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Abstract: Elevated pro-inflammatory biomarkers and cytokines are associated with morbidity and
mortality in heart failure (HF). Preclinical and clinical studies have shown multiple inflammatory
mechanisms causing cardiac remodeling, dysfunction and chronic failure. Therapeutics in trials
targeting the immune response in heart failure and its effects did not result in evident benefits
regarding clinical endpoints and mortality. This review elaborates pathways of immune cytokines
in pathogenesis and worsening of heart failure in clinical and cellular settings. Besides the well-
known mechanisms of immune activation and inflammation in atherosclerosis causing ischemic
cardiomyopathy or myocarditis, attention is focused on other mechanisms leading to heart failure such
as transthyretin (TTR) amyloidosis or heart failure with preserved ejection fraction. The knowledge
of the pathogenesis in heart failure and amyloidosis on a molecular and cellular level might help to
highlight new disease defining biomarkers and to lead the way to new therapeutic targets.
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1. Introduction

Heart failure (HF) is a complex syndrome characterized by the inability of the heart to uphold
sufficient blood flow due to systolic or diastolic dysfunction. Roughly 26 million people worldwide
are affected [1], while the prevalence in industrialized nations has increased to more than 10% in
the elderly >70 years of age [2]. The prognosis of patients with chronic HF is marked by repeated
hospitalizations and mortality, which is about 50% within 5 years of initial diagnosis [1]. Therefore,
a better understanding of the underlying pathophysiological mechanisms of HF is essential in order to
develop and improve therapeutic measures and thereby reduce mortality. This is no easy feat, seeing as
etiology of HF is diverse. Most common causes of cardiac dysfunction are ischemia, mechanical stress
and volume overload. However, other conditions such as valvular heart disease, myocardial infarction
(MI), autoimmune or storage diseases deserve utmost attention. Currently, much focus is on studying
the pathophysiology of ischemic HF and HFpEF (HF with preserved ejection fraction). The former is
characteristically associated with reduced systolic function as a consequence of ischemic cell death and
inadequate elimination of toxic metabolic degradation products. HFpEF on the other hand results
from continuous pressure and volume overload and is characterized by diastolic dysfunction due
to increased fibrosis and reduced ventricular compliance [3]. Extensive experimental and clinical
research has shown that the pathogenesis of chronic HF is mediated by a complex inflammatory
response that initially facilitates tissue reparation, but when persistent promotes cardiac adverse
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remodeling and dysfunction [4–6]. These findings are substantiated by a positive correlation between
inflammatory mediators and left ventricular dysfunction [7–9]. To date, the therapy of HF concentrates
on ameliorating workload and contractility via manipulation of the neurohormonal axis and has
proven effective in HFrEF (HF with reduced ejection fraction). Unfortunately, no pharmacological
therapy has proven to be similarly effective in HFpEF [10]. This is a worrisome revelation, seeing
as HFpEF accounts for roughly 50% of all HF cases and exhibits growing prevalence [11]. Hence,
identifying pathognomonic mechanisms in HFpEF that are open to modulation could be momentous
for any future therapy. In this context, transthyretin amyloidosis (ATTR) is increasingly garnering
recognition as an underdiagnosed cause of diastolic dysfunction. In HFpEF patients ≥60 years, the
prevalence of relevant transthyretin amyloid deposition reached 13% [12], while the prevalence in
patients ≥75 years increased to 32% [13]. With demographic developments in mind, targeted therapies
for ATTR cardiomyopathy are needed and fortunately already in development and under investigation.

2. Pathways in Ischemic Heart Failure

Ischemic HF is characterized by three phases: an acute inflammatory phase, a reparative
phase (day 4–14 after MI) and chronic inflammation (>14 days after MI). Early inflammation and
reparative mechanisms are triggered by ischemia and necrotic cardiomyocytes. Regeneration of
the myocardium, comprising removal of dead or irreparable tissue and formation of scar tissue,
is initiated by the infiltration of neutrophils followed by monocytes and macrophages, which are
released from splenic reservoirs mediated by angiotensin II (ATII) [14] or are produced in the bone
marrow through IL-1β-signaling [15,16]. In mice, two types of monocytes differentiated by surface
expression markers CD14 and CD16 are predominant in early inflammation: Ly6Chigh (human
homolog: CD14++CD16−) and Ly6Clow (CD14+CD16++) monocytes [17]. The latter are recruited
through interaction between monocytic receptors and chemokines (e.g., CCR2 and CCL2) [18] as well
as cardiac endothelial cells and cell adhesion molecules on monocytes including intracellular adhesion
molecule 1 (ICAM1), vascular cell adhesion protein 1 (VCAM1) and E-/P-selectin [19]. Ly6Chigh

monocytes secrete several proinflammatory cytokines such as TNF-α, IL-1β and proteolytic enzymes
like matrix metalloproteinases (MMPs) and recruit inflammatory macrophages (M1) tasked with
digesting necrotic cells and damaged extracellular matrix (ECM) [17]. As with monocytes, chemotaxis
of macrophages is mediated by chemokines with affinity to either M1 and/or M2 macrophages [20]. The
effect of TNF-α is dependent on whether TNF receptor 1 (TNFR1) or 2 (TNFR2) is bound. While TNFR1
knock-out mice showed improved remodeling with heightened cardiac contractility and reduced
NF-κB activation after MI, TNFR2 knock-out mice exhibited exaggerated remodeling with increased
fibrosis accompanied by left ventricular dilatation and dysfunction [21,22]. Likewise, NF-κB signaling
has contrary effects depending on time of activation and surrounding cell environment and can
either enhance hypertrophy, contribute to cytoprotection from ischemia or act cytotoxic by prolonging
inflammation [23].

The transition from acute inflammation to tissue reparation is driven by successively reduced
pro-inflammatory cytokine production in M1 macrophages during phagocytosis. Simultaneously,
secretion of anti-inflammatory and profibrotic cytokines interleukin-10 (IL-10) and transforming growth
factor beta (TGF-β) as well as pro-angiogenic factors are increased [24]. This change in cytokine profile
is promoted by neutrophils, that help recruit monocytes/macrophages and polarize macrophages
towards this reparative (“alternative”) phenotype termed M2 [25,26]. Depletion of neutrophils in
mice subjected to MI leads to decline in cardiac function, increased fibrosis and progressive HF [25].
Thus, despite promoting tissue injury when continuously recruited, presence of neutrophils during
inflammation is also vital for cardiac repair. M2 macrophages can be further differentiated and
either coordinate adaptive immune response (M2a and M2c) or suppress inflammation (M2b) and
facilitate healing [27,28]. During the healing phase, Ly6Chigh monocytes are relieved by Ly6Clow

monocytes responsible for triggering tissue regeneration by promoting myofibroblast formation
(contractile α-smooth muscle actin expressing fibroblast) and collagen production through TGF-β
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secretion and removal of pro-inflammatory IL-1β, inhibiting myofibroblast conversion, inducing
angiogenesis through vascular endothelial growth factor (VEGF) secretion, influencing composition of
ECM by regulating MMPs and activating the adaptive immune response by antigen-presentation to
lymphocytes [27,29,30].

