak acids (5 g/L acetic acid, 5 g/L lactic, acid and 5 g/L butyric acid,

respectively) were added to the cultures when cells grown to late logarithmic phase, treated for 3 h under dark condition. The culture collected was divided into

two parts, one for determining viability (A) and the other for determining intracellular ATP levels (B). The data are presented as mean values and standard

deviations of three replicates. *p < 0.05, **p < 0.01 and ***p < 0.001.

ll
OPEN ACCESS

iScience 26, 108551, December 15, 2023 3

iScience
Article



1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2,3-benzoxadiazol-4-yl) (NBD-PE) was applied to determine the scramblase

activity as described in previous reports40–42 (Note S4). The results showed that the loss of NBD fluorescence was approximately 50% for li-

posomes, but was 81.5% for proteoliposomes after dithionite treatment (Figure 5B). These indicated that ptqPR was able to scramble lipids

from the inner to outer leaflet, thus confirming that ptqPR possesses phospholipid scramblase activity. To our knowledge, this is the first study

reporting the scramblase activity of a proteorhodopsin, the most abundant microbial rhodopsins. Although the archaeal bacteriorhodopsin

andmammalian rhodopsin (opsin)41,42 have been reported to possess scramblase activity, two rhodopsins from the heliorhodopsin family did

not exhibit it.45 Therefore, further research is needed to assess the generality of scramblase activity among microbial rhodopsins.

To further investigate whether the non-canonical function of ptqPR is correlated with its phospholipid scramblase activity, we generated a

series of ptqPR variants with decreased or abolished scramblase activity. This was achieved by mutating the polar amino acid residues into

nonpolar ones according to the study reported by Verchère et al.42 Four ptqPR variants (A, B, C, and D) were thus generated by mutating the

polar amino acids in each group into alanine (Figure 6A). E. coli strains each harboring one of the four ptqPR variants exhibited significantly

lower cell growth and intracellular ATP levels than that of BW/ptqPR+ strain and even BW/ptqPR� strain, possibly due to a protein burden

(Figures 6B and 6C). Next, we determined the phospholipid scramblase activity of mutant D (G143A-G147A-Y150A-Y155A), which showed

the least growth. Significant decreased scramblase activity of mutant D was observed (Figures 6D and S7). The targetedmutation experiment

showed that substitution of alanines for polar amino acid residues remarkably reduced the phospholipid scramblase activity of ptqPR and

concomitantly led to the loss of its physiologically beneficial effects on E. coli (Figures 6B and 6C). Therefore, we infer that the phospholipid

scramblase activity of ptqPR contributes to non-canonical function of ptqPR, conferring physiological advantages to the host cells in the

absence of light.

To further validate our assumptions, we overexpressed two microbial rhodopsins that have been previously studied for their scramblase

activity: a bacteriorhodopsin (BR) from Halobacterium salinarum and a heliorhodopsin (HeR) from Thermoplasmatales archaeon. The former

has been reported to exhibit scramblase activity,42 while the latter has not.45 Unfortunately, the BR showed poor expression levels in E. coli, as

evidenced by the limited color change upon incubation with retinal (Figure S9A), which aligns well with previous research.47 In contrast, the

HeR demonstrated significant expression in E. coli, exceeding even that of ptqPR (Figure S9B). However, the overexpression of HeR did not

confer any growth advantages compared to the control group (Figure S9C). Acid treatment tests further revealed that HeR overexpression

even led to decreased cell viability compared to strains with an empty vector (Figure S9D). This observation is consistent with findings fromour

Figure 3. The physiological advantages conferred by ptqPR is not due to its conventional light-driven proton-pumping activity

(A) Bioinformatics analysis of the sequence of ptqPR. Membrane topology was predicted by TMHMM32 (Figure S5A). The black arrow represents transmembrane

helix. Alignment with other rhodopsin sequences (Figure S5B) revealed that Asp88, Glu99, and Lys227 could be the proton acceptor, the proton donor, and the

retinal-binding site, respectively. Proton transport sites were mutated to their corresponding amide (D88N and E99Q).

(B) Proton pumping activity assay of ptqPR and itsmutants. Light-induced proton fluxes were determined by pH changes in cell suspension. pHwas normalized by

the difference relative to the initial value. Gray area represents darkness and white area represents illumination.

