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Identifying diabetes 
from conjunctival images using 
a novel hierarchical multi‑task 
network
Xinyue Li1,2,3,6, Chenjie Xia4,6, Xin Li5, Shuangqing Wei5, Sujun Zhou1,2, Xuhui Yu1,2, 
Jiayue Gao1,2, Yanpeng Cao4* & Hong Zhang1,2*

Diabetes can cause microvessel impairment. However, these conjunctival pathological changes 
are not easily recognized, limiting their potential as independent diagnostic indicators. Therefore, 
we designed a deep learning model to explore the relationship between conjunctival features 
and diabetes, and to advance automated identification of diabetes through conjunctival images. 
Images were collected from patients with type 2 diabetes and healthy volunteers. A hierarchical 
multi-tasking network model (HMT-Net) was developed using conjunctival images, and the model 
was systematically evaluated and compared with other algorithms. The sensitivity, specificity, and 
accuracy of the HMT-Net model to identify diabetes were 78.70%, 69.08%, and 75.15%, respectively. 
The performance of the HMT-Net model was significantly better than that of ophthalmologists. The 
model allowed sensitive and rapid discrimination by assessment of conjunctival images and can be 
potentially useful for identifying diabetes.

Deep learning has been successfully applied in the field of medical image analysis. Because of its high learning 
ability and computing ability, deep learning can even extract hidden information that doctors cannot perceive 
from the data. For ophthalmic image analysis, deep learning can detect several systemic diseases through eye 
images, such as anemia1, cardiovascular disease2, hepatobiliary disease3, traumatic brain injury4 etc. This is 
because the visual blood vessels and nerves in the eyes are closely related to the health of the whole body. Diabe-
tes is a chronic disease involving multiple systems. It is one of the fastest growing public health problems in the 
twenty-first century, affecting 463 million people around the world5. Several studies have shown that hypergly-
cemia first damages smaller blood vessels such as the bulbar conjunctival microcirculatory system. The bulbar 
conjunctiva is the vascularized mucosa that covers the surface of the eyeball. Since bulbar conjunctiva is the 
only blood vessel in the body that can be seen directly without using any equipment, bulbar conjunctival vessels 
can be used as a feasible window for studying diabetes. Since 1956, researchers have developed several imaging 
techniques such as computer-assisted intravital microscopy (CAIM)6,7, EyeFlow8,9, and Retinal Function Imager 
to observe conjunctival hemodynamic changes in patients with diabetes10. These studies found that conjunctival 
vessels showed similar changes as in diabetic retinopathy, such as dilation and distortion. However, the analytical 
methods used in these studies are time-consuming and insufficiently objective, which limits their potential to 
be developed into diagnostic indicators.

In this study, we intend to explore the possibility of extracting disease signals from conjunctival images of 
patients with diabetes through deep learning. However, key challenges in developing an effective deep learning 
system are that a large number of annotated training samples are needed for supervised learning11,12, and the 
high cost to obtain enough high-quality, clinical samples. To overcome these challenges, we developed a novel 
and personalized algorithm called the hierarchical multi-task network (HMT-Net) for identifying diabetes using 
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conjunctival images. We creatively integrated ophthalmologists’ professional knowledge into the deep network 
design and trained an effective recognition system using limited available datasets.

Specifically, based on previous observation of diabetic conjunctiva (e.g., Ditzel13, Khan14, and Khansari15, 
Shahidi16, our experience, and the characteristics of conjunctival images, our models are designed in the deep 
network to answer four groups of sub-questions related to diabetic conjunctival abnormalities, and then the 
results of these sub-problems are integrated for the final judgment of diabetes. This algorithm can overcome 
data insufficiency and is sufficiently accurate compared with traditional models. It also reduces the dependence 
on big datasets and can be conveniently applied to the medical setting.

Methods
The overall flow chart of the experiment is shown in Fig. 1. The study flow is divided into three stages: data col-
lection, model development, and model evaluation.

