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Abstract

Gliomablastoma multiform (GBM) is the most fatal form of all brain cancers in humans. Currently there are limited diagnostic
tools for GBM detection. Here, we applied surprisal analysis, a theory grounded in thermodynamics, to unveil how
biomolecule energetics, specifically a redistribution of free energy amongst microRNAs (miRNAs), results in a system
deviating from a non-cancer state to the GBM cancer –specific phenotypic state. Utilizing global miRNA microarray
expression data of normal and GBM patients tumors, surprisal analysis characterizes a miRNA system response capable of
distinguishing GBM samples from normal tissue biopsy samples. We indicate that the miRNAs contributing to this system
behavior is a disease phenotypic state specific to GBM and is therefore a unique GBM-specific thermodynamic signature.
MiRNAs implicated in the regulation of stochastic signaling processes crucial in the hallmarks of human cancer, dominate
this GBM-cancer phenotypic state. With this theory, we were able to distinguish with high fidelity GBM patients solely by
monitoring the dynamics of miRNAs present in patients’ biopsy samples. We anticipate that the GBM-specific
thermodynamic signature will provide a critical translational tool in better characterizing cancer types and in the
development of future therapeutics for GBM.
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Introduction

Glioblastoma multiforme (GBM) is an aggressive primary brain

tumor that exhibits extremely poor response to current therapies.

Despite maximal therapy with surgical resection, radiation and

temozolomide, survival statistics remain dismal [1,2]. According to

the National Brain Tumor Society, GBM accounts for approxi-

mately 23 percent of all primary brain tumors diagnosed in the

U.S. The prognosis for survival beyond the five-year mark is poor,

and the average survivability for people diagnosed with GBM is

one year [3]. Early diagnosis and treatment however often extend

the quality and length of life for individuals suffering with GBM.

Early detection of high-grade malignancy also significantly

increases the treatment options available and patient survival rate

[4]. Several studies have attempted to identify potential biomark-

ers for GBM. In a study of 125 GBM patients, MGMT promoter

methylation was strongly correlated to GBM survival [5]. In

addition to EGFR amplification, maintenance of PTEN, wild-type

p53 and p16 has also been associated with improved survival in

GBM following chemotherapy [6]. Loss of heterozygosity (LOH)

on chromosome 10q23 in primary GBMs and TP53 mutations in

secondary GBMs has also been well documented in patient studies

[7]. Studies using microRNA (miRNA) arrays and glioma tissues

found that miR-27a was up-regulated in the glioma cell lines and

patients samples by quantitative real-time polymerase chain

reaction (qRT-PCR) and suggest that miR-27a may be implicated

in the progression of glioma through the modulation of

neurotrophin signaling pathway, the MAPK signaling pathway,

the transforming growth factor-b (TGF-b) signaling pathway,

cytokine-cytokine receptor interactions, the p53 signaling path-

way, the apoptotic signaling pathway, as well as others [8]. The

stable expression of a targeting construct against miR-27, an anti-

miR-27 construct, significantly reduced the proliferation and the

accumulation of U87 GBM cells and impaired the invasiveness of

U87 GBM cells in vitro [9]. However, the prognostic value of

these biomarkers has yet to be ascertained and further progress

needs to be made not only to elucidate the mechanisms underlying

the role of these biomarkers in GBM cancer progression but also

to identify others.

MiRNAs are single-stranded short coding RNA molecules of

approximately 22 nucleotides in length. MiRNAs guide the RNA-

induced silencing complex (RISC) to post-transcriptionally repress

the expression of protein-coding genes by binding to targeted

messenger RNAs (mRNAs). MiRNAs constitute only 1–3% of the

human genome, yet are estimated to control approximately one

third of all gene expression. A single miRNA has been observed to
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control over 100 target mRNAs [10]. Conversely, a single mRNA

can be modulated by multiple miRNAs. Over 1,000 miRNAs have

been identified in humans according to a registry (miRBase)

cataloguing all reported discoveries. MiRNAs play crucial

regulatory roles in several cellular processes, including growth,

proliferation, metabolism, development, and apoptosis [11,12].