(C) Growth profile of strains harboring ptqPR or its mutants in the absence of light and retinal.
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site mutation of PR and lends support to our hypothesis that the phospholipid scramblase activity of ptqPR contributes to its non-canonical

functions, providing physiological advantages to host cells even in the absence of light.

DISCUSSION

Although the light activities of microbial rhodopsins are well established, recent evidence indicates possible non-light functions.48 For

instance, deep-sea rhodopsins often lack light-related activity or retinal-binding capabilities compared to typical rhodopsins.12 It seems

that during evolution in oligotrophic and dark conditions, marine microbes tend to lose the chromophore (retinal) of rhodopsin along

with its light-associated activity, but still retain the transmembrane peptide. Furthermore, over 10% of identified microbial rhodopsins,

including the recently discovered group of HeRs, lack the conserved retinal-binding lysine residue (known as Rh-noKs).11 These findings raise

the possibility that microbial rhodopsins could also perform certain physiological functions in the absence of light, as speculated by previous

studies.12,13,48 However, definitive evidence supporting light-independent functions remains scarce.

In this study, we serendipitously discovered that E. coli cells harboring ptqPR could grow to a higher cell density when entering the late

logarithmic phase without illumination. Furthermore, the ptqPR-expressing strain displayed a remarkable increase in viability toward treat-

ment of weak acids, including acetic acid, lactic acid, and butyric acid. More importantly, we found that ptqPR-containing cells maintained

a higher intracellular ATP level and a higher PMF under such conditions. Together, we conclude that PR can confer E. coli resistance to stress-

ful environmental conditions such as nutrient limitation and weak acid stress in the absence of light.

Following the characterization of the physiological beneficial effects of ptqPR in the absence of light, the question of its underlying mech-

anism arises. We postulated that the membrane-expressed ptqPR may play a role in maintaining membrane integrity based on comparative

transcriptome analysis that showed downregulation of phage shock protein and cold shock protein. To verify this hypothesis, we determined

the biophysical parameters of the plasma membrane including membrane potential, membrane fluidity, and membrane permeability.

Indeed, we observed improved biophysical characteristics of the membrane containing ptqPR. Using single-cell Raman spectroscopy,

Song et al. discovered that non-PR cells displayed a decline in the Raman signal specific for unsaturated lipids when compared to PR cells,

indicating that PR cells have a higher lipid content.15 They speculated that PR might contribute to the stabilization of cytoplasmic membrane,

which would help to maintain DNA and RNA levels and therefore cell viability.15 While this hypothesis may be true especially under the test

conditions applied by the authors, it largely ignored the role that maintenance energy plays during this process. To date, there is accumu-

lating evidence showing that PMF and ATP play crucial roles in survival and stress tolerance of the microbes.49–52 We therefore infer that the

PR can enhance cell membrane integrity and fluidity, which helps to maintain a higher PMF for ATP synthesis, eventually leading to increased

survival and stress tolerance in microbes.

In recent years, a few studies have reported that some of the rhodopsins have phospholipid scramblase activity, which is similar to recently

described G protein-coupled receptor and TMEM16 (transmembrane protein 16) scramblase families.41,53–55 Phospholipid translocation

across the cellular membrane is facilitated by a series of ATP-dependent translocases (flippases/floppases) like P4-ATPases, ABC trans-

porters, and ATP-independent scramblases.56–58 The rate of phospholipid translocation mediated by scramblase (>10,000 s�1) is faster

than that by flippase/floppase (�100 s�1).53,59–61 Recently, a study of the model scramblase TMEM16F suggested that it could help repair

the plasma membrane.43 We therefore speculate that the scramblase activity of ptqPR might be a potential mechanism accounting for

Figure 4. Membrane potential, membrane fluidity, and membrane permeability of E. coli BW25113 strain with or without ptqPR

(A) Strains were cultured in M9+glucose medium in the absence of light and retinal. When grown to stationary phase, cells were stained with DiBAC4(3) to

measure fluorescence for membrane potential determination.

(B) Strains were cultured in M9+glucose medium in the absence of light and retinal. When grown to stationary phase, cells were stained with DPH to calculate

fluorescence polarization for membrane fluidity determination.