Data collection.  Study participants.  This was a single-center, prospective, diagnostic, and exploratory 
study. The data were collected from the First Affiliated Hospital of Harbin Medical University. The disease group 
consisted of patients with type 2 diabetes diagnosed in the endocrinology department of the hospital. The con-
trol group was composed of non-diabetic healthy volunteers from the physical examination center of the hos-
pital. All subjects underwent detailed and standardized eye examinations and diabetes-related examinations. 
Conjunctival images and clinical history were collected. Patients who met at least one of the exclusion criteria 
(Supplementary Document p1) were excluded.

All procedures followed the tenets of the Declaration of Helsinki. Written informed consent was obtained 
from each participant. The study was approved by the Ethics Committee of the First Affiliated Hospital of Har-
bin Medical University (2020130). This study was prospectively registered at Chinese Clinical Trials Registry 
(ChiCTR2000037498).

Image acquisition.  The eyes of all the selected subjects were examined in detail. All the images were taken by 
the same technician using a digital camera (EOS 5D Mark II, Canon, Tokyo, Japan) in the same darkroom envi-
ronment (more details in Supplementary Document p2).

Model development.  Image labeling.  According to the previous summary of diabetic conjunctival 
changes, four related sub-questions (Q1 ~ Q4) were designed to guide the recognition of diabetes. The collected 
conjunctival images were given corresponding labels for each question of Q1 ~ Q5 (Q5: whether or not diabetic). 
Based on other studies of conjunctival images and characteristics of the conjunctival images, the classification 
criteria were further established (Supplementary Document p3-4, Figure S1). Three well-trained ophthalmolo-
gists strictly followed the classification criteria and labeled each conjunctival image. During the process, some 
poor quality images (e.g. images with eyelid occlusion more than 1/10 of the whole image, low contrast, or 
blurred focus) were excluded.

Image preprocessing and data augmentation.  The original image data required certain image preprocessing 
operations and dataset augmentation before being input into the network. See Figure S2 for more details (Sup-
plementary Document p5-8).

Figure 1.   Overview of the study.
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Dataset splitting.  We adopt cross validation to utilize these images. We divided the data set into 5 parts (from 
Set1 to Set5) and then selected one part of the sample as the test set each time, and then used the remaining 
samples for training.

System Design and Training.  The HMT-Net was trained through two stages (Fig. 2).

(1)	 In Stage-I, we chose ResNet50 as the backbone, and then performed transfer learning based on ImageNet 
and a portion of our labeled dataset (Dataset-I) to train four sub-networks and answer four sub-questions. 
Four feature extraction sub-networks F-Net(Q1) ~ F-Net(Q4) were trained using the ophthalmologist-
designed classification tasks of Q1 ~ Q4.

(2)	 In Stage-II, we hierarchically integrated four previously trained sub-networks F−Net(Q1) ~ F-Net(Q4) to 
build an HMT-Net and trained the HMT-Net using another portion of our labeled dataset (Dataset-II) for 
identifying diabetes (Q5).

Q1 ~ Q4 classification tasks. F-Net(Q1) ~ F-Net(Q4) were built using ResNet5017 as a backbone structure, 
and trained for Q1 ~ Q4. ResNet50 is a widely used deep architecture for feature extraction and classification. 
ResNet50, which outperforms other widely used architectures such as VGG1918 and MobileNet19 in Q1 ~ Q4 clas-
sification, was adopted through experiments. The architecture of such an F-Net is shown in Fig. 2a. To overcome 
the issue of insufficient amount of labeled data, transfer learning technique was utilized by pre-training these 
networks using the big general image dataset ImageNet20 and then fine-tuning using Dataset-I.

Q5 diabetes classification task. The purpose of Stage-II was to utilize sub-task classifications F-Net(Q1) ~ 
F-Net(Q4) trained in Stage-I to construct the HMT-Net for final diabetes classification of Q5. The HMT-Net 
was trained and fine-tuned using Dataset-II. The architecture of the HMT-Net is shown in Fig. 2b, which mainly 
includes three parts: feature extraction network, feature fusion network, and classification network.