Given miRNAs widespread regulatory function within the cell, the

aberrant expression of miRNAs has naturally been implicated in

several human diseases, such as diabetes, arthritis, kidney disease,

neurodegenerative disorders and cancer [13]. Studies of genome-

wide miRNA expression have indicated that a majority of human

miRNA genes are located at fragile genomic sites associated with

cancer, and that miRNAs can function both as an oncogene and as

a tumor suppressor. However, understanding how miRNA

dynamics differ between phenotypic states on a systems level has

remained an enigma, particularly in understanding how global

modulations of miRNAs can program a non-cancer state to exhibit

cancer-phenotypic characteristics. Currently there exist several

computational miRNA target prediction tools, which are heavily

dependent on complementarily to miRNA seeds and evolutionary

conservation. Although these features allow for successful target

identification, not all miRNA target sites are conserved and adhere

to canonical seed complementarity.

We applied an unbiased thermodynamic maximal-entropy

based approach, known as surprisal analysis, to examine global

miRNA expression dynamics of 534 miRNAs in over 490 GBM

patients. This theoretical analysis unveils a GBM-specific miRNA

thermodynamic signature capable of distinguishing healthy and

GBM patients with high fidelity. Surprisal analysis also identified a

miRNA system response unique to GBM patients, where miRNAs

implicated in the regulation of stochastic signaling processes

crucial in the hallmarks of human cancer, including cell

proliferation and cancer metabolism, contributed the greatest

free-energy to sustaining the GBM-cancer phenotypic state. We

anticipate that the GBM-specific miRNA signature introduced

here will have substantial translational potential and utility as a

high-throughput drug discovery platform, particularly in better

understanding how current therapeutics can affect biomolecule

dynamics in human cancers.

Results

Surprisal analysis identifies a thermodynamic miRNA
signature unique to GBM.

Significant effort has been made in identifying disease signa-

tures, individual genes or compilations of modulated genes that

can be used to characterize the phenotypic states of disease [14–

16]. Surprisal analysis was applied to the miRNA microarray

expression profiles collected from 490 GBM patients’ tumor tissue

samples and compared to the expression profiles from 10 non-

GBM healthy controls. Surprisal analysis begins with the

identification of a reference defined as the balance state, in which

all cellular processes are assumed at equilibrium and therefore for

which there is no net change in the system, as previously described

by [17]. It is an idealized reference state common to both healthy

and diseased patients. Then, constraints that deviate the system

away from this balance state are determined and characterized.

These constraints unveil observable phenotypic cell states unique

to the system. We not only identify these constraints but also

characterize the signatures, specifically biomolecule dynamics that

are responsible for the deviation of the system from the balance

state into phenotypic states. In the present analysis the by far

dominant signature is the GBM-specific cancer state. The

theoretical analysis quantifies the importance of each miRNA in

each of the system’s signatures.

The list of miRNAs with largest negative values of Gi is shown

in Figure 1. These are the most stable ( = lowest free energy)

miRNAs that sustain the balance state. We find that the largest

contribution of free energy of individual miRNAs to the balance

state is from miRNAs networks involved in maintaining cellular

homeostasis and evolutionary conserved miRNAs. Furthermore,

both GBM systems and normal systems show a very similar

distribution of standard free energy amongst miRNAs in the

balance state, suggesting that GBM cancer and normal systems

may share a common thermodynamic lineage (Figures 1A and

1C). Heat maps of the balance state demonstrate, as expected, that

the expression flux of miRNAs that comprise the balance state is

consistent across all patients. Therefore the balance state is robust

against patient variability (Figure 1B and Figure 1 D). We

anticipate that slight variability (#10%) between GBM patients

may arise from varying amounts of necrotic or dead cells in the

heterogeneous tumor samples prior to microarray processing. We

previously investigated the role of experimental noise by examin-

ing the balance state at different points in time during

carcinogenesis of a homogenous cell population in vitro [18].