(C) Strains were cultured in LB medium overnight in the absence of light and retinal. Then cells were collected and resuspended in 5% glucose solution. The

electrolyte leakage in cell suspension was measured to determine membrane permeability. The data are presented as mean values and standard deviations

of three replicates. **p < 0.01 and ***p < 0.001.
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the improved membrane properties in E. coli cells. To explore the possible link between scramblase activity and the light-independent func-

tions of ptqPR, we adopted a strategy involving substitution of alanines for polar amino acid residues and inactivated its phospholipid scram-

blase activity. As expected, the mutant was not able to confer physiologically beneficial effects to E. coli cells in terms of growth and ATP

content. We also extended the investigation to other naturally occurring rhodopsins. Our findings revealed that overexpression of a HeR,

which is reported to lack scramblase activity, similarly failed to improve cell growth and acid tolerance. These results further corroborate

the link between scramblase activity and light-independent functions in rhodopsins. Future studies should explore whether other rhodopsins

with scramblase activity also possess light-independent functions. For rhodopsins such as bacteriorhodopsin, which exhibit poor expression

in E. coli, investigations may need to be conducted in their native hosts. Additionally, the oligomeric state of microbial rhodopsins has been

known to influence their light-related activities.42,62–64 While the impact of the oligomeric state on light-independent activities of rhodopsins

warrants further investigation in future studies, it is evident that the mutation of ptqPR does not cause a significant change in its oligomeric

state (Figure S10, Note S6). The findings provide evidence that phospholipid scramblase activity of ptqPR contributes to the non-canonical

function of the protein.

In nature, nearly half of the microbial genomes in marine and terrestrial samples have rhodopsin-based light-harvesting systems, which is

more than three times greater than reaction center-based photosystems (including oxygenic and anoxygenic photosystem).65 It was believed

that their widespread distribution was due to their simple structure and low energy requirements for the synthesis, which facilitated their

spread via lateral gene transfer. However, rhodopsin systems are less efficient, at least one order of magnitude, than reaction center-based

photosystems in terms of energy generation. Therefore, it can barely provide the energy required for cellular maintenance unless the light

intensity and the number of copies per cell are very high.3,25 In this connection, the ease and low cost of rhodopsin synthesis may not be

able to entirely explain their current predominance in ecosystems.25 If, however, rhodopsin also possesses light-independent functions,

such as providing stress tolerance to aquatic bacteria as it does to the model organism E. coli shown in this work, this would further explain

their enormous evolutionary competitive advantage over other photosystems.

Figure 5. Determination of scramblase activity of ptqPR by in vitro assay

(A) Schematic diagram of the scramblase activity assay. Dithionite addition leads to a 50% decrease in fluorescence for cells or liposomes without phospholipid

scrambling. Scramblase activity was characterized by outside lipids increase.

(B) Purified ptqPR proteins were reconstituted into NBD-labeled liposomes, the scramblase activity was then determined.

(C) Time courses of fluorescence loss from the scramblase assay in (B). The data are presented as mean values and standard deviations of three replicates.

***p < 0.001.
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Figure 6. Inactivation of phospholipid scramblase of ptqPR abolished its physiological advantages in the absence of light and retinal

Based on structure alignment (Figure S8) of ptqPR (predicted by AlphaFold46) and bacteriorhodopsin (BR) (PDB ID: 4MD2), four groups (mutant A‒D) of different
polar amino acid residues, which may form potential lipid translocation pathway, were mutated to the non-polar amino acid alanine.

(A) Diagram of the predicted structure (made by PyMOL v.2.0) of ptqPR with labeled polar amino acids as possible phospholipid translocation cleft (Orange:

mutant A; Purple: mutant B; Blue: mutant C; Green: mutant D).

(B and C) Determination of growth and intracellular ATP level of E. coli BW25113 strain harboring wild-type and mutant ptqPR.

(D) Determination of phospholipid scramblase activity of wild-type and mutant ptqPR (time courses of fluorescence loss are shown in Figure S7). The data are

presented as mean values and standard deviations of three replicates. **p < 0.01 and ***p < 0.001.
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Despite the widespread belief that microbial rhodopsins are exclusively light reactive, recent ecological, phylogenetic, and physiological

investigations indicate that they may potentially function independently of light.12–15,40,66 In this study, we demonstrate that a microbial

rhodopsin can protect E. coli cells against environmental stresses in the absence of light. This hidden physiological role of rhodopsins

may have been overlooked due to the past focus on their light-driven functions. If the same mechanisms are valid for marine bacteria in

situ, the physiological and ecological implications of these ubiquitous proteins may need to be reevaluated from a new perspective in the

future. Furthermore, this study may provide a mechanistic rationale for utilizing microbial rhodopsin as a device for biotechnology purposes

such as improving the tolerance and robustness of microbial cell factories for biomanufacturing, as most of the fermentations are carried out

in the absence of light.