During the inflammatory phase of MI, reactive oxygen species (ROS) and IL-1 stimulate generation
of pro-inflammatory fibroblasts that secrete cytokines and chemokines [31]. This is achieved by
IL-1 mediated inhibition of α-smooth muscle actin expression, which in turn delays conversion to
myofibroblasts [31]. During transition to the healing phase, fibroblasts differentiate to myofibroblasts
and produce collagen fibers in order to form scar tissue and uphold myocardial integrity [32]. This
process is termed reparative or replacement fibrosis. In the event of sustained or recurring inflammation,
reactive fibrosis impairs cardiac contractility and function due to imbalance between fibroblasts and
viable cardiomyocytes [32]. This form of maladaptive fibrosis is also a key pathology in HFpEF.
Numerous factors coordinate post-MI myofibroblast trans-differentiation, the best-characterized being
the cytokine TGF-β. TGF-β is secreted by leukocytes, thrombocytes and fibroblasts in the infarct area
and is activated in response to ROS, activation of proteases and mechanical strain [29,33].

It is pivotal for the preservation of repaired cardiac structure and function that inflammatory
responses, which initially contribute in a positive way, do not persist. In fact, studies in animals
and HF patients have shown that sustained inflammation is a cornerstone of adverse cardiac
remodeling and chronic HF and is marked by an abundance of M1 macrophages, lymphocytes
and other pro-inflammatory mediators [34–36]. Macrophages were found to migrate into the remote
(non-infarcted) myocardium, while numbers in scar tissue fell [17]. Inhibition of leukocyte recruitment to
the infarcted and remote myocardium using RNAi targeting cell adhesion molecules attenuated adverse
cardiac remodeling, thus proving the long-term pro-inflammatory role of monocytes/macrophage in
adverse post-MI heart remodeling [17,37]. In line with these findings, elevated blood monocyte counts
were shown to predict impaired ejection fraction [38]. Recent studies have illustrated that the cardiac
lymphatic system is in part responsible for the removal of immune cells from the myocardium and that
vascular endothelial growth factor-C (VEGF-C) therapy optimizes healing in the infarcted heart [39].
Accordingly, genetic deletion of the lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) in
infarcted mice with subsequent decrease in leukocyte clearance to the mediastinal lymph nodes leads
to adverse cardiac remodeling [40].

Fundamental research throughout the years has repeatedly verified the presence of the adaptive
immune system in acute inflammation and cardiac remodeling [41,42], but research investigating the
roles of T and B lymphocytes, antibodies and dendritic cells in HF is rather sparse. There is increasing
evidence that a persistent, pathological low-level activation of anti-cardiac autoimmunity through
self-antigen presentation upholds and aggravates adverse cardiac remodeling. Tissue damage and
necrosis after MI is followed by the release of cardiac antigens (e.g., α-myosin heavy chain [43] and
troponin) that are recognized as danger-associated molecular patterns (DAMPs) and induce local
and systemic inflammation [44]. In the course of cardiac reparation, a combination of physiological
mechanisms that restrain autoimmune activation and the decline in DAMPs should ultimately terminate
the adaptive immune response. During MI however, great amounts of cardiac antigens are released,
overpowering restrictive and tolerance mechanisms and effecting a prolonged autoimmune response
with persistent tissue damage and release of self-antigens which in turn results in a self-reinforcing
cycle of chronic inflammation [45]. Experimental murine models provided evidence that B lymphocytes
contribute to adverse cardiac remodeling. In an ATII infusion model, cardiac remodeling was compared
between wild type mice and mice either lacking B and or T cells [46]. In B cell depleted mice negative
remodeling was less detrimental and when B cells were reconstituted left ventricular hypertrophy
and fibrosis were increased. Additionally, in B cell positive mice expression of pro-inflammatory
cytokines such as IL-1β, IL-6 and TNF-α as well as immunoglobulin G3 were significantly higher
than in B cell depleted mice [46,47]. Furthermore, B lymphocytes act in a pro-inflammatory manner
by mobilizing monocytes and modulating the T cell response by acting as antigen presenting cells
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(APC) [48]. Similar to B lymphocytes, T lymphocytes were shown to advance chronic HF. TAC
(transverse aortic constriction) mice models with induced T cell deficiency and T cell receptor alpha
knockout mice indicated amelioration of systolic function, prevention of ventricular dilation and
reduction of fibrosis [49,50]. These effects were reversed after T lymphocyte reconstitution in the
first model. Moreover, CD4+ T cells displayed a greater negative impact on cardiac remodeling than
CD8+ cells [51], whereby the latter may additionally exhibit direct cytotoxic effects [52]. In contrast,
T regulatory cells demonstrate a cardioprotective role and attenuate cardiac remodeling, inter alia,
through IFN-γ [52,53]. Surprisingly, CD4+ T cells also produce IFN-γ next to pro-inflammatory
cytokines such as IL-17 in MI, which could be the indication of a dichotomous role [54,55]. Moreover,
CD4+ knockout mice demonstrated impaired healing in the infarct zone, suggesting that CD4+ T
lymphocytes may also facilitate cardiac reparation [54]. Dendritic cells (DCs) are responsible for
antigen presentation and influence phenotyping of T lymphocytes and may therefore induce an
exaggerated effector T cell response in severe inflammation following MI. In patients with dilated
cardiomyopathy and myocardial infarction, a decreased population of DCs was associated with
worsening of systolic function, impaired reparative fibrosis, increased cardiac rupture and unfavorable
short-term outcome [56,57]. Conversely, blockade of T cell co-stimulation with DCs, B lymphocytes
and macrophages using abatacept improved cardiac function and delayed disease progression [58].

3. Pathways in HFpEF

In some parts, mechanisms in development and progression of HFpEF resemble those in
ischemic HF. Mechanical stress caused by pressure or volume overload affects the release of ATII,
which in turn stimulates mobilization of Ly6Chigh monocytes from the spleen and bone marrow
to the myocardium [59]. What follows is the already detailed cellular and immune cascade
including infiltration with M1 macrophages, secretion of pro-inflammatory cytokines and chemokines,
differentiation to M2 macrophages and reactive fibrosis stimulated by TGF-β secretion [60–62]. With
that said, ineffectiveness of current HF pharmacotherapy, especially RAAS-inhibition, in HFpEF seemed
incomprehensible [63–65], but gave rise to the assumption that HFpEF must be caused by a distinct
pathophysiology that differs from ischemic HF. Endomyocardial biopsies and further investigation
into signaling pathways revealed that diastolic dysfunction in HFpEF is characterized by the following
pathologies: myocardial interstitial fibrosis, cardiomyocyte hypertrophy and stiffness and capillary
rarefraction [66–68]. The myocardial cyclic guanosine monophosphate (cGMP)-protein kinase G
(PKG) signaling pathway plays a pivotal role in the formation of aforementioned structural changes.
Physiologically, nitric oxide (NO) and natriuretic peptides activate soluble and particulate guanylate
cyclase that in turn generate cGMP [69,70]. Next, cGMP activates PKG which in turn phosphorylates
numerous proteins, regulates cytoplasmatic Ca2+ homeostasis influencing cardiomyocyte contractility,
inhibits hypertrophy and promotes left ventricular relaxation and compliance by phosphorylation of
troponin I and titin [69]. Titin is a sarcomeric protein with spring-like properties enabling early diastolic
recoil and late diastolic distensibility and exists in two isoforms: the larger and more compliant N2BA
isoform and the smaller and stiffer N2B isoform [71,72]. PKG, among other kinases, reduces stiffness of
titin via phosphorylation [72,73]. Hence, cardiomyocyte stiffness varies based on dynamic expression of
titin isoforms and extent of phosphorylation. In HFpEF, hypophosphorylation is far more present than
in HFrEF and results in increased cardiomyocyte stiffness [74,75]. Reasons for hypophosphorylation
are reduced myocardial PKG activity and cGMP levels which are both downregulated due to increased
microvascular inflammation and oxidative stress [76]. Recurring mechanical stress and systemic
inflammation increase the production of ROS in cardiac myocytes and cardiac endothelial cells. ROS
in turn binds NO, hence reducing its bioavailability and thereby downregulating NO-cGMP-PKG
signaling [77]. Furthermore, increased levels of ROS can directly activate the TGF-β/Smad3 pathway
promoting fibrosis [78]. The cardioprotective effects of NO-cGMP-PKG signaling have been exemplified
in in recent studies. In rat models of HFpEF stimulation of soluble guanylyl cyclase (sGC), which
generates cGMP, by utilization of the NO-independent stimulator BAY 41-8543 showed less cardiac



Int. J. Mol. Sci. 2019, 20, 2322 5 of 28

fibrosis, macrophage infiltration and gap junction remodeling as well as improved diastolic function
and hemodynamics, and less susceptibility to ventricular arrhythmias [79,80]. Likewise, acute cGMP
enhancement with the phosphodiesterase type 5A inhibitor sildenafil and infusion of brain-natriuretic
peptide ameliorated LV diastolic distensibility in dogs in part by increased phosphorylation of titin [81].