In the balance state, we observe the let-7 family of miRNAs; let-

7 and its family members are highly conserved across species in

sequence and function, and misregulation of let-7 leads to a less

differentiated cellular state [19]. Additionally, we see miR-22 in

the balance state, also highly conserved across many vertebrate

species. MiR-22 directly targets histone deacetylases involved in

DNA replication and transcription [20]. Interestingly, we also see

miR-9*, a miR highly expressed in the normal brain and critically

involved in the neuronal differentiation and basic neuronal

function [21] present in the balance state, suggesting that the

balance state not only consists of miRNAs that regulate the basic

cellular functions but also are tissue specific (Table S1).

Many of miRNA functions remain unknown and the mecha-

nisms driving cooperative regulation between miRNAs and their

cellular targets are also still not fully understood. MiRNAs tend to

target highly connected genes in cellular networks. Additionally,

the miRNAs that constitute the balance state are directly related to

the regulation and expression of components of the cellular

homeostasis system, such as chaperones and the cellular machin-

ery involved in the proteasome, cell cycle, autophagy and cell

transport. The health of a cell is inextricably correlated to cellular

quality control, where a highly complex network of molecular

interactions balances protein synthesis, protein function, cellular

metabolism and protein clearance. Deviations from cellular

homeostasis or aberrations in the machinery that regulates

processes associated with cellular homeostasis results in global,

system-wide decline in cellular function, with deleterious conse-

quences on tissue and ultimately patient viability [22]. Therefore,

we sought out to determine the miRNAs that contributed to a

system deviating from the balance state to a cancer specific

phenotypic state.

After determining the miRNAs that contribute to sustaining the

balance state, we next identify the constraints placed on the system

when deviating away from the balance state. Surprisal analysis

identifies the largest deviation away from the balance state and in

our analysis, the largest deviation from the balance state is

revealed to be a unique signature of the disease state. This

constraint is capable of distinguishing healthy and GBM patient

samples and is characterized as specific to the GBM cancer

phenotypic state. We also determine the miRNAs with the greatest

contribution to this GBM cancer phenotypic state and utilize this

miRNA signature to robustly distinguish between healthy and

Surprisal Analysis Delineates a GBM-Specific miRNA Phenotype
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GBM cancer patients (Figure 2A). In addition, the analysis

characterizes degrees of patient variability, or the thermodynamic

potentials of the disease for each patient (Figure 2B and

Figure 2C). These patient-specific potentials in the cancer

phenotypic state may provide an avenue for development of

personalized diagnostics.

In the GBM-specific signature, we identified miRNAs that

regulate critical signaling machinery involved in cell proliferation,

cancer invasiveness and directly affect GBM cancer aggressiveness

(Table S2 and Table S3). For instance, we observe miR-21 to have

the greatest positive free –energy contribution to deviating a

system from a non-GBM state to the GBM cancer state (Table S3

and Fig 2A). Previous studies have revealed elevated miR-21 levels

in human glioblastoma tumor tissues, early-passage glioblastoma

cultures, and in six established glioblastoma cell lines (A172, U87,

U373, LN229, LN428, and LN308) compared with nonneoplastic

fetal and adult brain tissues and compared with cultured

nonneoplastic glial cells. Additionally, knockdown of miR-21 in

cultured glioblastoma cells triggers activation of caspases and leads

to increased apoptotic cell death [23]. Conversely, in the GBM-

specific signature, we identified miR-124 with the largest negative

free-energy contribution to deviating a system from the GBM

cancer state to the non-cancer state (Table S2 and Fig 2A). Studies

have implicated miR-124 as a brain-enriched miRNA that plays a

crucial role in neural development and is down regulated in

glioma and medulloblastoma, suggesting its possible involvement

in brain tumor progression. Additionally, miR-124 is down

regulated in a panel of different grades of glioma tissues and in

human glioma cell lines [24].