Figure 2.   Architectures of ResNet50 and HMT-Net. (a) Network architecture for F-Net (Q1) ~ F-Net (Q4). 
(b) Integrating F-Nets (with GAP and FC layers removed) into HMT-Net. GAP = Global Average Pooling. 
FC = Fully Connected.
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The feature extraction network consisted of five parallel branches. The first four were from F-Net(Q1) ~ 
F-Net(Q4) , whose feature extraction layers were kept while Global Average Pooling (GAP) and Fully Connected 
(FC) layers were removed. In order to utilize the features extracted for Q1 ~ Q4 in F-Net(Q1) ~ F-Net(Q4) , the 
parameters of these four branches were kept during Stage-II (training for Q5). For Q5, another branch was 
added following the structure of F-Net (without GAP and FC) and denoted as F-Net(sup) . Unlike the first four 
branches, the parameters of F-Net(sup) were pre-trained using ImageNet20 and then fine-tuned using Dataset-II 
during Stage-II. F-Net(sup) generated supplementarily (to F1 ~ F4 ) features F05 for Q5. Thus, the entire feature 
extraction network output F1 ~ F4 and F05.

The feature fusion network integrated these complementary features to generate more discriminative features 
for the Q5 diabetes classification task. First, F1 ~ F4 and F05 were concatenated to obtain the combined features. 
Then, adaptive learning21 was used to compute channel attentions, which assigned suitable weights to different 
channels of features. Using two consecutive convolutions (with kernel size 3 and stride 1, the numbers of con-
volution kernels were 4096 and 2048, respectively), the dimension of the features was compressed from 10,240 
to 2048. The experimental results showed that redundant information in the concatenated feature maps could 
be compressed to generate more discriminative features for the subsequent Q5 classification.

Finally, a classification network mapped the processed features to the category of Q5. This network was 
composed of a GAP and an FC layer, which integrated relevant information with class discrimination. The final 
output (identify outcome) was obtained using a softmax function.

The network was implemented using PyTorch22 and the cross-entropy loss function was adopted. The param-
eters of the network were updated through backpropagation. (more details in Supplemental Document-p9, 
Figure S3).

System Evaluation.  Performance metrics.  The model accuracy was evaluated by using three different 
metrics.

Sensitivity (Recall): SE = TP/(TP + FN),
Specificity: SP = TN/(TN + FP),
Accuracy: ACC = (TP + TN)/(TP + TN + FP + FN),
where TP, FP, TN, and FN represent the numbers of true positives, false positives, true negatives, and false 

negatives, respectively. Diabetes and health were defined as positive and negative samples respectively.
The receiver operating characteristic (ROC) curve and the area under ROC curve (AUC) were also computed 

to comprehensively evaluate the classification models of Q5 under Dataset-II. The ROC curve depicts the true 
positive rate (sensitivity) and false positive rate (1-specificity). The larger AUC, the better the classification 
performance.

Class activation map.  In addition to performing quantitative evaluations, the decision-making process of the 
model was also attempted to be understood. For this purpose, the class activation map (CAM) was generated to 
highlight which region of the image plays a decisive role in the final classification. By CAM, we could observe 
the contribution of different areas of the image to the final prediction and understand the potential relationship 
between eye features and diabetes.

Comparison with the baseline.  Experiments were conducted to verify that the HMT-Net performed better in 
classifying Q5 with the help of solving tasks Q1 ~ Q4. Figure 2a shows a deep neural network (baseline) that 
does not utilize (ophthalmologist-designed) Q1 ~ Q4 while using a single F-Net (ResNet50) to directly predict 
diabetes (Q5). The diabetes screening performance of this baseline architecture was compared with that of the 
HMT-Net.

The F-Net (Q1) ~ F-Net (Q4) were also used individually for detecting diabetes to prove that the combination 
of these classifiers can improve the detection.