These finding gave way to the hypothesis that comorbidities associated with systemic endothelial
inflammation are the driving force behind emergence and progression of HFpEF [82]. Indeed, amongst
patients with HFpEF prevalence of comorbidities marked by systemic inflammation and endothelial
dysfunction such as obesity, diabetes mellitus type 2, hypertension, metabolic syndrome, atrial fibrillation,
pulmonary diseases, renal dysfunction and anemia are high [83]. Some of these comorbidities also present
with reduced myocardial capillary density which is promoted by microvascular endothelial inflammation
and impairs myocardial perfusion affecting ventricular dysfunction [65,84,85]. Furthermore, microvascular
endothelial inflammation stimulates migration of leukocytes and the subsequent inflammatory cascade
previously described [82]. This detailed comorbidity-driven, phenotypic heterogeneity makes HFpEF far
more complex than initially assumed and must first be fully understood in order to guarantee adequate
planning of clinical trials and therapy management [86].

4. Novel Therapeutics in Heart Failure—Immunosuppression, Immunomodulation, Regeneration

Discovery of chronic inflammation as a pivotal component of development and progression of
HF paved the way for extensive research targeting suppression and modulation of immune responses
and regeneration of cardiac tissue. Unfortunately, results have consistently been inconclusive and
conflicting, so that as yet not one therapy is fit for routine clinical application [87] (Table 1). Major
problems in statistical meta-analysis and ascertainment of therapeutic benefit are heterogeneity of
study populations, variation in treatment regime and timely initiation as well as differing endpoints
and follow-up periods. Furthermore, clinical trials have concentrated on proving favorable effects
foremost in the acute/post-MI phase and less on long-term cardiac development and in chronic HF.
Several immunosuppressive or -modulatory drugs are well-established treatments in autoimmune
diseases or prevention of transplant rejection and have been repurposed for the treatment of acute
inflammation in MI. A detailed listing of all drugs and related clinical trials would go beyond the scope
of this review. The most extensively studied therapeutics however shall be discussed in the following.

Table 1. Selected clinical trials targeting immunosuppressive and immunomodulatory therapies in
myocardial infarction and heart failure.

Immunosuppression

Trial Study Population n Treatment Follow-Up Primary Outcome

Corticosteroids

COPE-ADHF [88] Acute
decompensated HF 102

Dexamethasone or
prednisolone

20 mg IV once daily; 1 mg/kg
daily (max. 60 mg) for 7 days
then tapered off vs. standard

treatment

19 months

Reduced cardiac
mortality,

improvement of
dyspnea and global

clinical status

Mentzelopoulos et al.
[89] Cardiac arrest 268

Methylprednisolone 40 mg IV
once and hydrocortisone 300
mg IV daily for 7 days then

tapered off vs. saline placebo

2 months

Improved rate of
ROSC, survival to

discharge and
neurological outcome

Tsai et al. [90] Cardiac arrest 97
Hydrocortisone 100 mg IV

during resuscitation vs. saline
placebo

7 days

Higher ROSC rate, no
difference in survival

and hospitality
discharge rates

Methotrexate

TETHYS [91] STEMI 84 0.05 mg/kg + 0.05 mg/kg/h for
6 days vs. placebo 3 months

No difference in
mortality, coronary

blood flow, infarct size,
cardiac markers or

reinfarction, worsened
LVEF at 3 months



Int. J. Mol. Sci. 2019, 20, 2322 6 of 28

Table 1. Cont.

Immunosuppression

Trial Study Population n Treatment Follow-Up Primary Outcome

Methotrexate

CIRT [92]

Prior MI and either
type 2 diabetes or

metabolic
syndrome

7000 Target dose 15–20 mg/week 3–5 years Results pending

METIS [93] Ischemic
congestive HF 50 7.5 mg/week for 12 weeks 3 months

Tendency toward
improved NYHA, no

difference in 6MWT or
MACE

Cyclosporine A

Yingzhong et al. [94]
(meta-analysis):
CYCLE (2016)

Cung et al. (2015)
Ghaffari et al. (2013)
Mewton et al. (2010)

Piot et al. (2008)

Acute MI / STEMI
∑

1250 2.5 mg/kg IV vs. placebo 6 months, Cung
12 months

No difference in
all-cause mortality or

adverse clinical events,
no significant

improvement of LVEF
or infarct size

IVIg

Gullestad et al. [95] Acute MI treated
by PCI 62

0.4 g/kg once daily for 5 days
then 0.4 g/kg monthly for 26

weeks vs. placebo
6 months

No effect on LV
remodeling or function

and inflammatory
markers after

completed
maintenance therapy

Gullestad et al. [96] Congestive HF and
LVEF <40% 40

0.4 g/kg once daily for 5 days
then 0.4 g/kg monthly for 5

months vs. placebo
6 months

Marked rise of
anti-inflammatory

markers and
significant increase in

LVEF

IMAC [97]
Recent onset of
idiopathic DCM
and LVEF <40%

62 1 g/kg IVIG for 2 days vs.
placebo 12 months No difference in LVEF

improvement

Immunomodulation

IL-1 inhibitors

DHART 2 [98] HFpEF and CRP
>2 mg/L 31

Anakinra 100 mg sc daily vs.
placebo for 12 weeks vs.

placebo
24 weeks

No improvement in
cardiorespiratory

fitness

Van Tassell et al. [99]

Acute
decompensated HF,

LVEF <40% and
CRP ≥5 mg/L

30

Anakinra 100 mg sc twice
daily for 3 days followed by

once daily for 11 days vs.
placebo

14 days

Reduction in systemic
inflammatory
response, no

evaluation of cardiac
function/clinical

outcomes

MRC-ILA Heart
Study [100]

NSTEMI <48 h
from onset of chest

pain
182 Anakinra 100 mg sc for 14

days vs. placebo 12 months

Reduction in
inflammatory markers,
higher rate of MACE at

1 year

VCU-ART [101] Acute MI 10 Anakinra 100 mg sc daily for
14 days 14 weeks

Favorably affected LV
end-systolic and

-diastolic volume index

Everett et al. [102]
Ridker et al. [103]

(CANTOS)

Prior MI and
high-sensitivity
CRP ≥2 mg/L

10,061
Canakinumab 50, 150, or 300

mg sc once every 3 months vs.
placebo

3.7 years

Dose-dependent
reduction in

hospitalization for HF
and the composite of

hospitalization or
HF-related mortality,

lower rate of recurrent
cardiovascular events

Trankle et al. [104]
(CANTOS sub study)

Prior MI,
high-sensitivity

CRP ≥2 mg/L and
LVEF <50%

30
Canakinumab 50, 150 or 300

mg sc once every 3 months vs.
placebo

12 months
Improvement of
cardiorespiratory
fitness and LVEF

IL-6 receptor antagonist

Kleveland et al. [105] NSTEMI 117
Tocilizumab 280 mg IV single

dose vs. placebo prior to
coronary angiography

6 months

Attenuation of
inflammatory response

(hs-CRP, leukocytes,
hs-TNT)
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Table 1. Cont.