Several studies have suggested that miRNA expression behavior

can provide a more accurate method of classifying cancer subtypes

than transcriptome profiling of an entire set of known protein-

coding genes. Differential miRNA expression behavior has been

able to successfully classify poorly differentiated cancers, while

mRNA gene expression behavior failed to classify them [25–28].

Further characterization and understanding of these miRNA

expression behaviors and extension of surprisal analysis to miRNA

datasets will lead to the development of tissue- and biofluid-specific

diagnostic markers, as well as a new type of oligonucleotide-based

therapeutics. We further experimentally validated the GBM-

specific signature by application of surprisal analysis to miRNA

microarray expression profiles (Agilent) from a cohort of 24 GMB

Figure 1. The balance state is common to GBM diseased and healthy patients. The heat map A is a representation that highlights the
invariance across patients where each column is an individual patient. Each row is a different miRNA. The miRNAs with the greatest contribution to
the balance state are listed in order of descending contribution (and decreasing energetic stability, on a ln scale, see inset on the right) where dark is
more stable and yellow is less stable. In the balance state, all patients are exhibiting similar expression pattern. B. The plot shows the patient potential
in the balance state ( = Lagrange multiplier for the balanced state), as described in the methods, vs. the patient index, n, coinciding with the heat
map in A. No significant variation of is observed between healthy and GBM diseased patients, as expected for a balance state that is common to both
GBM and normal patients. C. An alternative graphical representation of the stability of the balanced state. Shown is a histogram of the patient
potentials in the balanced state, computed for the 10 healthy patients and 20 groups of 10 diseased patients each, showing altogether 200 diseased
patients. The histograms is a rather narrow peak, indicating a common value to both healthy and diseased patients. The range of the ordinate in B is
the same as the range of the abscissa used in the histogram. D. Signatures of the balance state of 19 different patient groups, 2 to 20, are shown in
the legend as a scatter plot vs. the signature of patients group 1. Each group has 10 healthy patients and different sets of 10 diseased ones. Despite
patient variability the signatures of the different groups are very consistent across the entire range of (only negative) possible values of Gi.
doi:10.1371/journal.pone.0108171.g001
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patients. These GBM patients were examined and confirmed by

the UCLA Neuro-Oncology and Pathology Departments for high-

grade GBM (Table S4). Additional signatures may be identified by

surprisal analysis (see methods) of expression level data. The second

signature is about half as large as the disease signature. Even so,

sorting between healthy and diseased patients is clear and robust

as shown in Figure 2.

Discussion

Cancer cells frequently exist in varying phenotypic states and

phenotypic equilibrium was observed in cell state-proportions in
vivo and in vitro. Additionally, current anti-cancer therapies

preferentially target specific cancer cell states and initiate changes

in phenotypic properties of tumors [29]. Therefore further

understanding of how cell states are determined, specifically how

a normal cell adopts a new phenotypic state and how this state can

differ for different patients is of considerable interest and will

facilitate the development of targeted and more effective

therapeutics. Surprisal analysis is an information-theoretic ap-

proach grounded in thermodynamics and is capable of character-

izing biomolecule dynamics, such as miRNAs, based on the

expression flux of the biomolecule. We anticipate that under-

standing these biomolecule dynamics will enable us to better

monitor bioenergetics of the system. Surprisal analysis has already

been applied to a spectrum of disciplines including engineering,

physics, chemistry and biomedical engineering and is here used to

thermodynamically characterize biological systems based on

biomolecule cellular dynamics.