Limitations of the study

We were unsuccessful in overexpressing the bacteriorhodopsin (with scramblase activity) in E. coli for our further validation of the relevance

between the non-canonical function of microbial rhodopsin and its phospholipid scramblase activity.
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Laney, S., Wilhelm, L.J., Tripp, H.J., et al.
(2005). Proteorhodopsin in the ubiquitous
marine bacterium SAR11. Nature 438, 82–85.

23. Riedel, T., Tomasch, J., Buchholz, I., Jacobs,
J., Kollenberg, M., Gerdts, G., Wichels, A.,
Brinkhoff, T., Cypionka, H., and Wagner-
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Yin Li (yli@im.

ac.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The datasets used and/or analyzed during the current study are available from the corresponding authors on reasonable request.

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

63 His tag antibody GeneTex Cat#GTX628914; RRID: AB_2750602

Goat Anti-Mouse IgG antibody (HRP) GeneTex Cat#GTX213111-01; RRID: AB_10618076

Bacterial and virus strains

E. coli BW25113 Lab stock N/A

E. coli C43(DE3) Beyotime Cat#D1023

Chemicals, peptides, and recombinant proteins

All trans-retinal Sigma-Aldrich CAS#116-31-4

Carbonyl cyanide 3-chlorophenylhydrazone Sigma-Aldrich CAS#555-60-2

Bis-(1,3-dibutylbarbituric acid)trimethine oxonol Dojindo CAS#70363-83-6

1,6-diphenyl-1,3,5-hexatriene Sigma-Aldrich CAS#1720-32-7

n-dodecyl-b-d-maltoside Aladdin CAS#69227-93-6

1-palmitoyl-2-oleoyl-glycero-3-phosphocholine Avanti CAS#26853-31-6

1,2-dioleoyl-sn-glycero-3-phospho-l-serine Avanti CAS#90693-88-2

1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-

N-(7-nitro-2,3-benzoxadiazol-4-yl)

Avanti CAS#384823-46-5

Critical commercial assays

Enhanced ATP Assay Kit Beyotime Cat#S0027

Deposited data

Psychroflexus torquis ATCC 700755, complete genome National Center for Biotechnology

Information

GenBank Accession Number CP003879.1

Bacteriorhodopsin, structure RCSB Protein DataBank PDB ID 4MD2

Oligonucleotides

Primers See Table S2 N/A

Software and algorithms

NIS-Elements Viewer Nikon https://www.microscope.healthcare.nikon.com

FlowJo Becton Dickinson https://www.flowjo.com

SEDFIT Schuck et al.67 https://sedfitsedphat.github.io

MEGA Kumar et al.68 https://megasoftware.net

AlphaFold Jumper et al.46 https://github.com/deepmind/alphafold
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This paper does not report original code.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Bacterial strains

The E. coli strain BW2511369 was used in this study. The medium and cultivation condition were described in method details.

METHOD DETAILS

Plasmids, bacterial strains and growth conditions

For the expression of ptqPR (GenBank: AFU67218.1), a codon-optimized gene was synthesized by Shanghai Generay Biotech (Shanghai,

China). The fragment was cloned into the pED31 expression vector, and the resulted construct pED31-ptqPR was transformed into E. coli

BW25113, designated as BW/ptqPR+. The BW25113 strain harboring an empty pED31 plasmid was designated as BW/ptqPR�. For site-
directed mutagenesis of the ptqPR gene, the plasmid pED31-ptqPR was subjected to mismatch PCR using overlapping primers containing

the corresponding mutation sites. The PCR products were transformed into E. coliDH5a to generate corresponding mutation ptqPR expres-

sion vectors, which were subsequently transformed into E. coli BW25113.