Comparison with ophthalmologists.  Four ophthalmologists with different qualifications, including two resi-
dents, one senior doctor, and one expert, participated in a comparative study. They were different from those 
who participated in data collection and model development. First, ophthalmologists were trained to learn the 
typical images of diabetic conjunctival lesions in the training set (Dataset-I), and then determined if the indi-
viduals have diabetes based on the conjunctival images in the test dataset (Dataset-II). Each ophthalmologist and 
model was tested with the same data. The test images were randomly disordered and the relevant information 
outside the ophthalmologist and the image was hidden to ensure that they could perform independently and 
impartially. The average test results of the four ophthalmologists were compared with those of the deep learning 
method.

Results
Baseline data of subjects.  A total of 200 participants were recruited, and 18 were excluded due to their 
unqualified medical history or conjunctival lesions. The remaining 182 subjects (97 patients with type 2 diabetes 
and 85 controls) participated in conjunctival imaging. After dataset cleaning, a total of 611images (405 from 68 
diabetic patients and 206 from 62 healthy individuals) were included. We divide the data set into 5 parts (from 
Set1 to Set5) and then select one part of the sample as the test set each time, and then use the remaining samples 
for training. The statistics of the divided data set was shown in the Table 1.
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Evaluation of Q1 ~ Q4 classification models.  In Stage-I, we trained and tested Q1 ~ Q4 using Dataset-I. 
The performance is summarized in Supplementary Document-p10, Table S1.

Class activation map (CAM).  In addition to quantitative performance metrics, we also visualized features 
extracted by the classification networks of Q1 ~ Q4 on class activation maps. As shown in Fig. 3, brighter colors 
indicate greater contribution to discrimination. For example, the networks focus more on areas where blood 
vessels are located. Therefore, in Q2 (vessel color), if the network detects a blood vessel with abnormal color, the 
region will be highlighted; otherwise, the network will randomly examine other regions with weaker intensity 
and provide a “normal” prediction. Similar patterns could be observed in the visualization results of Q1, Q3, 
and Q4.

Classification results of Q5.  In Stage-II, the classification algorithms of Q5 were trained and tested on 
training set and test set of Dataset-II respectively. Sensitivity, specificity, accuracy, and AUC were used to evalu-
ate their performance. For the HMT-Net we designed, a fivefold cross-validation was performed on the newly 
divided data set, and the results were shown in the Table S2 (Supplementary Document-p11). Each row in the 
table represents the classification result obtained by using the corresponding part of the data (from Set1 to Set5) 
as the test set, and the remaining samples as the training set. These metrics comprehensively reflected the screen-
ing ability of the HMT-Net. The accuracy, sensitivity, and specificity of the HMT-Net were 79.70%, 69.08%, and 
75.15%, respectively. The ROCs for the HMT-Net are shown in Fig. 4, and the average AUC was 0.82.

Table S3 (Supplementary Document-p12) showed the results of using F-Net(Q1) ~ F-Net(Q4) individually 
for detecting diabetes. In this Table (Supplementary S3), the baseline refers to the network that does not use 
any sub-question to help classify diabetes, and F-Net (Q1) ~ F-Net (Q4) respectively refer to the network that 
uses each sub-question (Q1 ~ Q4) to help classify diabetes. HMT-Net refers to our comprehensive network 
that is assisted by all the 4 sub-questions. As shown in this table, compared with baseline, when either one of 
the four sub-questions is used, the newly learned features are beneficial to the final identification of diabetes: 
the accuracy and AUC of diabetes classification have been improved. When all the 4 sub-questions are used, 
the HMT-Net integrates the features from all these sub-questions, and produces the best accuracy and AUC of 
diabetes classification.

Table 1.   Division of dataset in cross validation. (D = diabetes, H = health).

Set1 Set2 Set3 Set4 Set5

D H D H D H D H D H

number 84 44 71 43 83 44 94 43 73 32

Figure 3.   Visualization results of the classification networks of Q1 ~ Q4. Heat maps illustrate which part of the 
image contributes more to the classification results.
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Comparison with other models.  Other methods of diabetes identification were trained and tested fol-
lowing the same way mentioned above. ROCs for different models are shown in Fig. 4: the AUC of the HMT-
Net was higher than that of the baseline. A comparison using the quantitative metrics is given in Table 2: the 
HMT-Net outperformed the baseline in AUC, accuracy, and sensitivity. In comparison with other deep-learning 
algorithms, the HMT-Net performed better than the baseline, InceptionV3, and MobileNetV2.