Immunosuppression

Trial Study Population n Treatment Follow-Up Primary Outcome

TNF-α inhibitors

RENEWAL [106]
(RECOVER and
RENAISSANCE)

Chronic HF, NYHA
II-IV and LVEF

≤30%
925 + 1123

Etanercept 25 mg sc once or
twice a week vs.

placebo;etanercept 25 mg sc
twice or three times per week

vs. placebo

24 weeks

No effect on clinical
status, hospitalization
due to chronic HF or

mortality

ATTACH [107]
Chronic HF, NYHA

III-IV and LVEF
≤35%

150 Infliximab 5 or 10 mg/kg or
placebo at 0, 2 and 6 weeks 28 weeks

No improvement after
short-term treatment,

higher risk of
hospitalization due to
HF and death under 10

mg/kg

Complement inhibitors

Fattouch et al. [108]
(C1 esterase

inhibitor)

STEMI undergoing
emergent CABG 80 C1-INH 1000 UI vs. placebo 48 h

Improved cardiac
function (CI, SV) and

haemodynamics
without impact on
early mortality rate

Testa et al. [109]
(meta-analysis of

C5-inhibitor, 6
studies)

STEMI or elective
CABG

∑
15,915

Pexelizumab 2 mg/kg + 0.05
mg/kg/h for 24 days;

pexelizumab 2 mg/kg or 2
mg/kg + 0.05 mg/kg/h for 20

days

7 days,
3 months, 6

months

In STEMI no benefit in
MACE, MI, stroke or

heart failure; in CABG
26% reduction in risk

of death

Targeting ROS and NO-cGMP-PKG signaling

NACIAM [110] STEMI 112

High-dose N-acetylcysteine
(29 g over 2 days) with
background low-dose

nitroglycerin (7.2 mg over 2
days) vs. placebo

3 months

Increased myocardial
salvage and reduced
infarct size, clinical

outcomes not assessed

SOCRATES-PRESERVED
[111]

HFpEF (LVEF
≥45%) 477

Vericiguat once daily at 1.25 or
2.5 mg fixed doses, or 5 or

10 mg titrated from a 2.5 mg
starting dose, or placebo for 12

weeks

12 weeks

No change in
NT-proBNP or left

atrial volume,
improvement in

quality of life

Targeting adaptive immunity

Gao et al. [112]
(meta-analysis) Acute MI 1736 Adenosine in varying doses

No improvement of
LVEF, all-cause

mortality,
cardiovascular

mortality or
re-infarction after PCI

PRESTO [113]
(mast cell stabilizer)

PCI of at least one
vessel stenosis 11,484

Tranilast 300 mg or 450 mg
twice daily oral for 1 month or

3 months
9 months

No improvement of
mortality, MACE or

target vessel
revascularization

Kim et al. [114]
(histamine H2

receptor antagonist)

Symptomatic
congestive HF 50 Famotidine 30 mg daily for 6

months vs. teprenone 6 months

Improved both cardiac
symptoms, ventricular

remodeling
(LVEDV/LVESV) and

MACE

HALT-MI [115]
(CD11/CD18 integrin

inhibitor)

STEMI within 6 h
of onset of chest

pain
420 Hu23F2G (Leukoarrest) 0.3 or

1 mg/kg IV bolus or placebo 1 month
No difference in infarct

size, mortality or
MACE

6MWT, 6-min walk test; C1-INH, C1-inhibitor; CABG, coronary artery bypass graft; CI, cardiac index; DCM, dilated
cardiomyopathy; HF, heart failure; HFpEF, heart failure with preserved ejection fraction; hs-CRP, high-sensitivity
C-reactive protein; hs-TnT, high-sensitivity troponin T; IV, intravenous; IVIg, intravenous immunoglobulin; LV,
left ventricular; LVEDV, left ventricular end diastolic volume; LVEF, left ventricular ejection fraction; LVESV, left
ventricular end systolic volume; MACE, major adverse cardiac event; MI, myocardial infarction; NSTEMI, non-ST
elevation myocardial infarction; NYHA, New York Heart Association; PCI, percutaneous coronary intervention;
ROS, reactive oxygen species; ROSC, return of spontaneous circulation; sc, subcutaneous; STEMI, ST-segment
elevation myocardial infarction; SV, stroke volume;.

Broad immunosuppression has been attempted with corticosteroids, methotrexate (MTX),
cyclosporin A (CsA) and intravenous immunoglobulins (IVIg) that inhibit recruitment and activation of
the innate and adaptive immune responses via multiple pathways and directly protect cardiomyocytes
from cell death due to ischemia/reperfusion injury [116–120]. Meta-analyses of corticosteroid trials and
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recent singular trials (e.g., COPE-ADHF [88]: dexamethasone followed by prednisolone for 7 days in
acute decompensated HF) have shown decreased mortality in HF and cardiac arrest [89,90] patients, but
it remains unclear whether this improvement derived from cardioprotective effects. Two representative
trials studying MTX—METIS [93] (patients with chronic HF) and TETHYS trial [91] (patients with
ST-segment elevation myocardial infarction (STEMI))—found no significant changes in inflammatory
and cardiac biomarkers, infarct size, New York Heart Association (NYHA) class, 6-min walk test
(6MWT) and mortality, but worsened left ventricular ejection fraction (LVEF) at 3 to 4 months follow-up.
The ongoing clinical trial CIRT (Cardiovascular Inflammation Reduction Trial) [92] aims at evaluating
the effect of low-dose MTX on atherothrombosis and prevention of adverse cardiovascular events.
Completed trials assessing the use of CsA in patients with MI have, in sum, not produced any clinically
relevant results, albeit a meta-analysis of five randomized control trials of acute MI patients showed
significant reduction in peri-operative myocardial injury and post-operative rise in cardiac troponin
T [94]. Due to ambiguous results, no definitive statement on the potential positive effect of IVIg on
cardiac function and structure can be made. While Gullestad et al. [96] and McNamara et al. [97]
demonstrated up-regulation of anti-inflammatory cytokines and improved LVEF after IVIg infusion in
patients with chronic HF and dilated cardiomyopathy at 6 months follow-up respectively, no effect
was noted in another trial by Gullestad et al. in patients with acute MI post percutaneous coronary
intervention (PCI) undergoing the same treatment regime [95].