E. coliwas routinely cultured in LBmediumat 37�C, 220 rpm and inducedwith 0.25mM IPTG; 50 mg/mL kanamycin was addedwhen neces-

sary. For testing the growth and physiological properties of E. coli, M9 medium with 10 g/L glucose was used. The M9 medium contains

Na2HPO4 17.1 g/L, KH2PO4 3 g/L, NaCl 0.5 g/L, NH4Cl 1 g/L, MgSO4 2mM, CaCl2 0.1 mM. Cells were inoculated intoM9medium (containing

50 mg/mL kanamycin and 0.25 mM IPTG) to an initial cell density of OD600 of 0.1 from overnight culture in LBmedium and cultivated at 37�C in

a static incubator. For all cultures, illumination (100 mE m�2$s�1) and retinal (10 mM) were used when necessary.

ATP measurement

The intracellular ATP levels were measured by using an Enhanced ATP Assay Kit (Beyotime Biotechnology, Shanghai, China) following the

manufacturer’s instruction. Cells grown in different conditions were collected by centrifugation (4�C, 12,0003g, 2 min) and resuspended in

20 mM Tris-HCl buffer (pH 8.0). The suspended cells were lysed by sonication on ice for 5 min (3 s pulses, 3 s pauses, 25% amplitude) and

centrifuged (4�C, 12,0003g, 5 min). The resulting supernatant was dispensed into the detection reagent and then the luminescence intensity

was measured by microplate reader (Infinite M200 Pro, Tecan). The concentration of ATP was calculated according to the standard curve and

expressed as nmol ATP per dry cell weight.

Light-driven proton-pumping assay

Cells were cultivated and induced in LBmediumovernight. The pellets were washed twice with 150mMNaCl solution and resuspended in the

same solution. The cell suspensionwas firstly placed in darkness for 5min and then illuminated by a LED light sourcewith an intensity of 150 mE

m�2$s�1, then a 5min/5min light-dark cycle was applied. pH changes weremeasured by recording solution pH everyminute with a pHmeter.

Transcriptome analysis

mRNA sequencing and raw data analysis were performed by GENEWIZ (Suzhou, China). Samples were collected from cells grown in M9 me-

dium for 12 h. Total RNA of each sample was extracted using RNeasy Mini Kit (Qiagen), then quantified and qualified by Agilent 2100 Bio-

analyzer (Agilent Technologies), NanoDrop (Thermo Fisher Scientific) and 1% agarose gel. The next-generation sequencing libraries were

constructed and then multiplexed and loaded on an Illumina HiSeq according to the manufacturer’s instruction.

Determination of membrane potential

An anionic lipophilic potential sensitive dye bis-(1,3-dibutylbarbituric acid)trimethine oxonol [DiBAC4(3)] (Dojindo) was used for the measure-

ment of membrane potential.37 Cultures grown in M9 medium overnight were collected and incubated with adding 10 mg/mL DiBAC4(3) at

37�C for 10 min. Then the fluorescent intensity was measured by a microplate reader (Infinite M200 Pro, Tecan) with an excitation wavelength

of 488 nm and an emission wavelength of 540 nm.

Determination of membrane fluidity

A fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH) was used for themeasurement ofmembrane fluidity through the calculation ofmem-

brane polarization.38 Cultures grown in M9 medium overnight were collected and incubated with adding 1 mM at 37�C for 30 min. Then the

polarized fluorescent intensity wasmeasured by a fluorescence spectrometer (F-7000, Hitachi) with an excitation wavelength of 360 nm and an

emission wavelength of 450 nm. The polarized fluorescence was calculated as follows: P=(IVV�GIVH)/(IVV+GIVH), where IVV is the fluorescent

intensitymeasuredwith both excitation and emission polarized vertically, and IVH is the fluorescent intensitymeasuredwith vertically polarized

excitation and horizontally polarized emission. The correlation factor G was calculated as: G = IHV/IHH, where IHV is the fluorescent intensity

measured with horizontally polarized excitation and vertically polarized emission, and IHH is the fluorescent intensity measured with both exci-

tation and emission polarized horizontally.
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Determination of membrane permeability

Themembrane permeability was determined bymeasuring the electrolyte leakage39 using a conductivity meter (HI8633, HANNA). Cells were

cultivated and induced in LB medium overnight and centrifuged (4,5003g, 5 min). The pellets were washed three times with 5% glucose and

resuspended in the same solution. Then the measurement of conductivity was performed at different points in time. The relative electric con-

ductivity was calculated as follows: E=(E2�E1)/E0, where E1 is the conductivity of 5% glucose and E2 is the conductivity of the suspension incu-

bated for different times, and E0 is the conductivity of the suspension finally treated in boiling water for 15 min.