Comparison with ophthalmologists.  Compared with the same test set used by ophthalmologists, the 
accuracy, sensitivity, and specificity of the HMT-Net were 23%, 20%, and 27% higher, respectively (Table 3). The 
time needed for the HMT-Net to make judgment was shorter than that for the ophthalmologists (1.24 s vs 7.35 s; 
P < 0.001). Moreover, even if the ophthalmologists were trained before the test, they still struggled to identify 
diabetes based on conjunctival images alone.

Discussion
The HMT-Net model designed in the present study can locate several associations between conjunctival images 
and diabetes, which provides the possibility for automatic screening of diabetes by deep learning analysis of 
conjunctival images in the future. According to literature review, this is the first study using a deep learning 
algorithm to analyze conjunctival images for diabetes recognition.

Figure 4.   Receiver operating characteristic curves for HMT-Net and other models. AUC = area under the 
receiver operating characteristic curve.

Table 2.   The comparison results between fivefold cross-validation and other algorithms. SE = Sensitivity, 
SP = Specificity, ACC = Accuracy, AUC = Area under ROC curve.

SE (%) SP (%) AUC​

HMT-Net 78.70 69.08 0.82

ResNet50 74.76 69.57 0.80

MobileNetV2 72.38 73.22 0.79

InceptionV3 78.68 62.80 0.78

Table 3.   Performance of artificial intelligence vs ophthalmologists in identifying diabetes based on 
conjunctival images. SE = Sensitivity, SP = Specificity, ACC = Accuracy.

SE (%) SP (%) ACC (%) Speed (s/image)

HMT-Net 78.70 69.08 75.15 1.24

Human average 59.02 42.11 51.59 7.76

ophthalmologist 1 70.10 55.26 63.58 9.21

ophthalmologist 2 62.89 38.16 52.0 6.24

ophthalmologist 3 64.95 18.42 44.51 8.25

ophthalmologist 4 38.14 56.68 46.24 7.35
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This study has several advantages. First, the HMT-Net model only uses conjunctival images for diabetes rec-
ognition, which may provide a new method for diabetes screening in the absence of special medical equipment 
in the future. Second, the model can automatically process data without manual calculation, which is more effi-
cient. Moreover, the algorithm is more accurate than ophthalmologists in terms of diagnostic accuracy (Table 3). 
Third, developers creatively use the problem-oriented training network architecture to effectively overcome the 
problem of insufficient datasets, which can be extensively applied to other fields.

In addition, the model has two significant medical applications. First, the HMT-Net model can be used to 
detect microangiopathy in early diabetes mellitus. Early detection is crucial for decreasing the risk of disease 
progression and improving prognosis. Previous studies have found that conjunctival abnormalities occur earlier 
than retinal abnormalities in patients with diabetes14,23. This has been further confirmed by the current study. 
More than half of the diabetic patients included in this study were at the early stages of the disease who did not 
develop diabetic retinopathy, which can be identified by the HMT-Net model. This finding suggests that the 
HMT-Net model may be used for early screening of diabetes. Second, the HMT-Net model has great potential in 
rapid, non-invasive, and remote screening of diabetes. Approximately 4.2 million deaths were caused by diabetes 
and its complications in 2019 globally5. Regular detection and timely referrals are crucial for reducing the burden 
of diabetes. Although regular blood tests can detect blood sugar increase in time, the lack of awareness of physical 
examination, traumatic blood tests, and uneven distribution of medical techniques have led to approximately 
37.8%-59.7% of diabetic patients in the world without early diagnosis5. A simple, non-invasive, remote diagnostic 
model needs to be implemented to solve this problem, which is shown by the results of this study.