Seeing as numerous cytokines are involved in cardiac inflammation following ischemia and
mechanical stress, research has devoted itself to developing specific agents inhibiting cytokine function,
whereby much focus has been dedicated to IL-1, IL6 and TNF-α. Currently, two types of drugs are
being tested in regards to IL-1: the IL-1 receptor antagonist anakinra and monoclonal antibodies
canakinumab and gevokizumab that neutralize IL-1β. Clinical trials evaluating anakinra have so
far delivered contradicting results. The most common finding was down-regulation of systemic
inflammation in HF and acute coronary syndrome identified through measurement of C-reactive
protein (CRP) and other pro-inflammatory factors [99–101]. Improvements in LVEF and diastolic
function however were inconsistent, and no study showed reduction in major adverse cardiac events
during the short-term follow-up period. A recent trial from van Tassell et al. in HFpEF patients similarly
observed favorable trends in CRP and NT-proBNP, but the primary efficacy endpoint—improved
cardiorespiratory fitness—was not met [98]. A follow-up trial VCU-ART 3 (NCT01950299) in patients
during the acute phase of STEMI is currently underway. Similar to anakinra, canakinumab reduced
inflammatory parameters in patients with previous MI and type 2 diabetes with high risk of MI [103,121].
The largest trial to date — CANTOS [121] — applying canakinumab in 10,061 patients with previous
MI additionally detected reduced incidence of non-fatal MI, non-fatal stroke and cardiovascular-related
death after 2 years follow-up, while a secondary analysis also found improvement of peak oxygen
consumption and LVEF (from 38% to 44%) [104]. A recent study saw a dose-dependent reduction in
hospitalization in patients with HF and prior MI [122]. A novel IL-1β antibody, gevokizumab, formerly
intended for non-infectious uveitis, has so far only been tested in animal models, whereby healthy and
diabetic rats showed immediate sustained improvement of ischemia-/reperfusion-induced cardiac and
coronary dysfunction [122]. The majority of studies involving TNF-α were based on populations with
HF. After smaller studies [123,124] investigating etanercept, a TNF-α receptor antagonist, identified
positive effects such as improved LVEF, 6MWT and NYHA class larger randomized, placebo-controlled
trials were initiated. The trials RECOVER and RENAISSANCE studied patients with chronic HF with
NYHA III and IV receiving etanercept in differing weekly dosage and unfortunately found no clinical
or survival benefit after nearly 2 years, bringing on termination of both trials [106]. Joint analysis
of both trials (RENEWAL) came to the same conclusion [106]. Equally disappointing were results
from the ATTACH trial that treated patients with moderate to severe chronic HF (NYHA III/IV) with
infliximab, a monoclonal antibody and TNF inhibitor [107]. Despite lowering levels of inflammatory
markers (CRP and IL-6) no significant improvement of clinical status could be determined, while
higher doses caused relevant adverse effects.
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ROS plays an essential role in early inflammation and perpetuation of tissue damage in ischemic HF
and HFpEF and therefore represent promising therapeutic targets. However, data on N-acetylcysteine
(NAC), a ROS blocker, have thus far only been acquired from populations with acute MI or STEMI.
Results regarding NAC have been promising. The latest study—the NACIAM trial—of STEMI
patients undergoing PCI and receiving NAC and nitrate therapy observed a doubling of myocardial
salvage and reduction of infarct size by 5.5% compared with placebo along with symptomatic
improvement [110]. Cardiac functional parameters however were not significantly changed, though it
should be acknowledged that observation only lasted 7 days and therefore no conclusion regarding
long-term effects can be drawn. Recently, sGC, an enzyme activated by NO and involved in the
cGMP-PKG signaling pathway which benefits cardiac remodeling has become a target for therapy in
HFpEF. Vericiguat, a sGC stimulator, was given to patients with HFpEF and improved quality of life,
even though NT-proBNP and left atrial volume remained unchanged [111].

Due to late recognition of adaptive immunity as a key player in sustained low-level inflammation,
studies inhibiting recruitment and activation of effector T and B lymphocytes are limited. CsA was
meant to target effector T lymphocytes by inhibiting transcription of cytokines and co-receptors critical
for their recruitment and function, but as already detailed above, had no effect on cardiac structure,
function or all-cause mortality [94]. In experimental MI models, antibody-mediated depletion of CD20
or B cell activating factor, a factor associated with higher mortality rate in patients with recurrent MI,
recruitment of B cells was reduced while cardiac function improved [48]. The currently recruiting
RITA-MI trial (NCT03072199) plans to study the anti-CD 20 antibody rituximab in acute MI patients.
Another approach that could benefit HF would be to boost the regulatory T cell population that
counterbalances ongoing inflammation. Supporting this strategy, are findings regarding adenosine,
which is known to increase regulatory T cell numbers. A meta-analysis of 15 randomized, controlled
trials in 1736 patients with acute MI undergoing PCI and receiving adenosine reported reduced rates of
HF development, though LVEF and mortality were unchanged [112]. The first clinical trial specifically
targeting regulatory T lymphocytes is yet to come.

Several other immunomodulatory drugs have been or are currently under investigation such
as IL-6 inhibitors (e.g., tocilizumab [105]), complement 1 and 5 inhibitors (e.g., C1-INH [108] and
pexelizumab [109]), mast cell stabilizers (e.g., tranilast [113]), histamine receptor 2 antagonists
(e.g., famotidine [114]), CD11/CD18 integrin inhibitors [115], mineralocorticoide receptor antagonists
(e.g., eplerenone [125]) and phosphodiesterase inhibitors (e.g., pentoxifylline [126], milrinone [127]
and sildenafil [80]). Furthermore, device therapy such as cardiac resynchronization therapy [128] and
low-level transcutaneous vagus nerve stimulation [129] have attenuated cardiac remodeling in man
and mouse. Lastly, regenerative therapies (e.g., stem cell therapy [130], tissue engineering [131], gene
therapy [132] and exogenous administration of growth factors [133]) aiming at increasing cardiomyocyte
numbers and function have proven effective in pre-clinical trials and are currently undergoing clinical
trials, whereby results to date have been ambiguous.

5. Transthyretin Amyloidosis

Amyloidosis describes a heterogenous group of multi-systemic diseases caused by extracellular
deposition of folded, insoluble and proteolysis resistant amyloid fibrils consisting of the precursor
protein, proteoglycans and serum amyloid protein which results in alterations of tissue structure and
consequently impairs organ function [134]. Currently, two types of systemic amyloidosis with relevant
cardiac involvement have been identified: light-chain (AL) and transthyretin amyloidosis (ATTR) [135].
The first is considered to be the most prevalent form of amyloidosis and has therefore been extensively
studied, the while latter has been considered rare. However, according to current scientific knowledge
its prevalence and medical implications are far greater than assumed. In patients of African descent in
the UK and USA it is estimated to be the fourth most common cause of congestive heart failure [136,137].
Furthermore, autopsy samples revealed a prevalence of transthyretin amyloidosis of 10%–25% in
the elderly (age >80 years) [138], proving ATTR is clearly underdiagnosed [134]. Transthyretin
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(TTR) is an amyloidogenic protein primarily synthesized in the liver and secondarily (<5%) in
the choroid plexus and retinal pigment epithelium and forms a tetramer loaded with transporting
thyroxin and retinol-binding proteins [139,140]. Physiologically, a clinically negligible amount of TTR
dissociates into dimers and monomers that subsequently polymerize into amyloid fibrils [141]. Point
mutations resulting in changes in amino sequence and incompletely understood sporadic age-related
mechanisms promote tetramer dissociation and misfolding and are the underlying causes for hereditary
(hATTR or mATTR) and wild-type ATTR (wtATTR; formerly known as senile systemic amyloidosis).
Characteristics off TTR types are shown in Table 2. Nearly 150 mutations exhibiting autosomal dominant
inheritance with geographically and ethnically varying penetrance [142,143] have been identified in
patients with hATTR. The most frequent single-nucleotide variant worldwide is the Val50Met mutation
(formerly Val30Met before 20 positions were added), followed by the Val142Ile mutation endemic in the
African American population (frequency 1:30) [137]. The largest clusters of Val50Met mutation exist in
Portugal (prevalence 1:538 in northern regions), Sweden and Japan [134], whereas average prevalence
in other populations (e.g., of northern/western European origin) is estimated far lower at 1:100,000 [144].
While hATTR typically presents itself in the third to fifth decade in endemic populations, wtATTR
mainly effects the elderly and begins after age >70 years [139,145].