Protein purification

The ptqPR gene was subcloned into a pET-30a vector with C-terminal 63His-tag and the construct was transformed into E. coli C43(DE3)

strain for protein expression. Transformed cells were cultivated in LBmedium at 37�C to an OD600 of 0.6, and protein expression was induced

by 0.25 mM IPTG at 18�C for 18 h. Cells were harvested by centrifugation (4�C, 6,0003g, 5 min) and resuspended in Buffer A (50 mM Tris-HCl,

150 mMNaCl, pH 8.0), then lysed by sonication on ice. The membrane fraction was collected by ultracentrifugation (4�C, 120,0003g, 2 h) and

the pellet was solubilizedwith Buffer B (50mMTris-HCl, 150mMNaCl, 1.5% n-dodecyl-b-D-maltoside (DDM), pH 8.0) by rotating at 4�C for 3 h.

The insoluble material was removed by ultracentrifugation (4�C, 120,0003g, 30 min) and the soluble fraction was incubated with Ni-NTA

Agarose (Qiagen) at 4�C for 3 h. After loading, the sample was washed with Buffer C (50 mM Tris-HCl, 300 mM NaCl, 50 mM imidazole,

0.1% DDM, pH 8.0). Then, protein was eluted with Buffer D (50 mM Tris-HCl, 300 mM NaCl, 500 mM imidazole, 0.1% DDM, pH 8.0). The pu-

rified protein was concentrated and finally solubilized in Buffer E (50 mM Tris-HCl, 150 mM NaCl, 0.1% DDM, pH 8.0) by an Amicon Ultra-0.5

centrifugal filter (Millipore).

Preparation of small unilamellar vesicles and proteoliposomes

Small unilamellar vesicles (SUVs) were prepared from 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC), 1,2-dioleoyl-sn-glycero-3-

phospho-L-serine (DOPS) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2,3-benzoxadiazol-4-yl) (NBD-PE) at a molar ra-

tio of 84:15:1. Lipids were mixed in chloroform and dried to obtain a thin film, then placed under vacuum for 3 h to remove residual organic

solvent. The resulting lipid film was resuspended in Buffer A to a total lipid concentration of 10 mM. The lipid suspension was repeatedly

frozen in liquid nitrogen and thawed in warm water for ten cycles. The lipid solution was extruded using a mini-extruder (Avanti) with

100-nm polycarbonate membrane filter (Whatman) by repeatedly passing through the membrane filter for 11 times.

Proteoliposomes were prepared by reconstitution of proteins into SUVs using a detergent-mediatedmethod. SUVs were diluted to a total

lipid concentration of 2 mM, and DDM was added to a final concentration of 0.11% according to the detergent-saturated concentration of

liposomes. Then proteins were added to themixture and incubated at 4�C for 1 h. For complete detergent removal, four sequential additions

were made every hour at 4�C with a fifth addition for overnight incubation using Bio-Beads SM-2 (Bio-Rad). Bio-Beads SM-2 were gradually

added at increasing amounts each time.

Scramblase activity assay

The NBD-labeled proteoliposomes containing ptqPR were used for in vitro scramblase activity assay. The reconstitution of proteoliposome

was performed as described above. Purified ptqPR protein was added at a protein/phospholipid molar ratio of 1:1,000.

The NBD fluorescence was monitored by a microplate reader (Infinite M200 Pro, Tecan) with an excitation wavelength of 470 nm and an

emission wavelength of 530 nm. Sodium dithionite was added to a final concentration of 20 mM and 1% Triton X-100 was added after 15 min.

The NBD-PE scrambled from insidemembrane to outsidemembrane was calculated as follows:N=(F0�F1)/(F0�F2)�0.5, where F0 is the initial

fluorescent intensity before adding sodium dithionite, F1 is the fluorescent intensity 15 min after adding sodium dithionite, and F2 is the fluo-

rescent intensity 15 min after adding Triton X-100.

QUANTIFICATION AND STATISTICAL ANALYSIS

All experiments were performed in triplicate and all data were shown as meanG standard deviation. Student’s t test was applied to analyze

the comparison among different groups. p values < 0.05 were considered statistically significant.
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