It is recognized that hyperglycemia can cause pathological changes of blood vessels throughout the body, and 
its pathogenesis can be summarized as follows: Hyperglycemia causes oxidative stress and rheological changes 
in blood vessels, which may lead to adverse changes in the flow properties of red blood cells by changing the 
composition and physical properties of erythrocyte membranes, such as deformability, aggregation, and adhesion 
to endothelium, significantly promoting blood flow silt. The changes of rheological factors, especially due to the 
change of erythrocyte deformability, contribute to shear stress alteration and the pathogenesis of hyperglycemic 
vascular disease. A large number of previous studies have observed such vascular changes through retina. How-
ever, both fundus photography and OCTA rely on expensive and large fundus imaging equipment. Conjunctival 
vessels can be observed by naked eyes, therefore, conjunctival images require no special equipment but need to 
be clearly photographed and magnified for analysis. Conjunctival vessels are 5–70 μm in diameter and belong 
to microvessels, which can reflect the vascular complications of diabetes24. Cheung et al.7 used CAIM and found 
that microvascular abnormality severity index was associated with HbA1c levels in T1DM. Based on previous 
studies13,15,23,25,26, impairment of vascular barrier function and deposition of hemosiderin resulted in abnormal 
perivascular color. Changes in the conjunctival vessels of diabetes patients include thickening of vascular wall, 
abnormal perivascular color, morphological distortion, microaneurysms, abnormal A/V ratio, slower blood flow, 
etc., which are generally difficult to be detected by eyes. In 1954, Drtzel et al. first identified specific changes of 
the conjunctiva in diabetic patients23. Later in 1956, Drtzel et al. further described the conjunctival changes on 
angiography images and their relationship with aging in Circulation magazine13. In 2001, Cheung et al. identi-
fied the presence of microvascular abnormalities in the conjunctival microcirculation of patients with T2DM by 
computer-assisted intravital microscopy (CAIM)25. In 2009, Cheung et al. found that real-time in vivo micro-
vascular abnormalities should correlate with biochemical markers of inflammation/endothelial dysfunction in 
T1DM7. In 2011, Cheung et al. provide evidence that significant vasculopathy had developed in the microcircu-
lation in the conjunctiva, although diabetic retinopathy had not developed significantly in the same patients6. 
In 2015, DeBuc et al. firstly presented the feasibility and applicability in diagnostic imaging of conjunctival 
microangiopathy in a diabetic patient using a commercially available Retinal Function Imager (RFI)10. In 2016, 
Shahidi et al. used ordinary least square regression and Fisher linear discriminant analysis assess conjunctival 
microvasculature image9. In 2017, Khansar et al. published a study on the different conjunctiva changes that 
occur in diabetic patients in Scientific Reports27. In 2017, Khan also suggested et al. “a clinical correlation of 
conjunctival microangiopathy with grades of retinopathy in type 2 diabetes mellitus”14. The analytical methods 
used in these studies, however, are time-consuming and insufficiently objective; and this limits their potential to 
be developed into diagnostic indicators. In this work, we aim to solve this problem via deep learning. Currently, 
the identification rate by the doctors using conjunctival images is only around9. This is because the correlation 
between conjunctival images and diabetes need to be discovered through complex measurement, calculations, 
and comparisons, and is difficult to identify directly with the naked eyes. Artificial intelligence through multiple 
learning and training can help better identify nuances that are not easily perceived by human beings, and more 
effectively aggregate them for the targeting classification task. In this work, with our deep learning pipeline, this 
accuracy rate has now increased to 75.15%. Furthermore, with the growth of the collected data set, we believe 
the accuracy of such a system can be further improved. In the future, the HMT-Net model can be used as an 
opportunistic screening tool, integrated into general ophthalmology, and even applied in mobile phone software, 
which is convenient to obtain general health suggestions.