Table 2. Characteristics of wild-type transthyretin amyloidosis (wtATTR) and hereditary transthyretin
amyloidosis (hATTR).

wtATTR hATTR

Prevalence
Unknown prevalence, higher than thus far

assumed, probably very frequent and
perhaps leading form of amyloidosis

<1:100,000

Pathogenesis Sporadic misfolding Point mutations, most frequent:
Val50Met (~73%) and Val142Ile (~4%)

Age >60 years, especially in elderly >80 years,
rarely diagnosed during life

At younger age <60 years (30–50 years), depending on
mutation

Sex Male predominance Male predominance with more aggressive phenotype

Clinical course Often asymptomatic

Dependent on mutation and penetrance
homozygosity linked to higher incidence, earlier onset

and more severe clinical presentation strong
genotype-phenotype correlation

Affected organs

Dispersed deposition in several organs:
primarily cardiac deposition and

secondarily neural deposition; eye, kidney
and tendon involvement also possible

Val50Met: polyneuropathy, in 43% also cardiac
involvement

Val142Ile: cardiomyopathy, in 30% also
polyneuropathy

other mutations with leptomeningeal,
ophthalmological and nephrological involvement

Cardiac injury

• Progressive cardiomyopathy with hypertrophy, diastolic (early) and systolic dysfunction (late)
• Conduction disorders
• Atrial arrhythmias, e.g., fibrillation
• Degenerative aortic stenosis

Extracardiac injury

• Carpal tunnel syndrome
• Lumbar spinal stenosis
• Atraumatic biceps tendon rupture

• Polyneuropathy:ascending bilateral
sensory-motor polyneuropathy; dysautonomia
(e.g., orthostatic hypotension, gastrointestinal,
erectile dysfunction)

• Eye disease: glaucoma, intravitreal deposition,
scalloped pupils

• Nephropathy: nephritic syndrome, progressive
renal failure

Diagnostic methods for
cardiomyopathy ECG, echocardiography, cardiac MRI, cardiac scintigraphy

Depending on the underlying genotype, leading clinical syndromes of hATTR are familial
amyloid cardiomyopathy (Val142Ile), familial amyloid polyneuropathy (Val50Met) and leptomeningeal
amyloidosis (Asp3Gly) [156]. Clinical presentation of hATTR is highly heterogenous and often involves
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overlapping phenotypes instead of exclusive neuropathy or cardiomyopathy. Up to 43% of patients
presenting with Val50Met and familial amyloid polyneuropathy (FAP) also exhibit cardiac amyloidosis
which in turn is a frequent cause of death [139]. Likewise, in non-neuropathic forms of hATTR
polyneuropathy may occur, but is often mild in manifestation. Wild-type ATTR on the other hand is
associated with diffuse dispersion in numerous organs, whereby deposition is greatest in the heart.
Accompanying illnesses of wtATTR are carpal tunnel syndrome, atraumatic rupture of the biceps
tendon and lumbar canal stenosis [135,157]. Patients with wtATTR are predominantly male with rates
between 72%–98% [158,159], albeit prevalence in women may be widely underestimated [160].

TTR cardiac amyloidosis is characterized by progressive infiltrative, restrictive cardiomyopathy
with diastolic dysfunction (HFpEF) causing right-sided heart failure in early stages and deterioration
of left systolic ejection fraction later on. The pathogenesis of TTR cardiac amyloidosis is shown in
Figure 1. Additionally, infiltration of electrical pathways can result in conduction blocks and arrhythmias
(e.g., atrial fibrillation). The diagnosis of ATTR requires multi-step diagnostic investigation comprising
non-invasive and invasive techniques such as ECG, echocardiography, cardiac magnetic resonance
imaging (CMRI) and cardiac scintigraphy as well as biomarkers, immunohistochemistry of biopsies and
genetic testing. Unspecific pathologies in ECG common to cardiac amyloidosis are low voltage with
poor R-wave progression and the pseudoinfarction pattern with prominent Q wave in leads II, III, aVF
and V1-V3, presumably resulting from amyloid deposition in the anterobasal and -septal wall of the left
ventricle [134,135,156]. The cornerstone of any diagnostic algorithm is echocardiography. Common signs
of cardiac amyloidosis are left ventricular hypertrophy (LVH) with concentric or asymmetric pattern
(cutoff >12 mm) [160,161], biventricular hypertrophy, diastolic dysfunction (high E/e ratio), left and
biatrial dilatation, atrioventricular valve thickening, atrial septal wall thickening, reduced left ventricular
ejection fraction, impaired longitudinal strain (especially in basal and midventricular segments,
preserved in apical segments) and granular sparkling appearance of the myocardium [135,161,162].
However, in early stages of cardiac amyloidosis echocardiography may still be largely inconspicuous.
Scintigraphy with 99mTc-DPD shows cardiac tracer uptake and is capable of diagnosing TTR cardiac
amyloidosis in early stages before echocardiographic or even CMRI abnormalities occur [163,164]. Other
radiotracers such as 99mTc-pyrophosphate, 99mTc-hydroxymethylene and 18F-florbetapir have proven to
be equally efficient [165–167]. Scintigraphy and CMRI can further differentiate between ATTR and AL
with high sensitivity by determining tracer uptake or late gadolinium enhancement respectively and
subsequently utilizing scoring systems [168,169]. CMRI might not be quite as sensitive and specific in
diagnosing ATTR as nuclear imaging, yet sensitivity and specificity for cardiac amyloidosis is beyond
80% or 90% respectively [139]. Arising techniques such as quantitative T1 mapping (longer native T1

times) [135] and calculation of extracellular volume (higher in cardiac amyloidosis compared to other
heart diseases) [170] may strengthen the role of CMRI in early diagnosis of ATTR. Furthermore, CMRI
can distinguish between cardiac amyloidosis, hypertrophic cardiomyopathy and hypertensive heart
disease which are all characterized by LVH in echocardiography. Late gadolinium enhancement over
the entire subendocardial circumference is pathognomonic for cardiac amyloidosis, but transmural or
patching patterns are also possible [171]. Important biomarkers for cardiac amyloidosis are NT-proBNP
(N-terminal pro brain natriuretic peptide) and Troponin T or I, which are elevated due to direct toxicity
of the TTR amyloid and myocardial strain. Especially, NT-proBNP appears to be a more sensitive
marker due to significant correlation with left ventricular wall thickness and is therefore a useful
prognostic marker in ATTR [172]. The two final steps for a definitive diagnosis are histological and
genetic verification. The gold standard is an endomyocardial biopsy containing amyloid fibrils, whereby
extracardiac biopsies (abdominal subcutaneous fat [173], bone marrow, rectal mucosa, nerves or minor
salivary gland [174]) may provide a positive result when there is extracardiac deposition [138,175]. The
latter is more frequent in hATTR than in wtATTR. A negative extracardiac biopsy though does not exclude
a diagnosis of ATTR [135,139]. Thus, most patients with wtATTR will require an endomyocardial biopsy
for confirmation. Leading techniques to differentiate between amyloid subtype are immunochemistry
based on specific antibodies against amyloid proteins and mass spectrometry [176,177]. Finally, in order



Int. J. Mol. Sci. 2019, 20, 2322 12 of 28

to distinguish hATTR from wtATTR, genetic sequencing must be conducted. In patients with hATTR it
is further necessary to offer genetic counseling and follow-up on first-degree relatives, who may be
asymptomatic carriers, as to commence clinical and diagnostic surveillance and therapy in early stages
or even to prevent onset of disease [178,179].
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Figure 1. Pathogenetic therapy of TTR cardiac amyloidosis. TTR tetramers are prone to destabilization
due to hereditary or wild point mutations in the TTR gene and dissociate into di- and monomers, which
misfolds into an amyloidogenic form and aggregates to amyloid fibrils. TTR amyloid fibrils accumulate
in the extracellular myocardium and induce cardiac dysfunction. Novel agents target singular points
steps in the TTR amyloid cascade and thereby inhibit the development of TTR cardiomyopathy. siRNA
(small-interfering RNA), ASO (anti-sense oligonucleotide), TUDCA/UDCA (tauroursodeoxycholic
acid/ursodeoxycholic acid), SAP (SLAM-associated protein). Reprinted depictions of TTR tetramer,
folded TTR di- and monomers and misfolded amyloidogenic monomer by permission from Proceedings
of the National Academy of Sciences of the United States of America (Proc Natl Acad Sci USA. 2012 Jun
12;109:9629–9634: Bulawa CE, et al. Tafamidis, a potent and selective transthyretin kinetic stabilizer
that inhibits the amyloid cascade.).