We apply surprisal analysis to elucidate a GBM-cancer specific

miRNA signature. This signature was able to distinguish between

healthy and GBM patients. The miRNAs in this signature have

been implicated in cancer progression. Aberrant expression of

microRNA (miRNA) is commonly associated with cancer and loss

of miR-124 has previously been implicated to function as a tumour

suppressor. The expression levels of mature miR-124 in a

retrospective series of 119 cases of histologically confirmed GBM

and found its expression was markedly lower in over 80% of the

Figure 2. The GBM cancer-specific miRNA thermodynamic signature distinguishes GBM and healthy patients. A. The heat map shows
the miRNAs with the greatest contribution to the GBM cancer phenotypic state, up regulated and down regulated with respect to the balanced state
(on a ln scale, see colour code in the inset). Similar thermodynamic behavior is observed across patients, however patient specific variability is
observed. B. The plots shows the patient potential in the disease signature ( = first Lagrange multiplier), on the same scale of patient index, n,
coinciding with the heat map in A. Distinct difference in sign of the lagrange multiplier is observed between healthy and GBM diseased patients,
delineating the two phenotypic states. C. A histogram of the patient potentials in the disease signature computed for the 10 healthy patients and 20
groups of 10 diseased patients each, showing altogether 200 diseased patients. D Different groups of diseased patients have consistent signatures in
both balance state and disease. Disease signatures of 19 different patient groups, 2 to 20, are shown as a scatter plot vs. the signature of patients
group 1. Each group has 10 healthy patients and a different set of 10 diseased ones. The groups are identified in the legend. Despite patient
variability the signatures of the different groups are very consistent across the entire range of possible values of Gi.
doi:10.1371/journal.pone.0108171.g002
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GBM clinical specimens compared to normal brain tissue [30].

MiR-21 is up-regulated in different human cancers including

glioblastoma, prostate and breast cancer. In addition, mir-21

contains oncogenic properties for it has the ability to negatively

modulate the expression of tumor-suppressor genes [31]. Sup-

pression of miR-21 in vitro suppressed both cell growth in vitro
and tumor growth in the xenograft mouse models [32]. MiR-21

was one of the most frequently up regulated miRNA in both

neuronal and GBM cell lines [33]. Antisense-miR-21-treated cells

showed a decreased expression of EGFR, activated Akt, cyclin D,

and Bcl-2 [34]. Consistent with our analysis, previous studies have

also revealed the down-regulation of miR-451 in A172, LN229

and U251 human GBM cells. Increased expression of miR-451 by

administration of miR-451 mimics oligonucleotides reversed the

biology of each of the three cell lines, inhibiting cell growth,

inducing G0/G1 phase arrest and increasing cell apoptosis.

Further, treatment with miR-451 mimics oligonucleotides dimin-

ished the invasive capacity of these cells, as the number of cells

invading through matrigel was significantly decreased [35]. MiR-7

is also found to be a tumor suppressor in GBM, targeting critical

cancer pathways. MiR-7 potently suppressed epidermal growth

factor receptor (EGFR) expression, and furthermore it indepen-

dently inhibited the Akt pathway via targeting upstream regulators

[36]. Patients’ overall survival (OS) and progression-free survival

(PFS) associated with interested miRNAs and miRNA-interactions

as performed by Kaplan-Meier survival analysis of over 400 GBM

patients indicated that that low levels of miR-155 and miR-210

were significantly associated with long OS of GBM patients, and

also showed that high miR-326/miR-130a and low miR-155/

miR-210 were related with extended PFS [37]. Consistent with

many miRNAs present in our GBM-specific signature, we find

that targeting these miRNAs in vitro and in vivo may provide an

effective therapeutic avenue for GBM. Additionally, we unveil

miRNAs critical to the GBM-specific signature that have not yet

been examined experimentally, but may expose new miRNA

targets in GBM.

We anticipate that application of surprisal analysis and further

understanding of patient potentials can also generate predictive

formulations to identify biomarkers of cancer that predict

individual patients benefit or success rates from a particular

targeted therapy. Recent advances in genome technologies and the

outpouring of genomic information related to cancer have

accelerated the convergence of discovery science and clinical

medicine. Our study emphasizes the importance of establishing

the biological relevance of a cancer profiling technologies and

modeling platforms and exploring the clinical potential and

application of their discoveries.