In this work, we extracted four groups of features (Q1 ~ Q4) from easier sub-problems. From the classifica-
tion results of Q1 ~ Q4, our method performs well in the classification of Q1 ~ Q4 (sensitivity, specificity, and 
accuracy are all above 70%, Supplementary Document-p10, Table S1). In addition, CAM visualization shows 
that the networks focus on suitable regions when performing the inference. The model can classify the regions 
of interest and potential features according to the ophthalmologist’s experience, which also means that the oph-
thalmologist can interpret the decision made by the model by examining the suggested area of interest. In turn, 
the model can also examine the reliability of the classification results; using the relevant features of Q1 ~ Q4, the 
model provides the meaningful classification of conjunctival regions, rather than random classification. Therefore, 
the corresponding feature extractors ( F-Net(Q1) ~ F-Net(Q4) ) can be obtained from the Q1 ~ Q4 classification 
model, which serves as a crucial prerequisite for building a network using limited images.
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The learning strategy used in this study is different from commonly adopted direct end-to-end pipeline in 
many medical classifications. Specifically, we combined the professional knowledge of ophthalmologists and 
realized the classification of a difficult problem through a hierarchical multi-task network, which is built upon 
sub-networks that are trained to answer simpler classification questions Q1 ~ Q4. In the fivefold cross-validation 
(Supplementary Document-p11, Table S2), each time a different cross-validation is performed, the results of 
the classification will fluctuate to a certain extent. The performance of the Set3 classification network is poor. 
The reason may be that the mean arterial pressure of Set3 patients is lower than that of other groups (as shown 
in the Supplementary Table S4). Blood pressure is also an important factor affecting vascular morphology. The 
higher the blood pressure, the easier it is to develop vascular lesions, which is similar to that caused by diabetes. 
Thus, the detection of set3 is relatively difficult. In general, from the average results of fivefold cross-validation, 
the average AUC of the classification of the HMT-Net we designed can reach 0.82, which demonstrates a good 
classification performance.

In this study, we designed a novel effective data augmentation strategy based on the characteristics of con-
junctival images. The valid region of blood vessels is usually located in the central area of the image, which is 
more critical in feature learning. Therefore, we located these regions through segmentation, and then added noise 
in other areas to improve the training robustness. Meanwhile, similar to Hwang’s work28, we also expanded the 
size of the training sets via general augmentation methods such as rotation and flipping. Through these data 
augmentation strategies, the network achieved an improved generalization ability.

Limitations of the study
The study has some limitations. First of all, though the current study is of certain significance, it has a small 
sample size with single center and single race. But at the same time, it also reflects the advantages of the HMT-Net 
model: This algorithm can overcome data insufficiency. In clinical research, especially in such early exploratory 
research, it is difficult to collect thousands of images at once, resulting in the network can not learn effectively, 
which undoubtedly limits the combination of artificial intelligence and medicine. If the method of this study is 
recognized, it will have great application value. Furthermore, the HMT-Net model has an accuracy of 75.15%. 
Besides the lack of training, we think, this discrepancy is also related to the ocular surface. In a multicenter study 
involving thousands of ocular surface images in identifying hepatobiliary diseases3, the accuracy of identification 
was only 74% (71%–76%), which is almost similar to our results. Although the HMT-Net model has low specific-
ity, its sensitivity to diabetes detection is high. We believe that the effectiveness and versatility of the model can 
be continuously improved with upgrading artificial intelligence and dataset collections.

Conclusion
In this study, we proposed a novel HMT-Net artificial intelligence model, based on expert knowledge fusion and 
a deep classification network, to detect diabetes on conjunctival images. Our findings indicate a high precision 
accuracy for the detection of diabetes in relation to an expert ground truth. The advantage of this system is that 
it does not require a large dataset to train the model. It is also transparent, easy to interpret, and can be used to 
facilitate the visualization of intermediate processes. This exploratory study provides the basis for the develop-
ment of a remote mobile screening tool for diabetes in the future. In the near future, we will collect and prepare 
a larger dataset to further validate and improve the performance of our deep learning model. Another future 
direction of our work is to reduce the memory and computational cost of the pipeline so that the current model 
can be deployed on mobile platforms.

Data availability
Data underlying the results presented in this paper are not publicly available at this time but may be obtained 
from the authors upon reasonable request.
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