Until recently, there was no approved causal therapy for ATTR apart from liver and/or heart
transplantation. Even though orthotopic liver transplantation has proven successful in patients with
FAP, it has been less effective in TTR cardiac amyloidosis with evidence of worsening cardiomyopathy
due to post-implantation progressive deposition of native TTR [180–182]. Thus, the outcome of liver
transplantation varies due to heterogeneity in mutations and patients’ overall medical status [183].
Therefore, targeted therapeutics to suppress synthesis of TTR (gene silencers), prevent tetramer
dissociation (stabilizers) and eliminate depositions are currently being developed. At present, treatment
of TTR cardiac amyloidosis mainly follows current guidelines for the management of heart failure
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and arrhythmias because research has primarily concentrated on studying the effects on FAP and less
on ATTR cardiomyopathy. Therefore, existing pharmacological medications have so far only been
approved for FAP. Patisiran (ALN-TTR02) is a double-stranded, small interfering RNA (siRNA) that
has shown to reduce TTR production by >80% in hATTR and wtATTR [184]. In APOLLO, the largest
randomized, double-blind, placebo-controlled, phase III study in patients with FAP treatment with
patisiran significantly improved neurological symptoms and—as shown in a prespecified cardiac
subpopulation (NYHA I and II)—was further associated with improvement in cardiac structure and
function including significant reductions in left ventricular wall thickness, left ventricular longitudinal
strain and NT-proBNP levels at 18 months [146,147]. Hence, patisiran was recently granted regulatory
approval by the Food and Drug Administration (FDA) and the European Commission (EC) for the
therapy of FAP. Revusiran (ALN-TTR01/ALN-TTRSC), a failed siRNA, was tested in patients with
hATTR cardiomyopathy in the ENDEAVOUR phase III study that had to be discontinued due to
sudden increase in mortality in the revusiran arm [148]. A further gene-silencing therapeutic agent
that has passed a phase III clinical trial in patients with FAP (NEURO-TTR) is Inotersen (IONIS-TTRRx),
an antisense oligonucleotide (ASO). Results of NEURO-TTR showed a delayed progression of neurologic
impairment, but no positive effect on cardiac status in a subpopulation with signs of cardiomyopathy
at baseline [149]. However, a phase II trial undertaken by Benson et al. studying 22 patients with
hATTR and wtATTR cardiomyopathy showed positive data regarding disease progression [150].
Marketing authorization for inotersen was approved from the EC for the treatment of stage 1 and
2 polyneuropathy in adults with hATTR, whereas regulatory approval was received from the FDA
for FAP in adults. A phase III trial in patients with ATTR cardiomyopathy (CARDIO-TTR) was
postponed due to severe thrombocytopenia and bleeding in the NEURO-TTR study. Continuation
will depend on further data from ongoing trials. The first pharmaceutical expected to be approved
for treatment of ATTR cardiomyopathy is tafamidis, a TTR tetramer stabilizer, that while being less
effective in FAP [185,186] delivered promising results in the phase III trial ATTR-ACT [151] studying
patients with ATTR cardiomyopathy over 30 months. Compared to the placebo, tafamidis reduced
all-cause mortality and frequency of cardiovascular events in patients with hATTR and wtATTR
amyloidosis. Furthermore, 6MWT and quality of life were significantly improved, while NT-proBNP
levels and echocardiographic parameters showed positive trends. An extension phase III trial with
treatment for up to 60 months vs. placebo has been approved and will end in 2021. Diflunisal,
a nonsteroidal anti-inflammatory agent that stabilizes the TTR tetramer, has not yet been associated
with a relevant effect on ATTR cardiomyopathy [152,153]. Moreover, diflunisal negatively affected
kidney and gastrointestinal function causing water retention and hypertension, adverse effects that
are counterproductive in heart failure. Therefore, use of diflunisal remains limited to off-label use in
treatment of FAP. A number of novel TTR stabilizers with higher potency for tetramer stabilization
such as AG-10 [187], CSP-1103 and SOM0226 are currently in development for ATTR cardiomyopathy.
Likewise, progress is being made regarding agents targeting the elimination of TTR amyloid deposits.
Current focus is on the combination of doxycycline, an antibiotic that disrupts the formation of amyloid
fibrils and tauroursodeoxycholic acid (TUDCA), a biliary acid that reduces non-fibrillar TTR aggregates.
Results from phase II studies have been inconsistent with some suggesting a protective effect with
delay in progression of ATTR cardiomyopathy, while others negate said findings [154,155]. Hence,
further research is necessary in order to draw a definite conclusion. Similarly, research on other deposit
eliminating agents such as anti-TTR monoclonal antibodies (e.g., PRX004) that promote phagocytosis
of TTR amyloid aggregates and anti-SAP antibodies (e.g., dezamizumab) is in its early stages [188,189].
Regardless of the substance group future studies must concentrate on not only proving effectiveness in
ATTR cardiomyopathy, but also distinguish which subgroups benefit the most (tafamidis for example
showed response to therapy in NYHA class I and II, but not in NYHA class III [151]) and whether
combinations of drug groups (e.g., dual therapy with gene-silencer and TTR stabilizer) are more potent
in improving cardiac structure and function than monotherapy. Selected phase II and III studies for
treatment of TTR amyloidosis are presented in Table 3.



Int. J. Mol. Sci. 2019, 20, 2322 14 of 28

Table 3. Selected phase II/III trials for TTR amyloidosis.