Methods

GBM Tissue Preparation
Fresh human glioblastoma specimens (WHO Grade IV) was

collected from patients following informed written consent at the

David Geffen School of Medicine, University of California, Los

Angles. Samples were submitted to the study under a protocol

approved by the University of California Office of Human

Research Protection and the North General Institutional Review

Board (exempt IRB Protocol # 12-001039). Samples were

obtained from patients who underwent primary therapeutic

subtotal or total tumor resection performed under image guidance.

Tissue samples were obtained at primary resection, and none of

the patients had undergone prior chemotherapy or radiation

therapy. The samples were immediately frozen on dry ice and cut

into 12-mm sections. Histological diagnosis of tumor core and

invasive edge was made by neuropathological review by standard

light-microscopic evaluation of the sections stained with hematox-

ylin and eosin. The targeted areas were collected by microscopic

dissection under an inverted microscope and processed immedi-

ately for RNA isolation. Patient miRNA expression analysis will be

deposited in GeoAsscession and NCBI.

RNA extraction, miRNA microarray profiling
Total RNA, including small RNA, was isolated using the

mirVana miRNA isolation kit (Ambion, Austin, TX). The RNA

quality and quantity were assessed using the NanoDrop 2000

(Thermo Scientific, Waltham, MA). The integrity of RNA was

determined using a Bioanalyzer 2100 Nano LabChip kit (Agilent

Technologies, Santa Clara, CA). Samples selected for the study

contained intact RNA with a RIN$8.0. One hundred ng total

RNA was end-labeled with Cy3-pCp following the manufacturer’s

recommendations using Agilent’s miRNA Complete Labeling and

Hyb Kit (Agilent). Labeled miRNA was hybridized to Agilent’s

Human 8615K miRNA Microarrays (V2) based on Sanger

miRbase (release 10.1). Images were captured using an Agilent

DNA Microarray Scanner set at default settings for miRNA

microarrays. Scanned TIFF images were processed using Feature

Extractor v. 10.5.1.1. Further quality control and normalization

was performed using GeneSpring GX 11 (Agilent). Signals ,1

were set to 1 due to GeneSpring’s analysis in log space, negative

values were converted as well. Values were divided by the 75th

percentile signal on that array to allow for improved comparison

between arrays.

TCGA miRNA dataset and patient information
Level 3 miRNA expression data were obtained from The

Cancer Genome Atlas (TCGA) data portal. MiRNA microarray

expression datasets from glioblastoma multiform were acquired in

August 2012.

Surprisal Analysis
Surprisal analysis was utilized to directly compute the proba-

bility that a particular patient is diseased as previously described

[14,15]. See also the graphical overview provided in the Schematic

S1.

Supporting Information

Schematic S1 Surprisal Analysis of GBM Patient Biopsy
Samples. The balanced state is common to all patients, see

figure 1 of the main text. The balance state is located at the

minimum of the free energy, which is the point of maximal

entropy. The disease phenotype causes an increase in the free

energy. As seen in figure 2 of the main text, the disease potential

has an opposite sign in healthy and diseased patients but about to

the same extent in either direction as shown schematically in this

figure. The figure shows only one horizontal axis but there can be

other axes in orthogonal directions representing additional,

secondary, phenotypes, for example representing the distinction

between the de novo and the recurrent states.

(DOCX)

Table S1 miRNAs greatest free energy contribution to
the in the balanced state.

(DOCX)

Table S2 miRNAs greatest negative free energy contri-
bution to the GBM-specific phenotypic state.

(DOCX)
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Table S3 miRNAs greatest positive free energy contri-
bution to the GBM-specific phenotypic state.
(DOCX)

Table S4 Overlap of signatures between UCLA GBM
Cohort and TCGA GBM Cohort.
(DOCX)
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