Substance
Group Agent Trial and Design Investigated Population Efficacy Endpoints Regarding Cardiac

Status Pending Approvals/Trials in Planning

TTR gene
silencer Patisiran

APOLLO Phase III [146,147]
Randomized, double-blind,

placebo-controlled

225 patients with FAP; 56% with cardiac
involvement (subgroup analysis)

Randomized 2:1
0.3 mg/kg patisiran IV or placebo every 3 weeks

for 2 years

Follow-up 18 months

- Reduced left ventricular wall thickness
- Increased end-diastolic volume
- Decreased global longitudinal strain
- Increased cardiac output
- Lowered NT-proBNP

Regulatory approval granted from FAD and
EC for the therapy of FAP

Vutrisiran vs. patisiran in hATTR
(HELIOS-A; currently recruiting)

Revusiran
ENDEAVOUR Phase III [148]

Randomized, double-blind,
placebo-controlled

206 patients with FAC

Revusiran 500 mg SC for 5 days, then weekly for
18 months years vs. placebo

Discontinued due to increase in mortality in
the revusiran arm

Inotersen
NEURO-TTR Phase III [149]
Randomized, double-blind,

placebo-controlled

172 patients with FAP stage I and II
Randomized 2:1

300 mg SC every 12 h for 1 week, then weekly for
64 weeks vs. placebo

Follow-up 15 months

- No improvement in structure or
function in subgroup with cardiac
involvement at baseline

Marketing authorization approved from EC
for treatment of stage 1+2 PNP in hATTR;

regulatory approval from the FDA for FAP

Phase II study [150]
open-label, non-randomized

20 patients with ATTR cardiomyopathy

Inotersen 300 mg SC every 12 h for 1 week

- Stable cardiac disease: no increase in
strain, reduction of LV mass

CARDIO-TTR Trial in patients with FAC
Postponed due to increased

thrombocytopenia and bleeding in
NEURO-TTR

TTR
stabilizer Tafamidis

ATTR-ACT Phase III [151]
Randomized, double-blind,

placebo-controlled

441 patients with

Randomization 2:1:2 tafamidis 80 or 20 mg or
placebo orally every 24 h for 30 months

- Decrease in all-cause mortality and
cv rehospitalization

- Delayed decline in distance for 6-min
walk test

- Delayed decline in KCCQ-OS score
- Positive trends in NT-proBNP levels

and echocardiographic parameters

Extension phase up to 60 months vs. placebo

Approval from EC for use in FAP stage I

01/2019 FDA accepts regulatory submissions
for review to treat TTR cardiomyopathy

Diflunisal Phase III study [152]

130 patients with FAP
50% with cardiac involvement at baseline

Randomization 1:1
Diflunisal 250 mg orally every 12 h vs. placebo for

24 months

- No improvement in cardiac status
- Negative effect on kidney and

gastrointestinal function Off-label use in FAP

Further efficacy trials required

Phase II study [153]
Single-arm, open-label 13 patients with ATTR cardiomyopathy

- No significant change in cardiac
structure or function or in
biomarker levels
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Table 3. Cont.

Substance
Group Agent Trial and Design Investigated Population Efficacy Endpoints Regarding Cardiac

Status Pending Approvals/Trials in Planning

AG-10

Phase II study
Randomized, double-blind,

placebo-controlled
(NCT03458130)

45 patients with ATTR cardiomyopathy (at least
30% hATTR)

Randomization 1:1:1
two different doses of AG10 every 12 h or placebo

- Study ended in March 2018,
results pending

Further efficacy trials expected
(e.g., NCT03536767)

Elimination
of deposits

Doxycycline +
TUDCA/UDCA Phase II study [154]

53 patients with ATTR cardiomyopathy treated
with doxycycline and ursodiol, follow-up 22

months

- Stabilized cardiac biomarker
- Improved global longitudinal strain in

less advanced disease

Further efficacy trials pending

Phase II study [155]

55 patients in patients with ATTR cardiomyopathy

Doxycycline 100 mg orally every 12 h for 4 weeks
with a pause of 2 weeks, then UDCA 750 mg (500 +
250 mg) orally per day continuously for 12 months

- No changes in NT-proBNP at 6 months,
increase at 12 months

- Stable LVH
- High dropout rate

Anti-SAP

Phase II study
Open-label, non-randomized, three

groups
(NCT03044353)

40 patients
Cohort 1 with ATTR cardiomyopathy

Cohort 2 AL at >6 months post chemotherapy
Cohort 3 newly diagnosed AL

Anti-SAP+CPHPC monthly for 6 months; follow
up max. 18 months

- Suspended pending data review
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6. Conclusions

HF is a heterogenous syndrome with diverse etiologies, pathological mechanisms and clinical
presentations. In view of the fact that ischemic HF and HFpEF constitute the absolute majority of HF
cases, much effort has gone into investigating their underlying pathophysiology. Despite an already
extensive body of pre-clinical research immunological pathways in both forms of HF are far from
understood. Cardiac inflammation following ischemia and mechanical stress encompasses an intricate
and complex interplay between immune cells and various pro- and anti-inflammatory mediators
responsible for removal of damaged tissue and reparation of cardiac tissue, thereby preventing fatal
rupture and upholding cardiac function. Some of the immune mediators participating in this process
cannot be simplified into being solely pro- or anti-inflammatory, but are dichotomous depending on
inflammatory phase and environment. The emergence and progression of HF results from excessive
and sustained inflammation, which in part is facilitated by autoimmunity through the adaptive
immune system. In order to develop effective treatment options, specific immunological mechanisms
must be further characterized and studied in patients with acute and chronic HF, so that therapeutic
drugs can be administered in the right populations at the appropriate time point. Furthermore, it
is essential to acknowledge that HF cannot be managed successfully with a uniform treatment but
requires individualized strategies that also look beyond the heart and towards comorbidities. This
is underscored by the differences in pathophysiology of ischemic HF and HFpEF. With that in mind,
other forms of HF that may be concurrent should not be neglected. Until recently, TTR cardiac
amyloidosis was disregarded due to the assumption it was rare. New data on the prevalence of ATTR
cardiomyopathy as an independent disease but also as a concomitant pathology in HF of other primary
origin has garnered attention and paved the way for intensified research, which has culminated in the
development of refined diagnostic algorithms and effective targeted therapies.
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Abbreviations

6MWT 6-min walk test
99mTc-DPD Tc-99m-3,3-diphosphono-1,2-propanodicarboxylicacid
AL light chain amyloidosis
APC antigen presenting cells
ASO anti-sense oligonucleotide
ATII angiotensin II
ATTR transthyretin amyloidosis
CCL2 CC-chemokine ligand 2
CCR2 C-C chemokine receptor type 2
cGMP cyclic guanosine monophosphate
CMRI cardiac magnetic resonance imaging
CRP C-reactive protein
CsA cyclosporin A
DAMPs danger-associated molecular patterns
DCs dendritic cells
EC European Commission
ECG electrocardiogram
ECM extracellular matrix
FAP familial amyloid polyneuropathy
FDA Food and Drug Administration
hATTR hereditary transthyretin amyloidosis
HF heart failure
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HFpEF heart failure with preserved ejection fraction
HFrEF heart failure with reduced ejection fraction
ICAM1 intracellular adhesion molecule 1
IVIg immunoglobulins
IL-1 Interleukin-1
IL-1β Interleukin-1β
IL-10 Interleukin-10
IL-6 Interleukin-6
LVEF left ventricular ejection fraction
LVH left ventricular hypertrophy
LYVE-1 lymphatic vessel endothelial hyaluronan receptor 1
MI myocardial infarction
MMPs matrix metalloproteinases
MRI magnetic resonance imaging
MTX methotrexate
NAC N-acetylcysteine
NF-κB nuclear factor kappa-light-chain-enhancer of activated B-cells
NO nitric oxide
NT-proBNP N-terminal prohormone of brain natriuretic peptide
PCI percutaneous coronary intervention
PKG protein kinase G
ROS reactive oxygen species
SAP SLAM-associated protein
sGC soluble guanylyl cyclase
siRNA small-interfering RNA
STEMI ST-elevated myocardial infarction
TAC transverse aortic constriction
TGF-β transforming growth factor beta
TNF-α Tumor necrosis factor alpha
TNFR1 TNF receptor 1
TNFR2 TNF receptor 2
TTR transthyretin
TUDCA tauroursodeoxycholic acid
UDCA ursodeoxycholic acid
VEGF vascular endothelial growth factor
VEGF-C vascular endothelial growth factor-C
VCAM1 vascular cell adhesion protein 1
wtATTR wild-type transthyretin amyloidosis
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